1
|
Han JP, Kim M, Choi BS, Lee JH, Lee GS, Jeong M, Lee Y, Kim EA, Oh HK, Go N, Lee H, Lee KJ, Kim UG, Lee JY, Kim S, Chang J, Lee H, Song DW, Yeom SC. In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. SCIENCE ADVANCES 2022; 8:eabj6901. [PMID: 35061543 PMCID: PMC8782450 DOI: 10.1126/sciadv.abj6901] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/30/2021] [Indexed: 05/24/2023]
Abstract
Hemophilia is a hereditary disease that remains incurable. Although innovative treatments such as gene therapy or bispecific antibody therapy have been introduced, substantial unmet needs still exist with respect to achieving long-lasting therapeutic effects and treatment options for inhibitor patients. Antithrombin (AT), an endogenous negative regulator of thrombin generation, is a potent genome editing target for sustainable treatment of patients with hemophilia A and B. In this study, we developed and optimized lipid nanoparticles (LNPs) to deliver Cas9 mRNA along with single guide RNA that targeted AT in the mouse liver. The LNP-mediated CRISPR-Cas9 delivery resulted in the inhibition of AT that led to improvement in thrombin generation. Bleeding-associated phenotypes were recovered in both hemophilia A and B mice. No active off-targets, liver-induced toxicity, and substantial anti-Cas9 immune responses were detected, indicating that the LNP-mediated CRISPR-Cas9 delivery was a safe and efficient approach for hemophilia therapy.
Collapse
Affiliation(s)
- Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - MinJeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | | | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Geon Seong Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | - Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | - Eun-Ah Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | | | - Nanyeong Go
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | - Hyerim Lee
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | - Kyu Jun Lee
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | - Un Gi Kim
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | | | | | - Jun Chang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | | | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Gwanank-gu, Seoul 08826, Korea
| |
Collapse
|
2
|
Skretting G, Lien T, Sandset PM, Iversen N. Expression of the V264M TFPI mutant in endothelial cell cultures may involve mRNA stability. Thromb Res 2008; 123:851-5. [PMID: 19007969 DOI: 10.1016/j.thromres.2008.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/22/2008] [Accepted: 09/19/2008] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Tissue factor (TF) pathway inhibitor (TFPI) is the endogenous inhibitor regulating TF-induced blood coagulation. Several polymorphisms have been identified in the TFPI gene and some of them have been correlated with variations in plasma TFPI levels. The aim of the present study was to characterize the TFPI(V264M) mutant in comparison with the wild type protein (TFPI(WT)). MATERIALS AND METHODS We have overexpressed the TFPI(V264M) mutant and TFPI(WT) in human coronary artery endothelial cells and compared the expression and activity levels of the mutated protein relative to the TFPI(WT). The protein levels were determined by ELISA, the inhibitory activity of the proteins was assessed with a chromogenic substrate assay. The mRNA level of the two TFPI variants was determined using real time RT-PCR. MFOLD was used to predict mRNA secondary structure. RESULTS AND CONCLUSIONS TFPI(V264M) displayed increased protein levels and activity compared to TFPI(WT) accompanied by an increase in mRNA levels of TFPI(V264M) due to prolonged stability of TFPI(V264M) mRNA. The specific activity of the TFPI(V264M) was similar to TFPI(WT), indicating that the mutation does not affect the enzymatic function of the protein.
Collapse
Affiliation(s)
- Grethe Skretting
- Department of Hematology, Ullevål University Hospital Trust, Oslo, Norway.
| | | | | | | |
Collapse
|