1
|
Goto T, Nakagami G, Minematsu T, Tomida S, Shinoda M, Iwata K, Sanada H. Topically injected adrenocorticotropic hormone induces mechanical hypersensitivity on a full‐thickness cutaneous wound model in rats. Exp Dermatol 2019; 28:1010-1016. [DOI: 10.1111/exd.13994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Taichi Goto
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Global Leadership Initiative for an Age‐Friendly Society The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Takeo Minematsu
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Department of Skincare Science, Graduate School of Medicine The University of Tokyo, Bunkyo‐ku Tokyo Japan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| | - Masamichi Shinoda
- Department of Physiology Nihon University School of Dentistry Chiyoda‐ku Tokyo Japan
| | - Koichi Iwata
- Department of Physiology Nihon University School of Dentistry Chiyoda‐ku Tokyo Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
- Division of Care Innovation, Global Nursing Research Center, Graduate School of Medicine The University of Tokyo Bunkyo‐ku Tokyo Japan
| |
Collapse
|
2
|
Tourkova IL, Liu L, Sutjarit N, Larrouture QC, Luo J, Robinson LJ, Blair HC. Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D 3 enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. J Transl Med 2017; 97:1072-1083. [PMID: 28737765 PMCID: PMC5844701 DOI: 10.1038/labinvest.2017.62] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/14/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022] Open
Abstract
To improve definition of the physical and hormonal support of bone formation, we studied differentiation of human osteoblasts in vitro at varying combinations of ACTH, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D), and extracellular calcium, with and without added cortisol. Bone mineralization, alkaline phosphatase activity, and osteoblast-specific markers RunX2, osterix, and collagen I increased with 10 pM ACTH, 10 nM 1,25(OH)2D, or at 2 mM calcium with important synergistic activity of combinations of any of these stimuli. Signals induced by ACTH at 10-30 min included cAMP, TGF-β, and Erk1/2 phosphorylation. Affymetrix gene expression analysis showed that 2 h treatment of ACTH or 1,25(OH)2D increased the expression of bone regulating and structural mRNAs, including collagen I, biglycan, the vitamin D receptor, and TGF-β. Accelerating expression of these bone-specific genes was confirmed by quantitative PCR. Expression of 1,25(OH)2D 1α-hydroxylase (1α-hydroxylase) increased with 1,25(OH)2D, ACTH, and extracellular calcium from 0.5 to 2 mM. Unlike renal 1α-hydroxylase, in osteoblasts, 1α-hydroxylase activity is independent of parathyroid hormone. In keeping with calcium responsivity, calcium-sensing receptor RNA and protein increased with 10 nM ACTH or 1,25(OH)2D. Inclusion of 200 nM cortisol or 10 nM ACTH in differentiation media blunted osteoblasts alkaline phosphatase response to 1,25(OH)2D and calcium. Our results point to the importance of ACTH in bone maintenance and that extra skeletal (renal) 1,25(OH)2D is required for bone mineralization despite 1α-hydroxylase expression by osteoblasts.
Collapse
Affiliation(s)
- Irina L Tourkova
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Li Liu
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nareerat Sutjarit
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quitterie C Larrouture
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianhua Luo
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa J Robinson
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA,Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Harry C Blair
- The Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 2017; 20:476-494. [PMID: 28859530 PMCID: PMC5815295 DOI: 10.1080/10253890.2017.1369523] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Collapse
Affiliation(s)
- Mario G Oyola
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Robert J Handa
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
4
|
Lan HC, Lin IW, Yang ZJ, Lin JH. Low-dose Bisphenol A Activates Cyp11a1 Gene Expression and Corticosterone Secretion in Adrenal Gland via the JNK Signaling Pathway. Toxicol Sci 2015. [PMID: 26209791 DOI: 10.1093/toxsci/kfv162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Certain commonly used compounds that interfere with the functions of the endocrine system are classified as endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is an EDC that is widely used in food containers. BPA levels in human sera are commonly observed to be approximately 1-100 nM. Compared with the effects of BPA on the gonads, its effects on the adrenal gland are poorly understood. To investigate the influence of BPA on steroidogenesis, we examined the activity of the steroidogenic gene Cyp11a1 and its regulatory pathways in mouse Y1 adrenal cortex cells. Treatment with BPA at < 100 µM did not cause cell death. However, increased promoter activity and protein expression of Cyp11a1 were induced by low doses of BPA (10-1000 nM). Moreover, BPA induced c-Jun phosphorylation, and a specific inhibitor of c-Jun N-terminal kinase (JNK) significantly suppressed BPA-induced steroidogenesis. Thus, treatment of adrenal cells with low doses of BPA activated Cyp11a1 and increased corticosterone production through the JNK/c-Jun signaling pathway. Identical results were observed in rats after BPA injection. The abnormal induction of hormone synthesis by BPA in the adrenal gland might be linked to human metabolic defects and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hsin-Chieh Lan
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - I-Wen Lin
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Yang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Jyun-Hong Lin
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
5
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
6
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
7
|
A single nucleotide polymorphism in the corticotropin receptor gene is associated with a blunted cortisol response during pediatric critical illness. Pediatr Crit Care Med 2014; 15:698-705. [PMID: 25055195 PMCID: PMC4712687 DOI: 10.1097/pcc.0000000000000193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The cortisol response during critical illness varies widely among patients. Our objective was to examine single nucleotide polymorphisms in candidate genes regulating cortisol synthesis, metabolism, and activity to determine if genetic differences were associated with variability in the cortisol response among critically ill children. DESIGN This was a prospective observational study employing tag single nucleotide polymorphism methodology to examine genetic contributions to the variability of the cortisol response in critical illness. Thirty-one candidate genes and 31 ancestry markers were examined. SETTING Patients were enrolled from seven pediatric critical care units that constitute the Eunice Kennedy Shriver Collaborative Pediatric Critical Care Research Network. SUBJECTS Critically ill children (n = 92), age 40 weeks gestation to 18 years old, were enrolled. INTERVENTIONS Blood samples were obtained from all patients for serum cortisol measurements and DNA isolation. Demographic and illness severity data were collected. MEASUREMENTS AND MAIN RESULTS Single nucleotide polymorphisms were tested for association with serum free cortisol concentrations in context of higher illness severity as quantified by Pediatric Risk of Mortality III score greater than 7. A single nucleotide polymorphism (rs1941088) in the MC2R gene was strongly associated (p = 0.0005) with a low free cortisol response to critical illness. Patients with the AA genotype were over seven times more likely to have a low free cortisol response to critical illness than those with a GG genotype. Patients with the GA genotype exhibited an intermediate free cortisol response to critical illness. CONCLUSIONS The A allele at rs1941088 in the MC2R gene, which encodes the adrenocorticotropic hormone (corticotropin, ACTH) receptor, is associated with a low cortisol response in critically ill children. These data provide evidence for a genetic basis for a portion of the variability in cortisol production during critical illness. Independent replication of these findings will be important and could facilitate development of personalized treatment for patients with a low cortisol response to severe illness.
Collapse
|
8
|
Barlock TK, Gehr DT, Dores RM. Analysis of the pharmacological properties of chicken melanocortin-2 receptor (cMC2R) and chicken melanocortin-2 accessory protein 1 (cMRAP1). Gen Comp Endocrinol 2014; 205:260-7. [PMID: 24726989 DOI: 10.1016/j.ygcen.2014.03.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 01/02/2023]
Abstract
The chicken (Gallus gallus) melanocortin-2 receptor (cMC2R) can be functionally expressed in CHO cells when chicken melanocortin-2 receptor accessory protein 1 (cMRAP1) is co-expressed. The transiently transfected CHO cells responded in a robust manner to stimulation by hACTH(1-24) (EC50 value=2.7 × 10(-12)M +/- 1.3 × 10(-12)), but the transfected CHO cells could not be stimulated by NDP-MSH at concentrations as high as 10(-7)M. Incubation of cMC2R/cMRAP1 transfected cells with alanine substituted analogs of hACTH(1-24) at amino acid positions F(7) or W(9) completely blocked stimulation of the transfected cells. Similarly, incubation of cMC2R/cMRAP1 transfected cells with an analog of hACTH(1-24) with alanine substitutions at amino acid positions R(17)R(18)P(19) resulted in a 276 fold shift in EC50 value relative to the positive control (p<0.004). Collectively these observations suggest that cMC2R has binding sites for the HFRW motif and KKRRP motif of hACTH(1-24), and both motifs are required for full activation of the receptor. While previous studies had shown that Anolis carolinensis MC2R and Xenopus tropicalis MC2R could be functionally expressed in CHO cells that co-expressed mouse MRAP1, co-expression of these non-mammalian tetrapod MC2Rs with cMRAP1 resulted in a significant increase in sensitivity to hACTH(1-24), as measured by EC50 value, for A. carolinensis MC2R (p<0.005) and X. tropicalis MC2R (p<0.007). The implications of these observations are discussed.
Collapse
Affiliation(s)
- Travis K Barlock
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Deshae T Gehr
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | - Robert M Dores
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| |
Collapse
|
9
|
Dores RM, Londraville RL, Prokop J, Davis P, Dewey N, Lesinski N. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors. J Mol Endocrinol 2014; 52:T29-42. [PMID: 24868105 DOI: 10.1530/jme-14-0050] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal-interrenal (HPA-I) axis of teleosts and tetrapods as a result of the exclusive ligand selectivity of MC2R for the ligand ACTH. A second focal point of this review is the roles that the accessory proteins melanocortin 2 receptor accessory protein 1 (MRAP1) and MRAP2 are playing in, respectively, the HPA-I axis (MC2R) and the regulation of energy homeostasis by neurons in the hypothalamus (MC4R) of teleosts and tetrapods. In addition, observations are presented on trends in the ligand selectivity parameters of cartilaginous fish, teleost, and tetrapod MC1R, MC3R, MC4R, and MC5R paralogs, and the modeling of the HFRW motif of ACTH(1-24) when compared with α-MSH. The radiation of the MCRs during the evolution of the gnathostomes provides examples of how the physiology of endocrine and neuronal circuits can be shaped by ligand selectivity, the intersession of reverse agonists (agouti-related peptides (AGRPs)), and interactions with accessory proteins (MRAPs).
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Richard L Londraville
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Jeremy Prokop
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Perry Davis
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Nathan Dewey
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| | - Natalie Lesinski
- Department of Biological SciencesUniversity of Denver, Denver, Colorado 80210, USADepartment of BiologyUniversity of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
10
|
Davis P, Franquemont S, Liang L, Angleson JK, Dores RM. Evolution of the melanocortin-2 receptor in tetrapods: studies on Xenopus tropicalis MC2R and Anolis carolinensis MC2R. Gen Comp Endocrinol 2013; 188:75-84. [PMID: 23639234 DOI: 10.1016/j.ygcen.2013.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 12/25/2022]
Abstract
The tetrapods are a diverse assemblage of vertebrates, and that diversity is reflected in the sequences of tetrapod melanocortin-2 receptors (MC2Rs). In this review, the features common to human (mammal), Gallus gallus (bird), Anolis carolinensis (reptile), and Xenopus tropicalis (amphibian) MC2Rs in terms of ligand selectivity, requirements for interaction with MRAP1, and the effects of alanine substitutions to three amino acid motifs in the ligand hACTH(1-24) are discussed. Analysis of the effects of alanine substitutions to the H(6)F(7)R(8)W(9) and the K(15)K(16)R(17)R(18)P(19) motifs of hACTH(1-24) indicated that activation of A. carolinensis MC2R and X. tropicalis MC2R was more adversely affected by alanine substitutions at these positions as compared to the response of human MC2R to these same analogs. Furthermore, single alanine substitutions in the G(10)K(11)P(12)V(13)G(14) motif of hACTH(1-24) had negative affects on activation of both A. carolinensis MC2R and X. tropicalis MC2R that were not observed for human MC2R. The implications of responses to the various analogs of hACTH(1-24) in terms of the mechanism for mediating the activation of these various tetrapod melanocortin-2 receptors are discussed.
Collapse
Affiliation(s)
- Perry Davis
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | | | | | | |
Collapse
|
11
|
Liang L, Angleson JK, Dores RM. Using the human melanocortin-2 receptor as a model for analyzing hormone/receptor interactions between a mammalian MC2 receptor and ACTH(1-24). Gen Comp Endocrinol 2013. [PMID: 23201148 DOI: 10.1016/j.ygcen.2012.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When considering the interactions between the melanocortin peptides (i.e., ACTH, α-MSH, β-MSH, γ-MSH) and the melanocortin receptors (i.e., MC1R, MC2R, MC3R, MC4R, MC5R), it appears that the structure/function relationship between ACTH and MC2R is the most complicated. Human ACTH(1-24) and the human melanocortin-2 receptor provide a useful model system for understanding how ACTH emerged as the sole ligand for the melanocortin-2 receptor of bony vertebrates. This review will discuss how studies utilizing analogs of hACTH(1-24) have revealed two critical amino acid motifs in this ligand (HFRW and KKRRP) which are required for activation of the melanocortin-2 receptor. In addition, observations on the unique activation features of the melanocortin-2 receptor, as revealed from studies on Familial Glucocorticoid Deficiency, will be considered. Finally, the evolutionary implications of the relationship between MC2R and MRAP1 will be discussed.
Collapse
Affiliation(s)
- Liang Liang
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | | |
Collapse
|
12
|
Brennan VC, Wang CM, Yang WH. Bitter melon (Momordica charantia) extract suppresses adrenocortical cancer cell proliferation through modulation of the apoptotic pathway, steroidogenesis, and insulin-like growth factor type 1 receptor/RAC-α serine/threonine-protein kinase signaling. J Med Food 2011; 15:325-34. [PMID: 22191569 DOI: 10.1089/jmf.2011.0158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adrenocortical carcinomas are rare but present with extremely poor prognosis. One of the approaches to control cancer progression and reduce cancer risk is prevention through diet. Bitter melon is widely consumed as a vegetable and especially as a traditional medicine in many countries. In this study, we have used human and mouse adrenocortical cancer cells as an in vitro model to assess the efficacy of bitter melon extract (BME) as an anticancer agent. The protein concentrations of BME and other extracts were measured before use. First, BME treatment of adrenocortical cancer cells resulted in a significantly dose-dependent decrease in cell proliferation. However, we did not observe an antiproliferative effect in adrenocortical cancer cells treated with extracts from blueberry, zucchini, and acorn squash. Second, apoptosis of adrenocortical cancer cells was accompanied by increased caspase-3 activation and poly(ADP-ribose) polymerase cleavage. BME treatment enhanced cellular tumor antigen p53, cyclin-dependent kinase inhibitor 1A (also called p21), and cyclic AMP-dependent transcription factor-3 levels and inhibited G1/S-specific cyclin D1, D2, and D3, and mitogen-activated protein kinase 8 (also called Janus kinase) expression, suggesting an additional mechanism involving cell cycle regulation and cell survival. Third, BME treatment decreased the key proteins involved in steroidogenesis in adrenocortical cancer cells. BME treatment decreased the level of phosphorylation of cyclin-dependent kinase 7, which is required, at least in part, for steroidogenic factor 1 activation. Finally, we observed that BME treatment significantly reduced the level of insulin-like growth factor 1 receptor and its downstream signaling pathway as evidenced by lower levels of phosphorylated RAC-α serine/threonine-protein kinase. Taken together, these data illustrate the inhibitory effect of bitter melon on cell proliferation of adrenocortical cancer through modulation of diverse mechanisms.
Collapse
Affiliation(s)
- Victoria C Brennan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 31404-3089, USA
| | | | | |
Collapse
|
13
|
Liang L, Sebag JA, Eagelston L, Serasinghe MN, Veo K, Reinick C, Angleson J, Hinkle PM, Dores RM. Functional expression of frog and rainbow trout melanocortin 2 receptors using heterologous MRAP1s. Gen Comp Endocrinol 2011; 174:5-14. [PMID: 21846469 DOI: 10.1016/j.ygcen.2011.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/27/2022]
Abstract
Analysis of the functional expression of the melanocortin 2 receptor (MC2R) from a rather broad spectrum of vertebrates indicates that MC2R is exclusively selective for the ligand, ACTH, and the melanocortin receptor accessory protein 1 (MRAP1) is required for high affinity ACTH binding and activation of MC2R. A phylogenetic analysis of MRAP1 suggested that tetrapod sequences and bony fish sequences may represent two distinct trends in the evolution of the mrap1 gene. To test this hypothesis, a frog (Xenopus tropicalis) MC2R was expressed in CHO cells either in the presence of a tetrapod (mouse) MRAP1 or a bony fish (zebrafish) MRAP1. The response of frog MC2R to different concentrations of human ACTH(1-24) was more robust in the presence of mouse MRAP1 than in the presence of zebrafish MRAP1. Conversely, the cAMP response mediated by the rainbow trout (Oncorhynchus mykiss) MC2R was almost twofold higher and occurred at 1000-fold lower ACTH concentration in the presence of zebrafish MRAP1 than in the presence of mouse MRAP1. Collectively, these experiments raise the possibility that at least two distinct trends have emerged in the co-evolution of MC2R/MRAP1 interactions during the radiation of the vertebrates.
Collapse
Affiliation(s)
- Liang Liang
- Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Roy S, Roy SJ, Pinard S, Taillefer LD, Rached M, Parent JL, Gallo-Payet N. Mechanisms of melanocortin-2 receptor (MC2R) internalization and recycling in human embryonic kidney (hek) cells: identification of Key Ser/Thr (S/T) amino acids. Mol Endocrinol 2011; 25:1961-77. [PMID: 21920850 DOI: 10.1210/me.2011-0018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ACTH is the most important stimulus of the adrenal cortex. The precise molecular mechanisms underlying the ACTH response are not yet clarified. The functional ACTH receptor includes melanocortin-2 receptor (MC2R) and MC2R accessory proteins (MRAP). In human embryonic kidney 293/Flp recombinase target cells expressing MC2R, MRAP1 isoforms, and MRAP2, we found that ACTH induced a concentration-dependent and arrestin-, clathrin-, and dynamin-dependent MC2R/MRAP1 internalization, followed by intracellular colocalization with Rab (Ras-like small guanosine triphosphate enzyme)4-, Rab5-, and Rab11-positive recycling endosomes. Preincubation of cells with monensin and brefeldin A revealed that 28% of the internalized receptors were recycled back to the plasma membrane and participated in total accumulation of cAMP. Moreover, certain intracellular Ser and Thr (S/T) residues of MC2R were found to play important roles not only in plasma membrane targeting and function but also in promoting receptor internalization. The S/T residues T131, S140, T204, and S280 were involved in MRAP1-independent cell-surface MC2R expression. Other mutants (S140A, S208A, and S202D) had lower cell-surface expressions in absence of MRAPβ. In addition, T143A and T147D drastically impaired cell-surface expression and function, whereas T131A, T131D, and S280D abrogated MC2R internalization. Thus, the modification of MC2R intracellular S/T residues may positively or negatively regulate its plasma membrane expression and the capacity of ACTH to induce cAMP accumulation. Mutations of T131, T143, T147, and S280 into either A or D had major repercussions on cell-surface expression, cAMP accumulation, and/or internalization parameters, pointing mostly to the second intracellular loop as being crucial for MC2R expression and functional regulation.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Veo K, Reinick C, Liang L, Moser E, Angleson JK, Dores RM. Observations on the ligand selectivity of the melanocortin 2 receptor. Gen Comp Endocrinol 2011; 172:3-9. [PMID: 21501611 DOI: 10.1016/j.ygcen.2011.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/29/2022]
Abstract
The melanocortin 2 receptor (MC2R) is unique in terms of ligand selectivity and in vitro expression in mammalian cell lines as compared to the other four mammalian MCRs. It is well established that ACTH is the only melanocortin ligand that can activate the ACTH receptor (i.e., melanocortin 2 receptor). Recent studies have provided new insights into the presence of a common binding site for the HFRW motif common to all melanocortin ligands. However, the activation of the melanocortin 2 receptor requires an additional amino acid motif that is only found in the sequence of ACTH. This mini-review will focus on these two topics and provide a phylogenetic perspective on the evolution of MC2R ligand selectivity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Humans
- Ligands
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Molecular Sequence Data
- Observation
- Phylogeny
- Receptor, Melanocortin, Type 2/agonists
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptor, Melanocortin, Type 2/physiology
- Receptors, Melanocortin/genetics
- Sequence Homology, Amino Acid
- Substrate Specificity
Collapse
Affiliation(s)
- Kristopher Veo
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Roy S, Pinard S, Chouinard L, Gallo-Payet N. Adrenocorticotropin hormone (ACTH) effects on MAPK phosphorylation in human fasciculata cells and in embryonic kidney 293 cells expressing human melanocortin 2 receptor (MC2R) and MC2R accessory protein (MRAP)β. Mol Cell Endocrinol 2011; 336:31-40. [PMID: 21195128 DOI: 10.1016/j.mce.2010.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 11/15/2022]
Abstract
Adrenocorticotropin hormone (ACTH) exerts trophic effects on adrenocortical cells. We studied the phosphorylation of mitogen-activated proteins kinases (MAPKs) in human embryonic kidney cells stably expressing the ACTH receptor, MC2R, and its accessory protein MRAPβ and in primary cultures of human adrenal fasciculata cells. ACTH induced a maximal increase in p44/p42(mapk) and of p38 MAPK phosphorylation after 5min. Neither the overexpression of wild-type arrestin2, arrestin3 or their respective dominant negative forms affected p44/p42(mapk) phosphorylation. However, preincubation with the recycling inhibitors brefeldin A and monensin attenuated both cAMP accumulation and p44/p42(mapk) phosphorylation proportionally. Cyclic AMP-related PKA inhibitors (H89, KI(6-22)) and Rp-cAMPS decreased p44/p42(mapk) phosphorylation but not ACTH-mediated cAMP production. The selective Epac1/2 activator, 8-pCPT-2'-O-MecAMP, did not modify the effect of ACTH. Thus, cAMP/PKA, but not cAMP/Epac1/2 pathways, or arrestin-coupled internalization of MC2R is involved in ACTH-induced p44/p42(mapk) phosphorylation by human MC2R. Together, ACTH binding to MC2R stimulates PKA-dependent p44/p42(mapk) phosphorylation.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
17
|
An implication for post-transcriptional control: reciprocal changes of melanocortin receptor type 2 mRNA and protein expression in alopecia areata. Med Hypotheses 2010; 76:122-4. [PMID: 20884125 DOI: 10.1016/j.mehy.2010.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 11/23/2022]
Abstract
Alopecia areata (AA) is a hair follicle-specific autoimmune disease that is inherited genetically but triggered environmentally. Stress response is believed to play a role in the pathogenesis of AA. The hypothalamic-pituitary-adrenal axis (HPA axis), known as the stress axis, plays a cardinal role in the stress response. Growing evidence demonstrates that stress responses are under the control of both the central and peripheral nervous systems. Skin and hair follicles display peripheral HPA axis-like signaling systems. Some studies have revealed that a modified HPA axis, which is characterized by enhanced CRH/CRHR and insufficient glucocorticoid, is involved in the pathology of AA, suggesting that the paradoxical expression differs from that of normal control and should be further examined. Because adrenocorticotropic hormone (ACTH) is an intermediary in the HPA axis, MC2R, which specifically binds ACTH, may be important in the stress response of skin. Therefore, we investigated the gene and protein expression of MC2R in AA lesions and tried to elucidate the connection between HPA axis regulation, MC2R and AA. Reciprocal changes in MC2R mRNA and proteins in human AA were observed in our study; while mRNA levels were higher in lesions from AA patients compared with scalp tissues from normal controls, protein levels of MC2R were lower. The paradoxical expression of MC2R gene and protein levels coincided with evidence that over-responsive HPA activity coexists with a deficient HPA response in AA. We hypothesized that the HPA axis response in human AA may be the following: stressors first activate excess CRH/CRHR to produce increased ACTH, which up-regulates the expression of MC2R mRNA, but the stress response cannot create sufficient cortisol when the binding of ACTH/MC2R is deficient due to decreased MC2R protein. This hypothesis rationally clarifies the changed HPA axis in human AA and highlights the importance of MC2R in the pathogenesis of AA. The inconsistent expression of protein and mRNA implicates post-transcriptional control of human MC2R gene expression as found in murine MC2R gene.
Collapse
|
18
|
Expression of adiponectin receptors in mouse adrenal glands and the adrenocortical Y-1 cell line: adiponectin regulates steroidogenesis. Biochem Biophys Res Commun 2009; 390:1208-13. [PMID: 19878661 DOI: 10.1016/j.bbrc.2009.10.122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 10/23/2009] [Indexed: 01/22/2023]
Abstract
Obesity is frequently associated with malfunctions of the hypothalamus-pituitary-adrenal (HPA) axis and hyperaldosteronism, but the mechanism underlying this association remains unclear. Since the adrenal glands are embedded in adipose tissue, direct cross-talk between adipose tissue and the adrenal gland has been proposed. A previous study found that adiponectin receptor mRNA was expressed in human adrenal glands and aldosterone-producing adenoma (APA). However, the expression of adiponectin receptors in adrenal glands has not been confirmed at the protein level or in other species. Furthermore, it is unclear whether adiponectin receptors expressed in adrenal cells are functional. We found, for the first time, that adiponectin receptor (AdipoR1 and AdipoR2) mRNA and protein were expressed in mouse adrenal and adrenocortical Y-1 cells. However, adiponectin itself was not expressed in mouse adrenal or Y-1 cells. Furthermore, adiponectin acutely reduced basal levels of corticosterone and aldosterone secretion. ACTH-induced steroid secretion was also inhibited by adiponectin, and this was accompanied by a parallel change in the expression of the key genes involved in steroidogenesis. These findings indicate that adiponectin may take part in the modulation of steroidogenesis. Thus, adiponectin is likely to have physiological and/or pathophysiological significance as an endocrine regulator of adrenocortical function.
Collapse
|
19
|
Xing Y, Nakamura Y, Rainey WE. G protein-coupled receptor expression in the adult and fetal adrenal glands. Mol Cell Endocrinol 2009; 300:43-50. [PMID: 19027826 PMCID: PMC2679220 DOI: 10.1016/j.mce.2008.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Hormonal regulation of adrenal function occurs primarily through G protein-coupled receptors (GPCR), which may play different roles in fetal vs. adult adrenal glands. In this study, we compared the transcript levels of GPCR between fetal and adult adrenal and found that gonadotropin-releasing hormone receptor (GnRHR), latrophilin 3 receptor, G protein-coupled receptor 37, angiotensin II receptor type 2, latrophilin 2 receptor and melanocortin receptor were expressed at significantly higher levels in fetal adrenal. High GnRHR protein expression was also detected in fetal adrenal using immunohistochemical analysis. To define potential ligand sources for fetal adrenal GnRHR, we demonstrated that GnRH1 mRNA was expressed at high levels in the placenta, while fetal adrenal had high expression of GnRH2. In summary, certain GPCR particularly GnRHR were highly expressed in fetal adrenal and the expression of GnRH mRNA in the placenta and the fetal adrenal raises the possibility of endocrine and/or paracrine/autocrine influences on fetal adrenal function. However, the exact function of GnRHR in fetal adrenal remains to be determined.
Collapse
MESH Headings
- Adrenal Glands/cytology
- Adrenal Glands/physiology
- Female
- Fetus/anatomy & histology
- Fetus/physiology
- Gene Expression Regulation, Developmental
- Humans
- Oligonucleotide Array Sequence Analysis
- Pregnancy
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Receptors, Melanocortin/genetics
- Receptors, Melanocortin/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
Collapse
Affiliation(s)
| | | | - William E. Rainey
- Corresponding author: William E Rainey, Ph.D., Address: Department of Physiology, Medical College of Georgia, 1120 15th Street, CA Building – Room 3094, Augusta, GA 30912, Phone: 706-721-7665, Fax: 706-721-8360,
| |
Collapse
|
20
|
Hinkle PM, Sebag JA. Structure and function of the melanocortin2 receptor accessory protein (MRAP). Mol Cell Endocrinol 2009; 300:25-31. [PMID: 19028547 PMCID: PMC2677758 DOI: 10.1016/j.mce.2008.10.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/02/2023]
Abstract
The melanocortin2 (MC2), or ACTH receptor, requires MC2 receptor accessory protein (MRAP) for function, and individuals lacking MRAP are ACTH-resistant and glucocorticoid-deficient. MRAP facilitates trafficking of the MC2 receptor to the plasma membrane and is absolutely required for ACTH binding and stimulation of cAMP. MRAP, which contains a single transmembrane domain, has a unique structure, an antiparallel homodimer. It can be isolated from the plasma membrane in a complex with the MC2 receptor. A short sequence just aminoterminal to the transmembrane domain of MRAP is essential for dual topology, while the transmembrane region is not; both are necessary for function. Deletion or alanine-substitution of other aminoterminal regions yields MRAP mutants that promote surface expression of the MC2 receptor but not receptor signaling. These results identify two distinct actions of MRAP: to permit trafficking of the MC2 receptor, and to allow surface receptor binding and signaling.
Collapse
Affiliation(s)
- Patricia M Hinkle
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, United States.
| | | |
Collapse
|
21
|
Baron A, Veo K, Angleson J, Dores RM. Modeling the evolution of the MC2R and MC5R genes: studies on the cartilaginous fish, Heterondotus francisci. Gen Comp Endocrinol 2009; 161:13-9. [PMID: 19100739 DOI: 10.1016/j.ygcen.2008.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 11/28/2022]
Abstract
Comparative studies support the hypothesis that the proliferation of melanocortin receptor genes (MCRs) in gnathostomes corresponds to the 2R hypothesis for the radiation of gene families in Phylum Chordata. This mini-review will initially focus on the distribution of MCRs in cartilaginous fish and the relationship between the shark MC5R gene and the proposed ancestral MC5R/2R gene. This section will be followed by the results of recent studies on the features of the ligand binding site common to all melanocortin receptors. These data will provide the background for a set of hypotheses to explain the unique ligand selectivity of the MC2 receptor in teleosts and tetrapods.
Collapse
Affiliation(s)
- Andrea Baron
- University of Denver, Department of Biological Sciences, Olin Hall 102, 2190 E. Iliff, Denver, Colorado 80210-5212, USA
| | | | | | | |
Collapse
|
22
|
Blair HC, Wells A, Isales CM. Pituitary glycoprotein hormone receptors in non-endocrine organs. Trends Endocrinol Metab 2007; 18:227-33. [PMID: 17588768 DOI: 10.1016/j.tem.2007.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/10/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Although glycoprotein hormones are usually regarded as pituitary-endocrine signals, their receptors can be found in non-endocrine tissues. High expression of selected receptors in the pituitary-endocrine axis is key to mammalian endocrine regulation. We hypothesize that peripheral receptor distribution during development and in secondary organs reflects older but still-applicable functions, with their concentration in the pituitary a more recent evolutionary advancement. We extrapolate additional functions of these receptors by analogy of homologous receptors in older phyla, with emphasis on the bony fishes (teleosts). Studies of the multiple roles of the glycoprotein hormone receptors are likely to uncover novel endocrine functions and axes, and highlight the potential of these receptors as novel therapeutic targets.
Collapse
Affiliation(s)
- Harry C Blair
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
23
|
Roy S, Rached M, Gallo-Payet N. Differential regulation of the human adrenocorticotropin receptor [melanocortin-2 receptor (MC2R)] by human MC2R accessory protein isoforms alpha and beta in isogenic human embryonic kidney 293 cells. Mol Endocrinol 2007; 21:1656-69. [PMID: 17456795 DOI: 10.1210/me.2007-0041] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ACTH receptor [melanocortin-2 receptor (MC2R)] is the smallest known G protein-coupled receptor (GPCR). Herein, human MC2R accessory protein (MRAP) isoforms alpha and beta, cloned from a human fetal adrenal gland, were expressed with c-Myc-tagged MC2R (Myc-MC2R) in 293/Flp recombinase target site cells by homologous recombination. Although insertion of Myc-MC2R at the plasma membrane occurred without MRAP assistance, ACTH stimulation of cAMP production was only detected in cells coexpressing MC2R with either MRAP isoform. On the other hand, a MC2R-green fluorescent protein fusion transfected with either MRAPalpha or MRAPbeta was impaired both in cell membrane localization and signaling. MRAP isoforms were also tagged with either Flag or 6xHis epitopes. In cell populations coexpressing transiently and/or stably Myc-MC2R with MRAPalpha or MRAPbeta, stimulation with ACTH induced production of cAMP with EC(50) values lower in MRAPalpha- than in MRAPbeta-expressing cells. ACTH only bound Myc-MC2R in the presence of MRAP. Higher Myc-MC2R cell surface density was observed in the presence of MRAPbeta comparatively to MRAPalpha, possibly contributing to higher ACTH binding capacity and higher maximal cAMP responses observed in MRAPbeta-expressing cells. Immunofluorescence studies indicated that MRAP isoforms were localized near the plasma membrane and in the vicinity, but not colocalized, with Myc-MC2R. In summary, through the generation of a new all-human experimental model devoid of endogenous MCRs, we present evidence that human MRAP isoforms, although not essential for MC2R localization at the plasma membrane, are essential for ACTH binding and ACTH-induced cAMP production and that they differentially regulate, although modestly, cell membrane density and functional properties of MC2R.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | |
Collapse
|