1
|
Fonseca LRS, Carreira RJP, Feijó M, Cavaco JEB, Cardoso HJ, Vaz CV, Figueira MI, Socorro S. Downregulated Regucalcin Expression Induces a Cancer-like Phenotype in Non-Neoplastic Prostate Cells and Augments the Aggressiveness of Prostate Cancer Cells: Interplay with the G Protein-Coupled Oestrogen Receptor? Cancers (Basel) 2024; 16:3932. [PMID: 39682121 DOI: 10.3390/cancers16233932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Regucalcin (RGN) is a calcium-binding protein and an oestrogen target gene, which has been shown to play essential roles beyond calcium homeostasis. Decreased RGN expression was identified in several cancers, including prostate cancer (PCa). However, it is unknown if the loss of RGN is a cause or a consequence of malignancy. Also, it needs confirmation if RGN oestrogenic regulation occurs through the G-protein-coupled oestrogen receptor (GPER). This study investigates how RGN knockdown affects prostate cell fate and metabolism and highlights the GPER/RGN interplay in PCa. METHODS Bioinformatic analysis assessed the relationship between RGN expression levels and patients' outcomes. RGN knockdown (siRNA) was performed in non-neoplastic prostate and castration-resistant PCa. Wild-type and RGN knockdown PCa cells were treated with the GPER agonist G1. Viability (MTT), proliferation (Ki-67 immunocytochemistry), apoptosis (caspase-3-like activity) and migration (Transwell assays) were evaluated. Spectrophotometric analysis was used to determine glucose consumption, lactate production and lactate dehydrogenase activity. Lipid content was assessed using the Oil Red assay. RESULTS/CONCLUSIONS Bioinformatic analysis showed that the loss of RGN correlates with the development of metastatic PCa and poor survival outcomes. RGN knockdown induced a cancer-like phenotype in PNT1A cells, indicated by increased cell viability and proliferation and reduced apoptosis. In DU145 PCa cells, RGN knockdown augmented migration and enhanced the glycolytic profile, which indicates increased aggressiveness, in line with patients' data. GPER activation modulated RGN expression in PCa cells and RGN knockdown in DU145 cells influenced GPER actions, which highlighted an interplay between these molecular players with relevance for their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Ricardo J P Carreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Mariana Feijó
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - José E B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
2
|
Rossi M, Hausmann AE, Alcami P, Moest M, Roussou R, Van Belleghem SM, Wright DS, Kuo CY, Lozano-Urrego D, Maulana A, Melo-Flórez L, Rueda-Muñoz G, McMahon S, Linares M, Osman C, McMillan WO, Pardo-Diaz C, Salazar C, Merrill RM. Adaptive introgression of a visual preference gene. Science 2024; 383:1368-1373. [PMID: 38513020 PMCID: PMC7616200 DOI: 10.1126/science.adj9201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.
Collapse
Affiliation(s)
- Matteo Rossi
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | - Pepe Alcami
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Markus Moest
- Department of Ecology and Research Department for Limnology, Mondsee; University of Innsbruck, Innsbruck, Austria
| | - Rodaria Roussou
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Chi-Yun Kuo
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| | - Daniela Lozano-Urrego
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Arif Maulana
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Lina Melo-Flórez
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Geraldine Rueda-Muñoz
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Saoirse McMahon
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | - Mauricio Linares
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
| | | | | | - Camilo Salazar
- Faculty of Natural Sciences, Universidad del Rosario; Bogotá, Colombia
| | - Richard M. Merrill
- Faculty of Biology, Ludwig Maximilian University; Munich, Germany
- Smithsonian Tropical Research Institute; Gamboa, Panama
| |
Collapse
|
3
|
Yamaguchi M. Regucalcin Is a Potential Regulator in Human Cancer: Aiming to Expand into Cancer Therapy. Cancers (Basel) 2023; 15:5489. [PMID: 38001749 PMCID: PMC10670417 DOI: 10.3390/cancers15225489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Regucalcin, a calcium-binding protein lacking the EF-hand motif, was initially discovered in 1978. Its name is indicative of its function in calcium signaling regulation. The rgn gene encodes for regucalcin and is situated on the X chromosome in both humans and vertebrates. Regucalcin regulates pivotal enzymes involved in signal transduction and has an inhibitory function, which includes protein kinases, protein phosphatases, cysteinyl protease, nitric oxide dynthetase, aminoacyl-transfer ribonucleic acid (tRNA) synthetase, and protein synthesis. This cytoplasmic protein is transported to the nucleus where it regulates deoxyribonucleic acid and RNA synthesis as well as gene expression. Overexpression of regucalcin inhibits proliferation in both normal and cancer cells in vitro, independent of apoptosis. During liver regeneration in vivo, endogenous regucalcin suppresses cell growth when overexpressed. Regucalcin mRNA and protein expressions are significantly downregulated in tumor tissues of patients with various types of cancers. Patients exhibiting upregulated regucalcin in tumor tissue have shown prolonged survival. The decrease of regucalcin expression is linked to the advancement of cancer. Overexpression of regucalcin carries the potential for preventing and treating carcinogenesis. Additionally, extracellular regucalcin has displayed control over various types of human cancer cells. Regucalcin may hold a prominent role as a regulatory factor in cancer development. Supplying the regucalcin gene could prove to be a valuable asset in cancer treatment. The therapeutic value of regucalcin suggests its potential significance in treating cancer patients. This review delves into the most recent research on the regulatory role of regucalcin in human cancer development, providing a novel approach for treatment.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Hawaii, HI 96813, USA
| |
Collapse
|
4
|
Functional pleiotropy of calcium binding protein Regucalcin in signaling and diseases. Cell Signal 2023; 102:110533. [PMID: 36442591 DOI: 10.1016/j.cellsig.2022.110533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Regucalcin (Mr ∼ 33.38 kDa) is a calcium binding protein, discovered in rat liver. In humans, gene for regucalcin is located on chromosome-11 (p11.3-q11.2) consisting of seven exons and six introns. The protein differs from other calcium binding protein in the way that it lacks EF-hand motif of calcium binding domain. It is also called as Senescence Marker Protein-30 (SMP-30) as previously its weight assumes to be 30 kDa and expression of this protein decreases with aging in androgen independent manner. Among vertebrates, it is a highly conserved protein showing gene homology in Drosophila, Xenopus, fireflies and others too. It is primarily expressed in liver and kidney in addition to brain, lungs, and skeletal muscles. Regucalcin acts as a Ca2+ regulatory protein and controls various cellular functions in liver and other organs. It suppresses protein phosphatase, protein kinase, DNA and RNA synthesis. Published evidences suggest regucalcin to be a reliable biomarker in various disorders of liver, kidney, brain and ocular. In over expressed state, it subdues apoptosis in cloned rat hepatoma cells and also induces hyperlipidemia and osteoblastogenesis by regulating various factors. Owing to the multi-functionality of regucalcin this review is presented to elaborate its importance in order to understand its involvement in cellular signaling during various pathologies.
Collapse
|
5
|
Sharma S, Pei X, Xing F, Wu SY, Wu K, Tyagi A, Zhao D, Deshpande R, Ruiz MG, Singh R, Lyu F, Watabe K. Regucalcin promotes dormancy of prostate cancer. Oncogene 2021; 40:1012-1026. [PMID: 33323968 PMCID: PMC8958430 DOI: 10.1038/s41388-020-01565-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Prostate cancer is one of the leading causes of mortality in men. The major cause of death in prostate cancer patients can be attributed to metastatic spread of disease or tumor recurrence after initial treatment. Prostate tumors are known to remain undetected or dormant for a long period of time before they progress locoregionally or at distant sites as overt tumors. However, the molecular mechanism of dormancy is yet poorly understood. In this study, we performed a differential gene expression analysis and identified a gene, Regucalcin (RGN), which promotes dormancy of prostate cancer. We found that cancer patients expressing higher level of RGN showed significantly longer recurrence-free and overall- survival. Using a doxycycline-inducible RGN expression system, we showed that ectopic expression of RGN in prostate tumor cells induced dormancy in vivo, while following suppression of RGN triggered recurrence of tumor growth. On the other hand, silencing RGN in LNCap cells promoted its outgrowth in the tibia of mice. Importantly, RGN promoted multiple known hallmarks of tumor dormancy including activation of p38 MAPK, decrease in Erk signaling and inhibition of FOXM1 expression. Furthermore, we found that RGN significantly suppressed angiogenesis by increasing secretory miR-23c level in the exosomes. Intriguingly, FOXM1 was found to negatively regulate miR-23c expression in prostate cancer. In addition, we identified 11 RGN downstream target genes that independently predicted longer recurrence-free survival in patients. We found that expression of these genes was regulated by FOXM1 and/or p38 MAPK. These findings suggest a critical role of RGN in prostate cancer dormancy, and the utility of RGN signaling and exosomal miR-23c as biomarkers for predicting recurrence.
Collapse
Affiliation(s)
- Sambad Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fei Xing
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Ravindra Deshpande
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Marco Gabriel Ruiz
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | | | - Feng Lyu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
7
|
Pillai H, Shende AM, Parmar MS, Thomas J, Kartha HS, Taru Sharma G, Ghosh SK, Bhure SK. Detection and localization of regucalcin in spermatozoa of water buffalo (Bubalus bubalis): A calcium-regulating multifunctional protein. Reprod Domest Anim 2017; 52:865-872. [DOI: 10.1111/rda.12991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Affiliation(s)
- H Pillai
- Division of Biochemistry; Indian Veterinary Research Institute; Bareilly U.P. India
| | - AM Shende
- Division of Biochemistry; Indian Veterinary Research Institute; Bareilly U.P. India
| | - MS Parmar
- Division of Physiology and Climatology; Indian Veterinary Research Institute; Bareilly U.P. India
| | - J Thomas
- Immunology Section; Indian Veterinary Research Institute; Bareilly U.P. India
| | - HS Kartha
- Division of Pharmacology and Toxicology; Indian Veterinary Research Institute; Bareilly U.P. India
| | - G Taru Sharma
- Division of Physiology and Climatology; Indian Veterinary Research Institute; Bareilly U.P. India
| | - SK Ghosh
- Germ Plasm Center; Indian Veterinary Research Institute; Bareilly U.P. India
| | - SK Bhure
- Division of Biochemistry; Indian Veterinary Research Institute; Bareilly U.P. India
| |
Collapse
|
8
|
Pillai H, Shende AM, Parmar MS, A A, L S, Kumaresan A, G TS, Bhure SK. Regucalcin is widely distributed in the male reproductive tract and exerts a suppressive effect on in vitro sperm capacitation in the water buffalo (Bubalus bubalis
). Mol Reprod Dev 2017; 84:212-221. [DOI: 10.1002/mrd.22767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Harikrishna Pillai
- Division of Animal Biochemistry; Indian Veterinary Research Institute; Izatnagar Uttar Pradesh India
| | - Ashish Mukunda Shende
- Division of Animal Biochemistry; Indian Veterinary Research Institute; Izatnagar Uttar Pradesh India
| | - Mehtab Sing Parmar
- Division of Physiology and Climatology; Indian Veterinary Research Institute; Izatnagar Uttar Pradesh India
| | - Anjaneya A
- Division of Pathology; Indian Veterinary Research Institute; Izatnagar Uttar Pradesh India
| | - Sreela L
- Theriogenology Laboratory; Animal Reproduction; Gynaecology and Obstetrics; National Dairy Research Institute; Karnal Haryana India
| | - Arumugam Kumaresan
- Theriogenology Laboratory; Animal Reproduction; Gynaecology and Obstetrics; National Dairy Research Institute; Karnal Haryana India
| | - Taru Sharma G
- Division of Physiology and Climatology; Indian Veterinary Research Institute; Izatnagar Uttar Pradesh India
| | - Sanjeev Kumar Bhure
- Division of Animal Biochemistry; Indian Veterinary Research Institute; Izatnagar Uttar Pradesh India
| |
Collapse
|
9
|
Starvaggi Cucuzza L, Biolatti B, Sereno A, Cannizzo FT. Regucalcin Expression as a Diagnostic Tool for the Illicit Use of Steroids in Veal Calves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5702-5706. [PMID: 26016660 DOI: 10.1021/acs.jafc.5b01337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It has been previously demonstrated that sex steroid hormone treatment down-regulates regucalcin gene expression in the accessory sex glands and testis of prepubertal and adult male bovines. The aim of this study was to investigate whether low doses of sex steroid hormones combined with other drugs significantly affect regucalcin gene expression in the accessory sex glands and testis of veal calves. The regucalcin expression was down-regulated in the bulbo-urethral glands of estrogen-treated calves, whereas it was up-regulated in the prostate of estrogen-treated calves. Only the testis of androgen-treated calves showed a down-regulation of the regucalcin expression. Thus, the administration of sex steroid hormones, even in low doses and combined with other molecules, could affect regucalcin expression in target organs. Particularly, the specific response in the testis suggests regucalcin expression in this organ as a first molecular biomarker of illicit androgen administration in bovine husbandry.
Collapse
Affiliation(s)
- Laura Starvaggi Cucuzza
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy
| | - Bartolomeo Biolatti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy
| | - Alessandra Sereno
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy
| | - Francesca T Cannizzo
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy
| |
Collapse
|
10
|
Regucalcin expression in bovine tissues and its regulation by sex steroid hormones in accessory sex glands. PLoS One 2014; 9:e113950. [PMID: 25415588 PMCID: PMC4240664 DOI: 10.1371/journal.pone.0113950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/02/2014] [Indexed: 11/19/2022] Open
Abstract
Regucalcin (RGN) is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle.
Collapse
|
11
|
Marques R, Maia CJ, Vaz C, Correia S, Socorro S. The diverse roles of calcium-binding protein regucalcin in cell biology: from tissue expression and signalling to disease. Cell Mol Life Sci 2014; 71:93-111. [PMID: 23519827 PMCID: PMC11113322 DOI: 10.1007/s00018-013-1323-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/21/2013] [Accepted: 03/07/2013] [Indexed: 02/06/2023]
Abstract
Regucalcin (RGN) is a calcium (Ca(2+))-binding protein widely expressed in vertebrate and invertebrate species, which is also known as senescence marker protein 30, due to its molecular weight (33 kDa) and a characteristically diminished expression with the aging process. RGN regulates intracellular Ca(2+) homeostasis and the activity of several proteins involved in intracellular signalling pathways, namely, kinases, phosphatases, phosphodiesterase, nitric oxide synthase and proteases, which highlights its importance in cell biology. In addition, RGN has cytoprotective effects reducing intracellular levels of oxidative stress, also playing a role in the control of cell survival and apoptosis. Multiple factors have been identified regulating the cell levels of RGN transcripts and protein, and an altered expression pattern of this interesting protein has been found in cases of reproductive disorders, neurodegenerative diseases and cancer. Moreover, RGN is a serum-secreted protein, and its levels have been correlated with the stage of disease, which strongly suggests the usefulness of this protein as a potential biomarker for monitoring disease onset and progression. The present review aims to discuss the available information concerning RGN expression and function in distinct cell types and tissues, integrating cellular and molecular mechanisms in the context of normal and pathological conditions. Insight into the cellular actions of RGN will be a key step towards deepening the knowledge of the biology of several human diseases.
Collapse
Affiliation(s)
- Ricardo Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J. Maia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia Vaz
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sara Correia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
12
|
Yamaguchi M. Suppressive role of regucalcin in liver cell proliferation: involvement in carcinogenesis. Cell Prolif 2013; 46:243-53. [PMID: 23692083 DOI: 10.1111/cpr.12036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/09/2013] [Indexed: 12/14/2022] Open
Abstract
Regucalcin (RGN/SMP30) was discovered in 1978 and is a unique calcium-binding protein contains no EF-hand motif calcium-binding domain. Its name, regucalcin, was proposed as it suppresses activation of enzymes related to calcium signalling. The regucalcin gene (rgn) is localized on the X chromosome. Regucalcin plays its role of suppressor protein in intracellular signalling pathways, including of protein kinases and protein phosphatase activities, protein synthesis, and DNA and RNA synthesis in liver cells. Overexpression of endogenous regucalcin has a suppressive effect on cell proliferation in modelled rat hepatoma H4-II-E cells, which are induced by various signalling stimulations in vitro. This suppressive effect is independent of apoptosis. Endogenous regucalcin plays a suppressive role on overproduction of proliferating cells in regenerating rat liver in vivo. Regucalcin mRNA expression is uniquely down-regulated in development of carcinogenesis in liver of rats in vivo. Regucalcin mRNA and protein expressions are also depressed in human hepatoma HepG2 cells, MCF-7 breast cancer cells, and prostate cancer LNCaP cells. Depression of regucalcin expression may be associated with activity progression of carcinogens. Regucalcin may be a key molecule suppressor protein in cell proliferation and carcinogenesis.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Hematology and Biomedical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Correia S, Oliveira PF, Guerreiro PM, Lopes G, Alves MG, Canario AVM, Cavaco JE, Socorro S. Sperm parameters and epididymis function in transgenic rats overexpressing the Ca2+-binding protein regucalcin: a hidden role for Ca2+ in sperm maturation? Mol Hum Reprod 2013; 19:581-9. [DOI: 10.1093/molehr/gat030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Yamaguchi M. Role of regucalcin in brain calcium signaling: involvement in aging. Integr Biol (Camb) 2012; 4:825-837. [DOI: 10.1039/c2ib20042b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Foods and Nutrition, The University of Georgia, 425 River Road, Rhodes Center, Room 448, Athens, GA 30602-2771, USA
| |
Collapse
|
15
|
Scott SH, Bahnson BJ. Senescence Marker Protein 30: Functional and Structural Insights to its Unknown Physiological Function. Biomol Concepts 2011; 2:469-480. [PMID: 22844387 PMCID: PMC3405729 DOI: 10.1515/bmc.2011.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Senescence marker protein 30 (SMP30) is a multifunctional protein involved in cellular Ca(2+) homeostasis and the biosynthesis of ascorbate in non-primate mammals. The primary structure of the protein is highly conserved among vertebrates, suggesting the existence of a significant physiological function common to all mammals, including primates. Enzymatic activities of SMP30 include aldonolactone and organophosphate hydrolysis. Protective effects against apoptosis and oxidative stress have been reported. X-ray crystallography revealed that SMP30 is a six-bladed β-propeller with structural similarity to paraoxonase 1, another protein with lactonase and organophosphate hydrolase activities. SMP30 has recently been tied to several physiological conditions including osteoporosis, liver fibrosis, diabetes, and cancer. This review aims to describe the recent advances made toward understanding the connection between molecular structure, enzymatic activity and physiological function of this highly conserved, multifaceted protein.
Collapse
Affiliation(s)
- Stephanie H. Scott
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Brian J. Bahnson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
16
|
Laurentino SS, Correia S, Cavaco JE, Oliveira PF, Sousa MD, Barros A, Socorro S. Regucalcin, a calcium-binding protein with a role in male reproduction? Mol Hum Reprod 2011; 18:161-70. [DOI: 10.1093/molehr/gar075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Laurentino SS, Correia S, Cavaco JE, Oliveira PF, Rato L, Sousa M, Barros A, Socorro S. Regucalcin is broadly expressed in male reproductive tissues and is a new androgen-target gene in mammalian testis. Reproduction 2011; 142:447-56. [DOI: 10.1530/rep-11-0085] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regucalcin (RGN) is a calcium (Ca2+)-binding protein which regulates intracellular Ca2+homeostasis by modulating the activity of enzymes regulating Ca2+concentration and enhancing Ca2+-pumping activity. Several studies have described the pivotal role of proper Ca2+homeostasis regulation to spermatogenesis and male fertility. Recently,RGNwas identified as a sex steroid-regulated gene in prostate and breast; however, a possible role of RGN in spermatogenesis has not been examined. In this study, the expression and localization of RGN in rat and human testis, and other rat reproductive tissues was analyzed. Moreover, we studied whether RGN protein was present in seminiferous tubule fluid (STF). Finally, we examined the effect of 5α-dihydrotestosterone (DHT) on the expression ofRgnmRNA in rat seminiferous tubules (SeT) culturedex vivo. The results presented in this study show that RGN is expressed in Leydig and Sertoli cells, as well as in all types of germ cells of both rat and human testis. RGN is also expressed in rat prostate, epididymis, and seminal vesicles. Moreover, RGN protein is present in rat STF. The results also demonstrate thatRgnexpression is age dependent in rat testis, and is upregulated by the non-aromatizable androgen DHT in rat SeT culturedex vivo. Taken together, these findings indicate thatRgnis a novel androgen-target gene in rat testis and that it may have a role in male reproductive function, particularly in the control of spermatogenesis.
Collapse
|
18
|
Yamaguchi M. The transcriptional regulation of regucalcin gene expression. Mol Cell Biochem 2010; 346:147-71. [PMID: 20936536 DOI: 10.1007/s11010-010-0601-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/18/2010] [Indexed: 01/15/2023]
Abstract
Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic liver injury with hepatitis. Regucalcin has been proposed to be a key molecule in cellular regulation and metabolic disease.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 1305 WMRB, Atlanta, GA 30322-0001, USA.
| |
Collapse
|
19
|
Yamaguchi M. Regucalcin and metabolic disorders: osteoporosis and hyperlipidemia are induced in regucalcin transgenic rats. Mol Cell Biochem 2010; 341:119-33. [PMID: 20349117 DOI: 10.1007/s11010-010-0443-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/11/2010] [Indexed: 12/31/2022]
Abstract
Regucalcin transgenic (TG) rat has been generated to determine the role in metabolic disorders. Regucalcin homozygote male and female rats induce a prominent increase in regucalcin protein in the various tissues. Bone loss has been found to induce in regucalcin TG rats with growing (5 weeks old) and aging (50 weeks old). Osteoclastogenesis has been shown to stimulate in culture with the bone marrow cells obtained from regucalcin TG rats. Exogenous regucalcin stimulates osteoclastogenesis in mouse marrow culture in vitro. Regucalcin has a suppressive effect on the differentiation and mineralization in osteoblastic MC3T3-E1 cells in vitro. The mechanism by which regucalcin TG rat induces bone loss may result from the enhancement of osteoclastic bone resorption and the suppression of osteoblastic bone formation. Moreover, regucalcin TG rat has been found to induce hyperlipidemia with increasing age (14-50 weeks); serum triglyceride, high-density lipoprotein (HDL)-cholesterol, free fatty acid, albumin and calcium concentrations are markedly increased in regucalcin TG male and female rats with increasing age. The decrease in lipid and glycogen contents in liver tissues is induced in regucalcin TG rats. The gene expression of leptin and adiponectin is suppressed in the TG rats. Overexpression of regucalcin has been shown to enhance glucose utilization and lipid production in the cloned rat hepatoma H4-II-E cells in vitro, and insulin resistance is seen in the cells. The expression of glucose transporter 2 mRNA is increased in the transfectants, while it has been shown to suppress insulin receptor and phosphatidylinositol 3-kinase mRNA expressions that are involved in insulin signaling. This review proposes that regucalcin relates in osteoporosis and hyperlipidemia, and that the regucalcin TG rat model may be useful in determining the pathophysiologic state and the development of therapeutic tool for osteoporosis and hyperlipidemia.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, 1305 WMRB, Atlanta, GA 30322-0001, USA.
| |
Collapse
|
20
|
Maia C, Santos C, Schmitt F, Socorro S. Regucalcin is under-expressed in human breast and prostate cancers: Effect of sex steroid hormones. J Cell Biochem 2009; 107:667-76. [PMID: 19347872 DOI: 10.1002/jcb.22158] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regucalcin plays an important role in maintenance of intracellular Ca(2+) homeostasis, suppresses cell proliferation, inhibits expression of oncogenes, and increases the expression of tumour suppressor genes. This suggests that regucalcin functions may be altered in cancer tissues. In this study the regucalcin expression in breast and prostate cancer cases was analysed by RT-PCR and immunohistochemistry showing that the mRNA and/or protein are under-expressed in these tumors. The effect of sex steroid hormones on regucalcin expression in breast and prostate cancer cells was determined by real-time PCR. MCF-7 and LNCaP cells were stimulated with 0, 1, and 10 nM of 17beta-estradiol (E(2)) or 5alpha-dihydrotestosterone (DHT), respectively, for 0, 6, 12, 24, and 48 h. MCF-7 cells were also stimulated with E(2) conjugated to BSA (E(2)-BSA). To explore the mechanisms underlying the sex steroid regulation of regucalcin expression, control treatments with ICI 182,780, flutamide and cyclohexamide were carried out. E(2) effects regulating regucalcin expression were not abrogated in the presence of ICI 182,780, and were similar to those observed with E(2)-BSA, which suggests the involvement of a membrane-bound estrogen receptor. In LNCaP cells, DHT down-regulated regucalcin expression, an effect inhibited by the presence of both flutamide and cyclohexamide, suggesting the involvement of androgen receptor and de novo protein synthesis. The loss of regucalcin expression in breast and prostate cancer cases and the regulation of its expression by sex steroid hormones suggest that it may be associated with development and progression of these human tumors.
Collapse
Affiliation(s)
- Cláudio Maia
- CICS, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | | | | |
Collapse
|