1
|
Li Y, Zhou H, Li B, Li J, Shen Y, Jiang Y, Cui W, Tang L. Immunoprotection of FliBc chimeric fiber2 fusion proteins targeting dendritic cells against Fowl adenovirus serotype 4 infection. Poult Sci 2024; 103:103474. [PMID: 38387285 PMCID: PMC10899072 DOI: 10.1016/j.psj.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Hepatitis-hydropericardium syndrome (HHS) is a highly fatal disease in chickens caused by the highly pathogenic fowl adenovirus serotype 4 (FAdV-4), which has severe economic consequences. The fiber2 protein exhibits excellent potential as a candidate for a subunit vaccination against FAdV-4. Despite having a high safety profile, subunit vaccines have low immunogenicity due to their lack of infectivity, which leads to low levels of immune response. As a vaccine adjuvant, Salmonella flagellin possesses the potential to augment the immunological response to vaccinations. Additionally, a crucial strategy for enhancing vaccine efficacy is efficient presentation of immune antigens to dendritic cells (DC) for targeted vaccination. In this study, we designed FAdV-4-fiber2 protein, and a recombinant protein called FliBc-fiber2-SP which based on FAdV-4-fiber2 protein, was generated using the gene sequence FliBc, which retains only the conserved sequence at the amino and carboxyl termini of the flagellin B subunit, and a short peptide SPHLHTSSPWER (SP), which targets chicken bone marrow-derived DC. They were separately administered via intramuscular injection to 14-day-old specific pathogen-free (SPF) chickens, and their immunogenicity was compared. At 21 d postvaccination (dpv), it was found that the FliBc-fiber2-SP recombinant protein elicited significantly higher levels of IgG antibodies and conferred a vaccine protection rate of up to 100% compared to its counterpart fiber2 protein. These results suggest that the DC-targeted peptide fusion strategy for flagellin chimeric antigen construction can effectively enhance the immune protective efficacy of antigen proteins.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Bolong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Yuanmeng Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 1550030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China.
| |
Collapse
|
2
|
Ou B, Yang Y, Lv H, Lin X, Zhang M. Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs 2023; 37:143-180. [PMID: 36607488 PMCID: PMC9821375 DOI: 10.1007/s40259-022-00575-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past 20 years, a variety of potential adjuvants have been studied to enhance the effect of oral vaccines in the intestinal mucosal immune system; however, no licensed adjuvant for clinical application in oral vaccines is available. In this review, we systematically updated the research progress of oral vaccine adjuvants over the past 2 decades, including biogenic adjuvants, non-biogenic adjuvants, and their multi-type composite adjuvant materials, and introduced their immune mechanisms of adjuvanticity, aiming at providing theoretical basis for developing feasible and effective adjuvants for oral vaccines. Based on these insights, we briefly discussed the challenges in the development of oral vaccine adjuvants and prospects for their future development.
Collapse
Affiliation(s)
- Bingming Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haihui Lv
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xin Lin
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Minyu Zhang
- School of Life Sciences, Zhaoqing University, Zhaoqing, China. .,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
3
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
4
|
Il Kim M, Lee C, Park J, Jeon BY, Hong M. Crystal structure of Bacillus cereus flagellin and structure-guided fusion-protein designs. Sci Rep 2018; 8:5814. [PMID: 29643437 PMCID: PMC5895748 DOI: 10.1038/s41598-018-24254-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
Flagellin is a major component of the flagellar filament. Flagellin also functions as a specific ligand that stimulates innate immunity through direct interaction with Toll-like receptor 5 (TLR5) in the host. Because flagellin activates the immune response, it has been of interest to develop as a vaccine adjuvant in subunit vaccines or antigen fusion vaccines. Despite the widespread application of flagellin fusion in preventing infectious diseases, flagellin-antigen fusion designs have never been biophysically and structurally characterized. Moreover, flagellin from Salmonella species has been used extensively despite containing hypervariable regions not required for TLR5 that can cause an unexpected immune response. In this study, flagellin from Bacillus cereus (BcFlg) was identified as the smallest flagellin molecule containing only the conserved TLR5-activating D0 and D1 domains. The crystal structure of BcFlg was determined to provide a scheme for fusion designs. Through homology-based modeling and comparative structural analyses, diverse fusion strategies were proposed. Moreover, cellular and biophysical analysis of an array of fusion constructs indicated that insertion fusion at BcFlg residues 178–180 does not interfere with the protein stability or TLR5-stimulating capacity of flagellin, suggesting its usefulness in the development and optimization of flagellin fusion vaccines.
Collapse
Affiliation(s)
- Meong Il Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Choongdeok Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jaewan Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 26493, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
5
|
Abstract
INTRODUCTION Bacterial flagellin, as a pathogen-associated molecular pattern (PAMP), can activate both innate and adaptive immunity. Its unique structural characteristics endow an effective and flexible adjuvant activity, which allow the design of different types of vaccine strategies to prevent various diseases. This review will discuss recent progress in the mechanism of action of flagellin and its prospects for use as a vaccine adjuvant. AREAS COVERED Herein we summarize various types of information related to flagellin adjuvants from PubMed, including structures, signaling pathways, natural immunity, and extensive applications in vaccines, and it discusses the immunogenicity, safety, and efficacy of flagellin-adjuvanted vaccines in clinical trials. EXPERT COMMENTARY It is widely accepted that as an adjuvant, flagellin can induce an enhanced antigen-specific immune response. Flagellin adjuvants will allow more effective flagellin-based vaccines to enter clinical trials. Furthermore, vaccine formulations containing PAMPs are crucial to exert the maximum potential of vaccine antigens. Therefore, combinations of flagellin-adjuvanted vaccines with other adjuvants that act in a synergistic manner, particularly TLR ligands, represent a promising method for tailoring targeted vaccines to meet specific requirements.
Collapse
Affiliation(s)
- Baofeng Cui
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yuzhen Fang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| |
Collapse
|
6
|
Zeinalzadeh N, Salmanian AH, Goujani G, Amani J, Ahangari G, Akhavian A, Jafari M. A Chimeric protein of CFA/I, CS6 subunits and LTB/STa toxoid protects immunized mice against enterotoxigenic Escherichia coli. Microbiol Immunol 2017; 61:272-279. [PMID: 28543534 DOI: 10.1111/1348-0421.12491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 01/21/2023]
Abstract
Enterotoxigenic Escherichia Coli (ETEC) strains are the commonest bacteria causing diarrhea in children in developing countries and travelers to these areas. Colonization factors (CFs) and enterotoxins are the main virulence determinants in ETEC pathogenesis. Heterogeneity of CFs is commonly considered the bottleneck to developing an effective vaccine. It is believed that broad spectrum protection against ETEC would be achieved by induced anti-CF and anti-enterotoxin immunity simultaneously. Here, a fusion antigen strategy was used to construct a quadrivalent recombinant protein called 3CL and composed of CfaB, a structural subunit of CFA/I, and CS6 structural subunits, LTB and STa toxoid of ETEC. Its anti-CF and antitoxin immunogenicity was then assessed. To achieve high-level expression, the 3CL gene was synthesized using E. coli codon bias. Female BALB/C mice were immunized with purified recombinant 3CL. Immunized mice developed antibodies that were capable of detecting each recombinant subunit in addition to native CS6 protein and also protected the mice against ETEC challenge. Moreover, sera from immunized mice also neutralized STa toxin in a suckling mouse assay. These results indicate that 3CL can induce anti-CF and neutralizing antitoxin antibodies along with introducing CFA/I as a platform for epitope insertion.
Collapse
Affiliation(s)
- Narges Zeinalzadeh
- Department of Animal Science, Faculty of Natural Science, University of Tabriz, Tabriz
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| | - Goli Goujani
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences
| | - Ghasem Ahangari
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Asal Akhavian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| | - Mahyat Jafari
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Shahrak-e- Pajoohesh, km 15, Tehran-Karaj Highway
| |
Collapse
|
7
|
Flagellin a toll-like receptor 5 agonist as an adjuvant in chicken vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:261-70. [PMID: 24451328 DOI: 10.1128/cvi.00669-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chicken raised under commercial conditions are vulnerable to environmental exposure to a number of pathogens. Therefore, regular vaccination of the flock is an absolute requirement to prevent the occurrence of infectious diseases. To combat infectious diseases, vaccines require inclusion of effective adjuvants that promote enhanced protection and do not cause any undesired adverse reaction when administered to birds along with the vaccine. With this perspective in mind, there is an increased need for effective better vaccine adjuvants. Efforts are being made to enhance vaccine efficacy by the use of suitable adjuvants, particularly Toll-like receptor (TLR)-based adjuvants. TLRs are among the types of pattern recognition receptors (PRRs) that recognize conserved pathogen molecules. A number of studies have documented the effectiveness of flagellin as an adjuvant as well as its ability to promote cytokine production by a range of innate immune cells. This minireview summarizes our current understanding of flagellin action, its role in inducing cytokine response in chicken cells, and the potential use of flagellin as well as its combination with other TLR ligands as an adjuvant in chicken vaccines.
Collapse
|
8
|
Zhang H, Liu L, Wen K, Huang J, Geng S, Shen J, Pan Z, Jiao X. Chimeric flagellin expressed by Salmonella typhimurium induces an ESAT-6-specific Th1-type immune response and CTL effects following intranasal immunization. Cell Mol Immunol 2011; 8:496-501. [PMID: 21841816 PMCID: PMC4012927 DOI: 10.1038/cmi.2011.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 11/09/2022] Open
Abstract
The flagellin component FliC of Salmonella typhimurium is capable of activating the innate immune system via specific interactions with TLR5 and can also act as a carrier of foreign antigen to elicit antigen-specific immune responses. Thus, we constructed an attenuated Salmonella strain SL5928(fliC/esat) expressing chimeric flagellin that contained the ESAT-6 antigen coding sequence of Mycobacterium tuberculosis inserted into the highly variable region of the Salmonella flagellin coding gene fliC(i). The chimeric flagellin functioned normally, as demonstrated using a flagella swarming assay and electron microscopy. To analyze the effects of chimeric flagellin, the cell-mediated immune response and cytotoxic T lymphocyte (CTL) effects specific for ESAT-6 antigen were tested after intranasal immunization of mice with flagellated Salmonella SL5928(fliC/esat). The results showed that SL5928(fliC/esat) intranasal immunization can strongly elicit an ESAT-6-specific T helper (Th) 1-type immune response in mucosal lymphoid tissues, such as nasopharynx-associated lymph nodes, lung and Peyer's patches, and a Th1/Th2 response was elicited in spleen and mesenteric lymph nodes. Furthermore, intranasal immunization of SL5928(fliC/esat) produced efficient CTL effects, as demonstrated using a 5- and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE) assay. Thus, our study revealed that Salmonella flagellin acts as a carrier for foreign antigen and triggers strong Th1 and CTL responses during intranasal immunization. Chimeric flagellin is potentially an effective strategy for the development of novel vaccines against tuberculosis in humans and animals.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms and potential. THE JOURNAL OF IMMUNOLOGY 2010; 185:5677-82. [PMID: 21048152 DOI: 10.4049/jimmunol.1002156] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flagellin is a potent activator of a broad range of cell types involved in innate and adaptive immunity. An increasing number of studies have demonstrated the effectiveness of flagellin as an adjuvant, as well as its ability to promote cytokine production by a range of innate cell types, trigger a generalized recruitment of T and B lymphocytes to secondary lymphoid sites, and activate TLR5(+)CD11c(+) cells and T lymphocytes in a manner that is distinct from cognate Ag recognition. The plasticity of flagellin has allowed for the generation of a range of flagellin-Ag fusion proteins that have proven to be effective vaccines in animal models. This review summarizes the state of our current understanding of the adjuvant effect of flagellin and addresses important areas of current and future research interest.
Collapse
Affiliation(s)
- Steven B Mizel
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
10
|
Escherichia coli K88ac fimbriae expressing heat-labile and heat-stable (STa) toxin epitopes elicit antibodies that neutralize cholera toxin and STa toxin and inhibit adherence of K88ac fimbrial E. coli. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1859-67. [PMID: 20980482 DOI: 10.1128/cvi.00251-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Bacterial adhesins and heat-labile (LT) and heat-stable (ST) enterotoxins are the virulence determinants in ETEC diarrhea. It is believed that vaccines inducing anti-adhesin immunity to inhibit bacterial adherence and anti-toxin immunity to eliminate toxin activity would provide broad-spectrum protection against ETEC. In this study, an ETEC fimbrial adhesin was used as a platform to express LT and STa for adhesin-toxin fusion antigens to induce anti-toxin and anti-adhesin immunity. An epitope from the B subunit of LT toxin (LTP1, (8)LCSEYRNTQIYTIN(21)) and an STa toxoid epitope ((5)CCELCCNPQCAGCY(18)) were embedded in the FaeG major subunit of E. coli K88ac fimbriae. Constructed K88ac-toxin chimeric fimbriae were harvested and used for rabbit immunization. Immunized rabbits developed anti-K88ac, anti-LT, and anti-STa antibodies. Moreover, induced antibodies not only inhibited adherence of K88ac fimbrial E. coli to porcine small intestinal enterocytes but also neutralized cholera toxin and STa toxin. Data from this study demonstrated that K88ac fimbriae expressing LT and STa epitope antigens elicited neutralizing anti-toxin antibodies and anti-adhesin antibodies and suggested that E. coli fimbriae could serve as a platform for the development of broad-spectrum vaccines against ETEC.
Collapse
|
11
|
Immunogenic properties of a recombinant fusion protein containing the C-terminal 19 kDa of Plasmodium falciparum merozoite surface protein-1 and the innate immunity agonist FliC flagellin of Salmonella typhimurium. Vaccine 2010; 28:2818-26. [PMID: 20170765 DOI: 10.1016/j.vaccine.2010.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/30/2010] [Accepted: 02/03/2010] [Indexed: 12/17/2022]
Abstract
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coli and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His(6)FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund's adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP1(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity.
Collapse
|
12
|
Liu S, Yu X, Wang C, Wu J, Kong X, Tu C. Quadruple antigenic epitope peptide producing immune protection against classical swine fever virus. Vaccine 2006; 24:7175-80. [PMID: 17050046 DOI: 10.1016/j.vaccine.2006.06.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/20/2006] [Accepted: 06/20/2006] [Indexed: 11/19/2022]
Abstract
Research on epitope-based vaccines is a current focus in the development of new vaccines against classical swine fever virus (CSFV). The present study aimed to engineer a quadruple antigenic epitope peptide of the CSFV immunogen E2 glycoprotein by splice overlap extension (SOE) PCR, expressed in E. coli fused with glutathione S-transferase (GST), and named rGST-4E. Enzyme-linked immunosorbent assay (ELISA) and Western blot analysis showed that purified rGST-4E had an excellent immunoreactivity with swine anti-CSFV serum and rabbit anti-E2 serum. Animal vaccination trials showed that the rGST-4E was more immunogenic than mono-epitope peptide and was able to produce effective immune protection in rabbits against challenge with hog cholera lapinized virus, and in pigs against challenge with virulent CSFV. These data show that the recombinant repeated epitope peptide could be considered a potential epitope-based vaccine for prevention of the disease.
Collapse
Affiliation(s)
- Siguo Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, China
| | | | | | | | | | | |
Collapse
|