1
|
He Y, Berrueta L, Wang Y, Badger GJ, Langevin HM. A novel mouse model of voluntary stretching and its application in breast cancer research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634735. [PMID: 39975006 PMCID: PMC11838233 DOI: 10.1101/2025.01.24.634735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Stretching exercises such as yoga are recommended for cancer survivors to manage symptoms and promote wellbeing in clinical settings. Although other types of exercise (e.g. running) can reduce the growth of tumors in animal models, the role of stretching on tumor growth remains unclear, and the lack of a preclinical self-stretching model has impeded mechanistic studies on health benefits of stretching. We sought to develop a voluntary stretching animal model to address this research gap and apply it to breast cancer research. Methods Using food, water, and enrichment in the home cage as motivators for stretching, a two-week 24/7 behavior monitoring was conducted in a video-based customizable home-cage behavior tracking system, Noldus PhenoTyper, to promote self-stretching in FVB mice. Subsequently, this model was utilized in a comparative study of voluntary stretching and voluntary running on tumor growth and plasma protein profiles in the MET-1 orthotopic mammary tumor FVB mouse model. Results The new voluntary stretching model effectively elicited mouse self-stretching in the custom cage setting in the long-term observation and significantly inhibited tumor growth as effectively as voluntary wheel running. Moreover, plasma proteomic analysis demonstrated that voluntary stretch versus voluntary running distinctly impacted systemic protein profiles, possibly linking to different cellular and molecular mechanisms underlying anti-cancer effects and, potentially, exercise-induced benefits in other health conditions. Conclusion Our work provides the first preclinical voluntary stretching model, which may be well suited to breast cancer research and a valuable research tool to facilitate investigations of stretching health benefits across various research fields.
Collapse
|
2
|
Liu B, Tian H, Momeni MR. The interplay of exercise and green tea: a new road in cancer therapy. Cancer Cell Int 2025; 25:6. [PMID: 39773739 PMCID: PMC11705833 DOI: 10.1186/s12935-024-03632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Exercise is one of the most important activities for every individual due to its proven health beneficials. Several investigations have highlighted the advantageous impacts of aerobic exercise, largely attributed to its capacity to enhance the body's capability to defend against threats against oxidative stress. The information currently accessible suggests that adding regular aerobic exercise to a daily routine greatly decreases the chances of developing serious cancer and passing away. An unevenness in the levels of free radicals and the body's antioxidant defenses, made up of enzyme and non-enzyme antioxidants, results in oxidative pressure. Generally, an imbalance in the levels of oxidative stress triggers the creation of harmful reactive oxygen or nitrogen compounds, causing the development or progression of numerous ailments, including cancer. The equilibrium between pro-oxidant and antioxidant substances is a direct indicator of this imbalance. Green tea and its derivatives are rich sources of bioactive substances such as flavonoids and polyphenols which possess antioxidant abilities. Moreover, modulation of epigenetic targets as well as inflammatory pathways including ERK1/2 and NF-κB are other proposed mechanisms for its antioxidant activity. Recent studies demonstrate the promise of green tea as an antioxidant, showing its ability to decrease the likelihood of developing cancer by impacting actions like cell growth, blood vessel formation, and spread of cancer cells. This summary will concentrate on the complex network of different pathways related to physical activity and consumption of green tea. In particular, the focus of this research will be on examining how oxidative stress contributes to health and investigating the potential antioxidant properties of green tea, and the interconnected relationship between exercise and green tea in the treatment of cancer. Elucidation of these different pathways would help scientists for development of better therapeutic targets and further increase of current anticancer agents efficiency.
Collapse
Affiliation(s)
- Bing Liu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Heyu Tian
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | | |
Collapse
|
3
|
Leimbacher AC, Villiger P, Desboeufs N, Aboouf MA, Nanni M, Armbruster J, Ademi H, Flüchter P, Ruetten M, Gantenbein F, Haider TJ, Gassmann M, Thiersch M. Voluntary exercise does not always suppress lung cancer progression. iScience 2023; 26:107298. [PMID: 37520731 PMCID: PMC10374464 DOI: 10.1016/j.isci.2023.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/11/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Physical exercise can lower lung cancer incidence. However, its effect on lung cancer progression is less understood. Studies on exercising mice have shown decreased ectopic lung cancer growth through the secretion of interleukin-6 from muscles and the recruitment of natural killer (NK) cells to tumors. We asked if exercise suppresses lung cancer in an orthotopic model also. Single-housed C57Bl/6 male mice in cages with running wheels were tail vein-injected with LLC1.1 lung cancer cells, and lung tumor nodules were analyzed. Exercise did not affect lung cancer. Therefore, we also tested the effect of exercise on a subcutaneous LLC1 tumor and a tail vein-injected B16F10 melanoma model. Except for one case of excessive exercise, tumor progression was not influenced. Moderately exercising mice did not increase IL-6 or recruit NK cells to the tumor. Our data suggest that the exercise dose may dictate how efficiently the immune system is stimulated and controls tumor progression.
Collapse
Affiliation(s)
- Aurelia C. Leimbacher
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Philipp Villiger
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Nina Desboeufs
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Mostafa A. Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Monica Nanni
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Hyrije Ademi
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Pascal Flüchter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Maja Ruetten
- PathoVet AG, Pathology Diagnostic Laboratory, 8317 Tagelswangen ZH, Switzerland
| | - Felix Gantenbein
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, 8057 Zurich, Switzerland
| | - Thomas J. Haider
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Wang Q, Zhou W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:201-210. [PMID: 32738520 PMCID: PMC7987556 DOI: 10.1016/j.jshs.2020.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 05/18/2023]
Abstract
Exercise can enhance motivation to change lifestyle behaviors, improve aerobic fitness, improve physical function, control fatigue, and enhance quality of life. Studies have demonstrated the benefits to be gained from physical exercise, highlighting the importance of popularizing the concept of physical exercise for individuals and making professional exercise-treatment programs available to patients with cancer. However, the correlation between physical exercise and carcinogenesis is easily overlooked, and exercise interventions are not routinely provided to patients with cancer, especially those with advanced cancer. In this article, we present a literature review of the effects of exercise on cancer development and progression and give recent evidence for the type of exercise best suited for different types of cancer and in different disease stages. Moreover, the molecular mechanisms about regulating metabolism and systemic immune function in cancer are summarized and discussed. In conclusion, physical exercise should be considered as an important intervention for preventing and treating cancer and its complications.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated of Tongji University School of Medicine, Shanghai 200081, China; Department of Oncology, The Second Affiliated Hospital of Soochow University, Soochow 215004, China
| | - Wenli Zhou
- Department of Medical Oncology, Changzheng Hospital, Navy Medical University, Shanghai 200070, China.
| |
Collapse
|
5
|
Xu Y, Rogers CJ. Physical Activity and Breast Cancer Prevention: Possible Role of Immune Mediators. Front Nutr 2020; 7:557997. [PMID: 33134306 PMCID: PMC7578403 DOI: 10.3389/fnut.2020.557997] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
There is strong evidence that physical activity (PA) reduces risk, recurrence, and mortality from breast cancer. Emerging data suggest that PA induces changes in inflammatory and immune mediators that may contribute to beneficial effects on breast cancer outcomes. Thus, the goal of this review was to evaluate the evidence linking the protective benefit of PA to modulation of immune responses in breast cancer. A literature search was conducted to identify studies that evaluated the impact of PA on tumor and immune outcomes in breast cancer patients and in mammary tumor models. Nineteen studies investigated the effect of PA interventions on cancer immune outcomes using preclinical breast cancer models. Tumor growth was reduced in 11 studies, unchanged in three studies, and increased in one study. Spontaneous metastasis was reduced in two studies and survival was improved in four studies. Frequently assessed immune outcomes include splenic cell number and function, circulating inflammatory cytokines, and intratumoral immune cells and inflammatory markers. Circulating inflammatory cytokine responses were heterogeneous in preclinical models. Within the tumor microenvironment (TME), several studies documented a change in the infiltration of immune cells with an increase in effector cells and a reduction in immune suppressive cells. Twenty-three studies investigated the effect of PA interventions on immune outcomes in breast cancer patients. Thirteen studies used aerobic PA interventions and 10 studies used a combination of aerobic and resistance exercise interventions. Cycling and treadmill activities were the most commonly used PA modalities. Circulating immune cells and inflammatory cytokines were the most frequently assessed immune outcomes in the clinical studies. Among the 19 studies that evaluated a PA intervention during the post treatment period, 10 reported a reduction in the levels of at least one inflammatory cytokine. No inflammatory cytokines were quantified in the three studies that evaluated a PA intervention during treatment with chemotherapy. Immune outcomes within the tumor were assessed in only one study performing a PA intervention prior to surgery. Results from preclinical and clinical studies suggest that PA exerts heterogeneous effects on inflammatory cytokines, but may alter the gene expression profile and immune infiltrates in the tumor which may result in a reduction in immunosuppressive factors. However, additional studies are needed to better understand the effect of PA on immune outcomes in the TME.
Collapse
Affiliation(s)
- Yitong Xu
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.,Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.,Penn State Cancer Institute, Hershey, PA, United States
| |
Collapse
|
6
|
Eschke RCKR, Lampit A, Schenk A, Javelle F, Steindorf K, Diel P, Bloch W, Zimmer P. Impact of Physical Exercise on Growth and Progression of Cancer in Rodents-A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:35. [PMID: 30805305 PMCID: PMC6370688 DOI: 10.3389/fonc.2019.00035] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Physical exercise is suspected to reduce cancer risk and mortality. So far, little is known about the underlying mechanisms. Although limited, murine models represent a promising attempt in order to gain knowledge in this field. Objective: A systematic review and meta-analysis examining various treatment protocols was conducted in order to determine the impact of exercise on tumor growth in rodents. Methods: PubMed, Google scholar and System for information on Gray literature in Europe were screened from inception to October 2017. Risk of bias within individual studies was assessed using the Office of Health Assessment and Translation risk of bias rating tool for human and animal trials. The effect of exercise on tumor growth over and above non-exercise control was pooled using random-effects model. Subgroup analyses were conducted to identify potential moderators. Results: The quality of the included 17 articles ranged between "probably low" and "high risk of bias." A significant reduction in tumor growth in exercising animals compared to controls was detected (Hedges' g = -0.40; 95% CI -0.66 to -0.14, p < 0.01) with between-study heterogeneity (τ2 = 0.217, I 2 = 70.28%, p < 0.001). The heterogeneity was partially explained by three moderators representing the in-between group differences of "maximum daily exercise" R 2 = 33% (p < 0.01), "type of cancer administration" R 2 = 28% (p < 0.05), and "training initiation" R 2 = 27% (p < 0.05). Conclusion: This meta-analysis suggests that physical exercise leads to reduction of tumor size in rodents. Since "maximum daily exercise" was found to have at least modest impact on tumor growth, more clinical trials investigating dose-response relationships are needed.
Collapse
Affiliation(s)
| | - Amit Lampit
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Schenk
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Patrick Diel
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany.,Division of Physical Activity, Prevention and Cancer, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Siewierska K, Malicka I, Kobierzycki C, Paslawska U, Cegielski M, Grzegrzolka J, Piotrowska A, Podhorska-Okolow M, Dziegiel P, Wozniewski M. The Impact of Exercise Training on Breast Cancer. ACTA ACUST UNITED AC 2018; 32:249-254. [PMID: 29475906 DOI: 10.21873/invivo.11231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM Physical exercise is increasingly considered by many authors to be a factor reducing the risk of cancer development and premature cancer-related death. Data indicate higher cure rates and longer times of survival in cancer patients who regularly exercise. MATERIALS AND METHODS A total of 50 female Sprague-Dawley rats were used in the experiment. Animals at 1 month of age were intraperitoneally injected with N-methyl-N-nitrosourea. Three months following drug administration, rats underwent supervised physical training. The animals were divided into four groups: control untrained group and 3 groups trained with different intensities - i.e. low, moderate and high. Routine histopathological examination of tumors was performed and mitotic activity was assessed by immunohistochemical expression of the Ki-67 antigen. RESULTS Ki-67 antigen expression was observed in all analyzed tumors. The increase in Ki-67 antigen expression correlated positively with the increase in training intensity. CONCLUSION It can be assumed that low-intensity physical training is safe for patients with breast cancer. However, moderate- and high-intensity training may induce tumor cell proliferation worsening patients' prognosis.
Collapse
Affiliation(s)
- Katarzyna Siewierska
- Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| | - Iwona Malicka
- Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| | | | - Urszula Paslawska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs, and Cats, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Marek Cegielski
- Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Jedrzej Grzegrzolka
- Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Piotr Dziegiel
- Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland.,Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Wozniewski
- Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
| |
Collapse
|
8
|
The influence of cancer on endocrine, immune, and behavioral stress responses. Physiol Behav 2016; 166:4-13. [DOI: 10.1016/j.physbeh.2015.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/10/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
|
9
|
Ashcraft KA, Peace RM, Betof AS, Dewhirst MW, Jones LW. Efficacy and Mechanisms of Aerobic Exercise on Cancer Initiation, Progression, and Metastasis: A Critical Systematic Review of In Vivo Preclinical Data. Cancer Res 2016; 76:4032-50. [PMID: 27381680 DOI: 10.1158/0008-5472.can-16-0887] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
A major objective of the emerging field of exercise-oncology research is to determine the efficacy of, and biological mechanisms by which, aerobic exercise affects cancer incidence, progression, and/or metastasis. There is a strong inverse association between self-reported exercise and the primary incidence of several forms of cancer; similarly, emerging data suggest that exercise exposure after a cancer diagnosis may improve outcomes for early-stage breast, colorectal, or prostate cancer. Arguably, critical next steps in the development of exercise as a candidate treatment in cancer control require preclinical studies to validate the biological efficacy of exercise, identify the optimal "dose", and pinpoint mechanisms of action. To evaluate the current evidence base, we conducted a critical systematic review of in vivo studies investigating the effects of exercise in cancer prevention and progression. Studies were evaluated on the basis of tumor outcomes (e.g., incidence, growth, latency, metastasis), dose-response, and mechanisms of action, when available. A total of 53 studies were identified and evaluated on tumor incidence (n = 24), tumor growth (n = 33), or metastasis (n = 10). We report that the current evidence base is plagued by considerable methodologic heterogeneity in all aspects of study design, endpoints, and efficacy. Such heterogeneity precludes meaningful comparisons and conclusions at present. To this end, we provide a framework of methodologic and data reporting standards to strengthen the field to guide the conduct of high-quality studies required to inform translational, mechanism-driven clinical trials. Cancer Res; 76(14); 4032-50. ©2016 AACR.
Collapse
Affiliation(s)
| | - Ralph M Peace
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
10
|
Moderate swimming suppressed the growth and metastasis of the transplanted liver cancer in mice model: with reference to nervous system. Oncogene 2015; 35:4122-31. [PMID: 26686088 DOI: 10.1038/onc.2015.484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
Physical activity has been shown to suppress tumor initiation and progression. The neurotransmitter dopamine (DA) is closely related to movement and exhibits antitumor properties. However, whether the suppressive effects of physical activity on tumors was mediated by the nervous system via increased DA level remains unknowns. Here we show that regular moderate swimming (8 min/day, 9 weeks) raised DA levels in the prefrontal cortex, serum and tumor tissue, suppressed growth, reduced lung metastasis of transplanted liver cancer, and prolonged survival in a C57BL/6 mouse model, while overload swimming (16 and 32 min/day, 9 weeks) had the opposite effect. In nude mice that were orthotopically implanted with human liver cancer cell lines, DA treatment significantly suppressed growth and lung metastasis by acting on the D2 receptor (DR2). Furthermore, DR2 blockade attenuated the suppressive effect of moderate swimming on liver cancer. Both moderate swimming and DA treatment suppressed the transforming growth factor-beta (TGF-β1)-induced epithelial-mesenchymal transition of transplanted liver cancer cells. At the molecular level, DR2 signaling inhibited extracellular signal-regulated kinase phosphorylation and expression of TGF-β1 in vitro. Together, these findings demonstrated a novel mechanism by which the moderate exercise suppressed liver cancer through boosting DR2 activity, while overload exercise had the opposite effect, highlighting the possible importance of the dopaminergic system in tumor growth and metastasis of liver cancer.
Collapse
|
11
|
Immunolocalization of corticotropin-releasing hormone (CRH) and its receptors (CRHR1 and CRHR2) in human endometrial carcinoma: CRHR1 as a potent prognostic factor. Int J Gynecol Cancer 2015; 24:1549-57. [PMID: 25254562 PMCID: PMC4215916 DOI: 10.1097/igc.0000000000000269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Supplemental digital content is available in the text. Objective Corticotropin-releasing hormone (CRH), a major regulator of the stress response, regulates various biological functions through its interaction with CRH receptors 1 (CRHR1) and 2 (CRHR2). CRH, CRHR1, and CRHR2 have recently been reported in several types of carcinoma, but the significance of these proteins has remained largely unknown in human endometrial carcinoma. Materials and Methods A total of 87 endometrial carcinoma specimens were obtained from Japanese female patients who underwent surgical treatment, fixed in 10% formalin, and embedded in paraffin wax. Immunohistochemistry for CRH, CRHR1, and CRHR2 was performed, and clinical data were obtained from the medical records. Results Immunopositivity of CRH, CRHR1, and CRHR2 in the specimens was 26%, 15%, and 10%, respectively. Univariate analysis revealed that immunohistochemical CRH status was positively associated with CRHR1 and CRHR2 status and that CRHR1 status was significantly associated with the risk of recurrence and poorer clinical outcome, whereas CRHR2 status was marginally associated with better prognosis for overall survival. Multivariate analysis demonstrated CRHR1 status as an independent prognostic factor for both disease-free and overall survival. Conclusions These results suggest that intratumoral CRH-CRHR1 signaling plays an important role in the progression of endometrial carcinoma and that CRHR1 is a potent prognostic factor in patients with this disease.
Collapse
|
12
|
Malicka I, Siewierska K, Pula B, Kobierzycki C, Haus D, Paslawska U, Cegielski M, Dziegiel P, Podhorska-Okolow M, Wozniewski M. The effect of physical training on the N-methyl-N-nitrosourea-induced mammary carcinogenesis of Sprague-Dawley rats. Exp Biol Med (Maywood) 2015; 240:1408-15. [PMID: 25990440 DOI: 10.1177/1535370215587532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
The impact of physical activity on carcinogenesis has been demonstrated in many studies. Taking into account the discrepant results of physical exercise on the cell proliferation and apoptosis of breast cancer, we aimed to examine the impact of physical training on N-methyl-N-nitrosourea-(MNU)-induced mammary carcinogenesis. Fifty female rats were divided into four groups according to the intensity of physical activity they undertook. The number of developed tumors, tumor volume, and histopathological diagnoses were noted. Apoptosis and cell proliferation were studied by the number of TUNEL-positive and Ki-67-expressing cells. We demonstrated a statistically significant decrease in the tumor number between all trained groups and the control group. The results were most pronounced in the group with a moderate intensity of training. Moreover, we showed a decrease in tumor volume as training intensity increased, though the differences were not statistically significant. The mean number of TUNEL-positive cancer cells was significantly higher in the training groups than in the control group. These data suggest that physical training, especially of moderate intensity, may alleviate MNU-induced mammary carcinogenesis. The results could suggest that physical exercise-induced apoptosis may be a protective mechanism.
Collapse
Affiliation(s)
- Iwona Malicka
- Department of Physiotherapy, Wrocław University of Physical Education, Wroclaw 51-612, Poland
| | - Katarzyna Siewierska
- Department of Physiotherapy, Wrocław University of Physical Education, Wroclaw 51-612, Poland
| | - Bartosz Pula
- Department of Histology and Embryology, Medical University, Wroclaw 51-612, Poland
| | | | - Dominik Haus
- Department of Histology and Embryology, Medical University, Wroclaw 51-612, Poland
| | - Urszula Paslawska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs, and Cats, University of Environmental and Life Sciences, Wroclaw 51-612, Poland
| | - Marek Cegielski
- Department of Histology and Embryology, Medical University, Wroclaw 51-612, Poland
| | - Piotr Dziegiel
- Department of Physiotherapy, Wrocław University of Physical Education, Wroclaw 51-612, Poland Department of Histology and Embryology, Medical University, Wroclaw 51-612, Poland
| | | | - Marek Wozniewski
- Department of Physiotherapy, Wrocław University of Physical Education, Wroclaw 51-612, Poland
| |
Collapse
|
13
|
Betof AS, Dewhirst MW, Jones LW. Effects and potential mechanisms of exercise training on cancer progression: a translational perspective. Brain Behav Immun 2013; 30 Suppl:S75-87. [PMID: 22610066 PMCID: PMC3638811 DOI: 10.1016/j.bbi.2012.05.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 03/27/2012] [Accepted: 05/04/2012] [Indexed: 12/30/2022] Open
Abstract
Over the past decade there has been increasing research and clinical interest in the role of exercise therapy/rehabilitation as an adjunct therapy to improve symptom control and management following a cancer diagnosis. More recently, the field of 'exercise - oncology' has broadened in scope to investigate whether the benefits extend beyond symptom control to modulate cancer-specific outcomes (i.e., cancer progression and metastasis). Here we review the extant epidemiological evidence examining the association between exercise behavior, functional capacity/exercise capacity, and cancer-specific recurrence and mortality as well as all-cause mortality individuals following a cancer diagnosis. We also evaluate evidence from clinical studies investigating the effects of structured exercise on blood-based biomarkers associated with cancer progression/metastasis as well findings from preclinical investigations examining the effects and molecular mechanisms of exercise in mouse models of cancer. Current gaps in knowledge are also discussed.
Collapse
|
14
|
Fedrowitz M, Hass R, Bertram C, Löscher W. Salivary α-amylase exhibits antiproliferative effects in primary cell cultures of rat mammary epithelial cells and human breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:102. [PMID: 22027017 PMCID: PMC3219703 DOI: 10.1186/1756-9966-30-102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/25/2011] [Indexed: 01/21/2023]
Abstract
Background Breast cancer is one of the most diagnosed cancers in females, frequently with fatal outcome, so that new strategies for modulating cell proliferation in the mammary tissue are urgently needed. There is some, as yet inconclusive evidence that α-amylase may constitute a novel candidate for affecting cellular growth. Methods The present investigation aimed to examine if salivary α-amylase, an enzyme well known for the metabolism of starch and recently introduced as a stress marker, is able to exert antiproliferative effects on the growth of mammary gland epithelial cells. For this purpose, primary epithelial cultures of breast tissue from two different inbred rat strains, Fischer 344 (F344) and Lewis, as well as breast tumor cells of human origin were used. Treatment with human salivary α-amylase was performed once daily for 2 days followed by cell counting (trypan blue assay) to determine alterations in cell numbers. Cell senescence after α-amylase treatment was assessed by β-galactosidase assay. Endogenous α-amylase was detected in cells from F344 and Lewis by immunofluorescence. Results Salivary α-amylase treatment in vitro significantly decreased the proliferation of primary cells from F344 and Lewis rats in a concentration-dependent manner. Noticeably, the sensitivity towards α-amylase was significantly higher in Lewis cells with stronger impact on cell growth after 5 and 50 U/ml compared to F344 cells. An antiproliferative effect of α-amylase was also determined in mammary tumor cells of human origin, but this effect varied depending on the donor, age, and type of the cells. Conclusions The results presented here indicate for the first time that salivary α-amylase affects cell growth in rat mammary epithelial cells and in breast tumor cells of human origin. Thus, α-amylase may be considered a novel, promising target for balancing cellular growth, which may provide an interesting tool for tumor prophylaxis and treatment.
Collapse
Affiliation(s)
- Maren Fedrowitz
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
| | | | | | | |
Collapse
|
15
|
Arranz A, Venihaki M, Mol B, Androulidaki A, Dermitzaki E, Rassouli O, Ripoll J, Stathopoulos EN, Gomariz RP, Margioris AN, Tsatsanis C. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress. Mol Cancer 2010; 9:261. [PMID: 20875132 PMCID: PMC2956730 DOI: 10.1186/1476-4598-9-261] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/27/2010] [Indexed: 11/20/2022] Open
Abstract
Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF) is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this effect. Moreover, antalarmin suppressed neoangiogenesis in 4T1 tumors in vivo. Conclusion This is the first report demonstrating that peripheral CRF, at least in part, mediates the tumor-promoting effects of stress and implicates CRF in SMAD2 and β-catenin expression.
Collapse
Affiliation(s)
- Alicia Arranz
- Department of Clinical Chemistry, School Of Medicine, University of Crete, 71003 Heraklion, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The Relationship Between Psychosocial Stressors and Breast Cancer Biology. CURRENT BREAST CANCER REPORTS 2010. [DOI: 10.1007/s12609-010-0021-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
PELLEGRIN MAXIME, MIGUET-ALFONSI CAROLE, BOUZOURENE KARIMA, AUBERT JEANFRANÇOIS, DECKERT VALÉRIE, BERTHELOT ALAIN, MAZZOLAI LUCIA, LAURANT PASCAL. Long-Term Exercise Stabilizes Atherosclerotic Plaque in ApoE Knockout Mice. Med Sci Sports Exerc 2009; 41:2128-35. [DOI: 10.1249/mss.0b013e3181a8d530] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
72 kDa Extracellular Heat Shock Protein (eHsp72), Norepinephrine (NE), and the Innate Immune Response Following Moderate Exercise. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-90-481-3381-9_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
19
|
Boyadjieva NI, Ortigüela M, Arjona A, Cheng X, Sarkar DK. Beta-endorphin neuronal cell transplant reduces corticotropin releasing hormone hyperresponse to lipopolysaccharide and eliminates natural killer cell functional deficiencies in fetal alcohol exposed rats. Alcohol Clin Exp Res 2009; 33:931-7. [PMID: 19320628 DOI: 10.1111/j.1530-0277.2009.00911.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of beta-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. METHODS To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-gamma (IFN-gamma) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. RESULTS We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-gamma in control and fetal alcohol exposed rats. CONCLUSIONS These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyperresponse and immune deficiency in fetal alcohol exposed subjects.
Collapse
Affiliation(s)
- Nadka I Boyadjieva
- Endocrine Program, Department of Animal Sciences, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
20
|
Jellinek M. The need for a multi-level biochemical approach to defeat cancer that will also support the host. Med Hypotheses 2008; 71:515-26. [PMID: 18752905 DOI: 10.1016/j.mehy.2008.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 05/16/2008] [Accepted: 05/19/2008] [Indexed: 10/21/2022]
Abstract
Cited research papers support the main hypothesis that selected publications supply sufficient information for a combined multi-level treatment strategy against cancer that will also strengthen the host. The three major elements of the proposal are: (A) metastasis being separate from tumor growth requires specific antimetastatic treatments. For this, manipulation of the composition of phospholipids will alter cellular charge characteristics which are instrumental in adhesion. (B) Formate metabolism is at the center of many activities that are controlling tumor growth. The rational and consequences of this are as follows. Supply of formate depends mainly on serine, and consumption on conversion to CO2 yielding needed NADPH. The remainder is used to complete IMP configuration with 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP). At homeostasis residual ZMP activates AMP-activated protein kinase (AMPK) to curb growth promoting phosphatidylinositol-3-kinase (PI3PK). Residual ZMP also activates the oxidation of choline to betaine supplying methyl groups needed for global methylation of DNA while increased oxidation of choline also alters cellular phospholipid composition (refer to metastasis). At low formate level, increased accumulated ZMP becomes pyrophosporylated to ZTP. AMPK activation shifts to PI3PK activity for insulin action restoring formate supplied by serine derived from glycolysis. Increased NADPH-generating glucose-6-phosphate dehydrogenase is diminishing NADP+ required for dehydrogenation of formate. This is restoring the formate balance while lowering ZMP levels to that of homeostasis. Evidence suggests that transformed cells exceed up-regulation of formate thus suppressing all ZMP accumulations resulting in limited AMPK activation, cessation of choline oxidation to betaine and loss of global methylation of DNA. This scenario appears to be tied to tumor survival, a state that could be altered by metabolic interventions using mild agents as described in the research reports cited. (C) Because of a preponderance of pyrimidines in cancer supporting UTP requiring immune evasion, exogenous IMP may offset this imbalance and thus hinder tumor anti-immune activities while strengthen host immune functions. For studies to confirm the proposal, the overall expected result is that a combined administration of all these agents cited here will outperform any single agent considered so far for anticancer treatment.
Collapse
Affiliation(s)
- Max Jellinek
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, 1402 South Grand Boulevard, St. Louis, MO 63104, United States.
| |
Collapse
|
21
|
Thaker PH, Sood AK. Neuroendocrine influences on cancer biology. Semin Cancer Biol 2008; 18:164-70. [PMID: 18201896 PMCID: PMC2424028 DOI: 10.1016/j.semcancer.2007.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/05/2007] [Indexed: 12/13/2022]
Abstract
Over the past 25 years, epidemiological and clinical studies have linked psychological factors such as stress, chronic depression, and lack of social support to the incidence and progression of cancer. Although the mechanisms underlying these observations are not completely understood, recent molecular and animal studies have begun to identify specific signaling pathways that could explain the impact of neuroendocrine effects on tumor growth and metastasis. This review will highlight the importance of known clinical, molecular, and cellular processes with regard to the neuroendocrine stress effects on tumor biology and discuss possible behavioral and pharmacological interventions to ameliorate these effects and ultimately improve cancer outcomes.
Collapse
Affiliation(s)
- Premal H. Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, 4911 Barnes Jewish Medical Center, Campus Box 8064, St. Louis, MO 63110
| | - Anil K. Sood
- Department of Gynecologic Oncology, U.T. M.D. Anderson Cancer Center, 1155 Herman Pressler, Unit 1362, Houston, TX 77030
- Department of Cancer Biology, U.T. M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX 77030
| |
Collapse
|
22
|
Harvey PW, Everett DJ, Springall CJ. Adverse effects of prolactin in rodents and humans: breast and prostate cancer. J Psychopharmacol 2008; 22:20-7. [PMID: 18709700 DOI: 10.1177/0269881107082624] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Drugs and chemicals shown to induce mammary carcinogenesis in the rat/rodent via prolactin excess have traditionally been argued to pose little or no risk to humans in a regulatory toxicology context. The basis for this assumption is reviewed and placed into context with new evidence in humans that prolactin may be a tumour promoter in the breast and prostate. This evidence includes epidemiology, patient studies involving endocrine evaluation and molecular biology in human cells. It is concluded that hyperprolactinaemia is associated with an increase in breast cancer risk in both post and premenopausal women, that rat carcinogenicity studies are predictive of the human response, and that in a regulatory toxicology context prolactin-induced mammary tumours from nongenotoxic drugs and chemicals are an adverse effect that should not be ignored. More evidence is required concerning prostate cancer risk but molecular biology indicates that prolactin also induces prostate cell proliferation and inhibits apoptosis, which are similar to the responses observed in breast cancer cells.
Collapse
Affiliation(s)
- Philip W Harvey
- Department of Toxicology, Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire, UK.
| | | | | |
Collapse
|