1
|
Roles of TGF- β in cancer hallmarks and emerging onco-therapeutic design. Expert Rev Mol Med 2022; 24:e42. [PMID: 36345661 DOI: 10.1017/erm.2022.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a double-edged sword in cancer treatment because of its pivotal yet complex and roles played during cancer initiation/development. Current anti-cancer strategies involving TGF-β largely view TGF-β as an onco-therapeutic target that not only substantially hinders its full utilisation for cancer control, but also considerably restricts innovations in this field. Thereby, how to take advantages of therapeutically favourable properties of TGF-β for cancer management represents an interesting and less investigated problem. Here, by categorising cancer hallmarks into four critical transition events and one enabling characteristic controlling cancer initiation and progression, and delineating TGF-β complexities according to these cancer traits, we identify the suppressive role of TGF-β in tumour initiation and early-stage progression and its promotive functionalities in cancer metastasis as well as other cancer hallmarks. We also propose the feasibility and possible scenarios of combining cold atmospheric plasma (CAP) with onco-therapeutics utilising TGF-β for cancer control given the intrinsic properties of CAP against cancer hallmarks.
Collapse
|
2
|
Yang Y, Ye WL, Zhang RN, He XS, Wang JR, Liu YX, Wang Y, Yang XM, Zhang YJ, Gan WJ. The Role of TGF- β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6675208. [PMID: 34335834 PMCID: PMC8321733 DOI: 10.1155/2021/6675208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway mediates various biological functions, and its dysregulation is closely related to the occurrence of malignant tumors. However, the role of TGF-β signaling in tumorigenesis and development is complex and contradictory. On the one hand, TGF-β signaling can exert antitumor effects by inhibiting proliferation or inducing apoptosis of cancer cells. On the other hand, TGF-β signaling may mediate oncogene effects by promoting metastasis, angiogenesis, and immune escape. This review summarizes the recent findings on molecular mechanisms of TGF-β signaling. Specifically, this review evaluates TGF-β's therapeutic potential as a target by the following perspectives: ligands, receptors, and downstream signaling. We hope this review can trigger new ideas to improve the current clinical strategies to treat tumors related to the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Yun Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Long Ye
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Ruo-Nan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Jing-Ru Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Xuan Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Yi Wang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Xue-Mei Yang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Yu-Juan Zhang
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Soochow University, Suzhou 215124, China
| |
Collapse
|
3
|
Chen BC, Weng YJ, Shibu MA, Han CK, Chen YS, Shen CY, Lin YM, Viswanadha VP, Liang HY, Huang CY. Estrogen and/or Estrogen Receptor α Inhibits BNIP3-Induced Apoptosis and Autophagy in H9c2 Cardiomyoblast Cells. Int J Mol Sci 2018; 19:ijms19051298. [PMID: 29701696 PMCID: PMC5983791 DOI: 10.3390/ijms19051298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
The process of autophagy in heart cells maintains homeostasis during cellular stress such as hypoxia by removing aggregated proteins and damaged organelles and thereby protects the heart during the times of starvation and ischemia. However, autophagy can lead to substantial cell death under certain circumstances. BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a hypoxia-induced marker, has been shown to induce both autophagy and apoptosis. A BNIP3-docked organelle, e.g., mitochondria, also determines whether autophagy or apoptosis will take place. Estrogen (E2) and estrogen receptor (ER) alpha (ERα) have been shown to protect the heart against mitochondria-dependent apoptosis. The aim of the present study is to investigate the mechanisms by which ERα regulates BNIP3-induced apoptosis and autophagy, which is associated with hypoxic injury, in cardiomyoblast cells. An in vitro model to mimic hypoxic injury in the heart by engineering H9c2 cardiomyoblast cells to overexpress BNIP3 was established. Further, the effects of E2 and ERα in BNIP3-induced apoptosis and autophagy were determined in BNIP3 expressing H9c2 cells. Results from TUNEL assay and Immunoflourecense assay for LC3 puncta formation, respectively, revealed that ERα/E2 suppresses BNIP3-induced apoptosis and autophagy. The Western blot analysis showed ERα/E2 decreases the protein levels of caspase 3 (apoptotic marker), Atg5, and LC3-II (autophagic markers). Co-immunoprecipitation of BNIP3 and immunoblotting of Bcl-2 and Rheb showed that ERα reduced the interaction between BNIP3 and Bcl-2 or Rheb. The results confirm that ERα binds to BNIP3 causing a reduction in the levels of functional BNIP3 and thereby inhibits cellular apoptosis and autophagy. In addition, ERα attenuated the activity of the BNIP3 promoter by binding to SP-1 or NFκB sites.
Collapse
Affiliation(s)
- Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yi-Jiun Weng
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Marthandam Asokan Shibu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Chien-Kuo Han
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 404, Taiwan.
| | - Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 413, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung 912, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management College, Taipei 11260, Taiwan.
| | | | - Hsin-Yueh Liang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.
- Division of Cardiology, China Medical University Hospital, Taichung 404, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 413, Taiwan.
- Department of Biological Science and Technology, Asia University, Taichung 404, Taiwan.
| |
Collapse
|
4
|
Roma A, Rota SG, Spagnuolo PA. Diosmetin Induces Apoptosis of Acute Myeloid Leukemia Cells. Mol Pharm 2018; 15:1353-1360. [DOI: 10.1021/acs.molpharmaceut.7b01151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alessia Roma
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada, N1G 2W1
| | - Sarah G. Rota
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada, N1G 2W1
| | - Paul A. Spagnuolo
- Department of Food Science, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada, N1G 2W1
- School of Pharmacy, University of Waterloo, 10A Victoria Street S, Kitchener, Ontario, Canada, N2G 1C5
| |
Collapse
|
5
|
Ahmed HH, Shousha WG, Shalby AB, El-Mezayen HA, Ismaiel NN, Mahmoud NS. Implications of Sex Hormone Receptor Gene Expression in the Predominance of Hepatocellular Carcinoma in Males: Role of Natural Products. Asian Pac J Cancer Prev 2015; 16:4949-54. [DOI: 10.7314/apjcp.2015.16.12.4949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Lam HM, Babu CS, Wang J, Yuan Y, Lam YW, Ho SM, Leung YK. Phosphorylation of human estrogen receptor-beta at serine 105 inhibits breast cancer cell migration and invasion. Mol Cell Endocrinol 2012; 358:27-35. [PMID: 22370157 PMCID: PMC3348253 DOI: 10.1016/j.mce.2012.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 12/30/2022]
Abstract
Multiple phosphorylation sites on the human estrogen receptor (hER)α were identified and shown to influence mammary carcinogenesis. In contrast, functional phosphorylation sites of hERβ have yet to be experimentally identified and validated. Here, using mass spectrometry, we uncovered three serines (S75, S87, and S105) in the N-terminus of hERβ as targets of ERK1/2 and p38 kinases. We raised a specific antibody against phosphorylated S105 (pS105) and demonstrated that this site was endogenously phosphorylated in MDA-MB-231 and BT-474 cells. A phospho-mimetic mutant generated from hERβ1 was found to exhibit higher transactivation activity than hERβ1. Ectopic expression of this mutant inhibited cell migration and invasion, but did not affect cell growth and cell-cycle progression in these cell models. In breast cancer specimens, pS105-hERβ immunoreactivity was detected with a higher prevalence and intensity than that of hERβ1. These results underscore the functional importance of the first experimentally identified hERβ-phosphorylation site in breast cancer.
Collapse
Affiliation(s)
- Hung-Ming Lam
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - C.V. Suresh Babu
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Yong Yuan
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Ying-Wai Lam
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Cincinnati Cancer Center, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Cincinnati Veteran Affairs Medical Center, Cincinnati, OH 45220
- To whom correspondence should be addressed (co-corresponding authors): Yuet-Kin Leung, Ph.D., Division of Environmental Genetics and Molecular Toxicology, Kettering Complex, Room 331, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5181, Fax: 513-558-5155, , Shuk-Mei Ho, Ph.D., Kettering Complex, Room 128, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5701, Fax: 513-558-5155,
| | - Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267
- Cincinnati Cancer Center, University of Cincinnati Medical Center, Cincinnati, OH 45267
- To whom correspondence should be addressed (co-corresponding authors): Yuet-Kin Leung, Ph.D., Division of Environmental Genetics and Molecular Toxicology, Kettering Complex, Room 331, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5181, Fax: 513-558-5155, , Shuk-Mei Ho, Ph.D., Kettering Complex, Room 128, 3223 Eden Avenue, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center, PO Box 670056, Cincinnati, OH 45267, Tel: 513- 558-5701, Fax: 513-558-5155,
| |
Collapse
|
7
|
Lin CC, Huang CY, Mong MC, Chan CY, Yin MC. Antiangiogenic potential of three triterpenic acids in human liver cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:755-62. [PMID: 21175131 DOI: 10.1021/jf103904b] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Three triterpenic acids, oleanolic acid, ursolic acid and maslinic acid, at 2 or 4 μmol/L were used to study their antiangiogenic potential in human liver cancer Hep3B, Huh7 and HA22T cell lines. The effects of these compounds upon the level and/or expression of hypoxia-inducible factor (HIF)-1α, basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), interleukin (IL)-8, urokinase plasminogen activator (uPA), reactive oxygen species (ROS), nitric oxide (NO) and cell invasion and migration were examined. Results showed that these triterpenic acids at 4 μmol/L significantly suppressed HIF-1α expression in three cell lines (P < 0.05); and these compounds at test doses failed to affect bFGF expression (P > 0.05). Three triterpenic acids dose-dependently decreased production and expression of VEGF and IL-8, retained glutathione level, lowered ROS and NO levels, and declined cell invasion and migration in test cell lines (P < 0.05). These compounds also dose-dependently reduced uPA production and expression in Hep3B and Huh7 cell lines (P < 0.05); but these agents only at 4 μmol/L significantly suppressed uPA production and expression in HA22T cells (P < 0.05). These findings suggest that these triterpenic acids are potent antiangiogenic agents to retard invasion and migration in liver cancer cells.
Collapse
Affiliation(s)
- Chun-Che Lin
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Estrogen receptor-beta activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFalpha mediated. Proc Natl Acad Sci U S A 2010; 107:3123-8. [PMID: 20133657 DOI: 10.1073/pnas.0905524107] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are androgen-dependent diseases commonly treated by inhibiting androgen action. However, androgen ablation or castration fail to target androgen-independent cells implicated in disease etiology and recurrence. Mechanistically different to castration, this study shows beneficial proapoptotic actions of estrogen receptor-beta (ERbeta) in BPH and PCa. ERbeta agonist induces apoptosis in prostatic stromal, luminal and castrate-resistant basal epithelial cells of estrogen-deficient aromatase knock-out mice. This occurs via extrinsic (caspase-8) pathways, without reducing serum hormones, and perturbs the regenerative capacity of the epithelium. TNFalpha knock-out mice fail to respond to ERbeta agonist, demonstrating the requirement for TNFalpha signaling. In human tissues, ERbeta agonist induces apoptosis in stroma and epithelium of xenografted BPH specimens, including in the CD133(+) enriched putative stem/progenitor cells isolated from BPH-1 cells in vitro. In PCa, ERbeta causes apoptosis in Gleason Grade 7 xenografted tissues and androgen-independent cells lines (PC3 and DU145) via caspase-8. These data provide evidence of the beneficial effects of ERbeta agonist on epithelium and stroma of BPH, as well as androgen-independent tumor cells implicated in recurrent disease. Our data are indicative of the therapeutic potential of ERbeta agonist for treatment of PCa and/or BPH with or without androgen withdrawal.
Collapse
|
9
|
Garcia-Reyero N, Kroll KJ, Liu L, Orlando EF, Watanabe KH, Sepúlveda MS, Villeneuve DL, Perkins EJ, Ankley GT, Denslow ND. Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen. BMC Genomics 2009; 10:308. [PMID: 19594897 PMCID: PMC2713996 DOI: 10.1186/1471-2164-10-308] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 07/13/2009] [Indexed: 12/31/2022] Open
Abstract
Background Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen/anti-estrogen mixtures, we exposed male fathead minnows (Pimephales promelas) for 48 hours via the water to 2, 5, 10, and 50 ng 17α-ethinylestradiol (EE2)/L, 100 ng ZM 189,154/L (a potent antiestrogen known to block activity of estrogen receptors) or mixtures of 5 or 50 ng EE2/L with 100 ng ZM 189,154/L. We analyzed gene expression changes in the gonad, as well as hormone and vitellogenin plasma levels. Results Steroidogenesis was down-regulated by EE2 as reflected by the reduced plasma levels of testosterone in the exposed fish and down-regulation of genes in the steroidogenic pathway. Microarray analysis of testis of fathead minnows treated with 5 ng EE2/L or with the mixture of 5 ng EE2/L and 100 ng ZM 189,154/L indicated that some of the genes whose expression was changed by EE2 were blocked by ZM 189,154, while others were either not blocked or enhanced by the mixture, generating two distinct expression patterns. Gene ontology and pathway analysis programs were used to determine categories of genes for each expression pattern. Conclusion Our results suggest that response to estrogens occurs via multiple mechanisms, including canonical binding to soluble estrogen receptors, membrane estrogen receptors, and other mechanisms that are not blocked by pure antiestrogens.
Collapse
Affiliation(s)
- Natàlia Garcia-Reyero
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kalra M, Mayes J, Assefa S, Kaul AK, Kaul R. Role of sex steroid receptors in pathobiology of hepatocellular carcinoma. World J Gastroenterol 2008; 14:5945-61. [PMID: 18932272 PMCID: PMC2760195 DOI: 10.3748/wjg.14.5945] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The striking gender disparity observed in the incidence of hepatocellular carcinoma (HCC) suggests an important role of sex hormones in HCC pathogenesis. Though the studies began as early as in 1980s, the precise role of sex hormones and the significance of their receptors in HCC still remain poorly understood and perhaps contribute to current controversies about the potential use of hormonal therapy in HCC. A comprehensive review of the existing literature revealed several shortcomings associated with the studies on estrogen receptor (ER) and androgen receptor (AR) in normal liver and HCC. These shortcomings include the use of less sensitive receptor ligand binding assays and immunohistochemistry studies for ERα alone until 1996 when ERβ isoform was identified. The animal models of HCC utilized for studies were primarily based on chemical-induced hepatocarcinogenesis with less similarity to virus-induced HCC pathogenesis. However, recent in vitro studies in hepatoma cells provide newer insights for hormonal regulation of key cellular processes including interaction of ER and AR with viral proteins. In light of the above facts, there is an urgent need for a detailed investigation of sex hormones and their receptors in normal liver and HCC. In this review, we systematically present the information currently available on androgens, estrogens and their receptors in normal liver and HCC obtained from in vitro, in vivo experimental models and clinical studies. This information will direct future basic and clinical research to bridge the gap in knowledge to explore the therapeutic potential of hormonal therapy in HCC.
Collapse
|