1
|
Wang L, Minchin RF, Essebier PJ, Butcher NJ. Loss of human arylamine N-acetyltransferase I regulates mitochondrial function by inhibition of the pyruvate dehydrogenase complex. Int J Biochem Cell Biol 2019; 110:84-90. [PMID: 30836144 DOI: 10.1016/j.biocel.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) has been widely reported to affect cancer cell growth and survival and recent studies suggest it may alter cell metabolism. In this study, the effects of NAT1 deletion on mitochondrial function was examined in 2 human cell lines, breast carcinoma MDA-MB-231 and colon carcinoma HT-29 cells. Using a Seahorse XFe96 Flux Analyzer, NAT1 deletion was shown to decrease oxidative phosphorylation with a significant loss in respiratory reserve capacity in both cell lines. There also was a decrease in glycolysis without a change in glucose uptake. The changes in mitochondrial function was due to a decrease in pyruvate dehydrogenase activity, which could be reversed with the pyruvate dehydrogenase kinase inhibitor dichloroacetate. In the MDA-MB-231 and HT-29 cells, pyruvate dehydrogenase activity was attenuated either by an increase in phosphorylation or a decrease in total protein expression. These results may help explain some of the cellular events that have been reported recently in cell and animal models of NAT1 deficiency.
Collapse
Affiliation(s)
- Lili Wang
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia
| | - Rodney F Minchin
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia.
| | - Patricia J Essebier
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia
| | - Neville J Butcher
- Molecular and Cellular Pharmacology Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, 4072 Australia
| |
Collapse
|
2
|
Zhu L, Baker SS, Shahein A, Choudhury S, Liu W, Bhatia T, Baker RD, Lee T. Upregulation of non-canonical Wnt ligands and oxidative glucose metabolism in NASH induced by methionine-choline deficient diet. TRENDS IN CELL & MOLECULAR BIOLOGY 2018; 13:47-56. [PMID: 30853754 PMCID: PMC6407712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wnt ligands regulate metabolic pathways, and dysregulation of Wnt signaling contributes to chronic inflammatory disease. A knowledge gap exists concerning the role of aberrant Wnt signaling in non-alcoholic steatohepatitis (NASH), which exhibits metabolic syndrome and inflammation. Using a mouse model of methionine-choline deficient diet (MCDD)-induced NASH, we investigated the Wnt signaling pathways in relation to hepatic glucose oxidation. Mice fed the MCD diet for 6 weeks developed prominent NASH marked by macrovesicular steatosis, inflammation and lipid peroxidation. qPCR analysis reveals differential hepatic expression of canonical and non-canonical Wnt ligands. While expression of Wnt3a was decreased in NASH vs chow diet control, expression of Wnt5a and Wnt11 were increased 3 fold and 15 fold, respectively. Consistent with activation of non-canonical Wnt signaling, expression of the alternative Wnt receptor ROR2 was increased 5 fold with no change in LRP6 expression. Activities of the metabolic enzymes glucokinase, phosphoglucoisomerase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, and pyruvate dehydrogenase were all elevated by MCDD. NASH-driven glucose oxidation was accompanied by a 6-fold increase in lactate dehydrogenase (LDH)-B with no change in LDH-A. In addition, glucose-6-phosphate dehydrogenase, the regulatory and NADPH-producing enzyme of the pentose phosphate pathway, was elevated in NASH. These data support a role of accelerated glucose oxidation in the development of NASH, which may be driven by non-canonical Wnt signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Techung Lee
- Corresponding author: Dr. Techung Lee, Tel: (716) 829-3106, , Department of Biochemistry, University at Buffalo, 955 Main Street, Buffalo, NY 14203
| |
Collapse
|
3
|
Martin S, Lin H, Ejimadu C, Lee T. Tissue-nonspecific alkaline phosphatase as a target of sFRP2 in cardiac fibroblasts. Am J Physiol Cell Physiol 2015; 309:C139-47. [PMID: 25972450 DOI: 10.1152/ajpcell.00009.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/04/2015] [Indexed: 01/11/2023]
Abstract
Recent studies of myocardial infarction in secreted Frizzled-related protein 2 (sFRP2) knockout mice and our hamster heart failure therapy based on sFRP2 blockade have established sFRP2 as a key profibrotic cytokine in the heart. The failing hamster heart is marked by prominent fibrosis and calcification with elevated expression of sFRP2. Noting the involvement of tissue-nonspecific alkaline phosphatase (TNAP) in bone mineralization and vascular calcification, we determined whether sFRP2 might be an upstream regulator of TNAP. Biochemical assays revealed an approximately twofold increase in the activity of TNAP and elevated levels of inorganic phosphate (Pi) in the failing heart compared with the normal heart. Neither was this change detected in the liver or hamstring muscle nor was it associated with systemic hyperphosphatemia. TNAP was readily cloned from the hamster heart and upon overexpression increased the level of extracellular but not intracellular Pi, which is consistent with the cell surface location of the ectoenzyme. In line with the previous demonstration that sFRP2 blockade attenuated fibrosis, we show here that the therapy downregulated TNAP. This in vivo finding is corroborated by the in vitro study showing that cultured cardiac fibroblasts treated with recombinant sFRP2 protein exhibited progressive increase in the expression and activity of TNAP, which was completely abrogated by cycloheximide or tunicamycin. Induction of TNAP by sFRP2 is restricted to cardiac fibroblasts among the multiple cell types examined, and was not observed with sFRP4. The current work indicates that sFRP2 may promote cardiac fibrocalcification through coordinate activation of tolloid-like metalloproteinases and TNAP.
Collapse
Affiliation(s)
- Sean Martin
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Huey Lin
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Chukwuemeka Ejimadu
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Techung Lee
- Department of Biochemistry and Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
4
|
Mastri M, Shah Z, Hsieh K, Wang X, Wooldridge B, Martin S, Suzuki G, Lee T. Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention. Am J Physiol Cell Physiol 2013; 306:C531-9. [PMID: 24336656 DOI: 10.1152/ajpcell.00238.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Progressive fibrosis is a pathological hallmark of many chronic diseases responsible for organ failure. Although there is currently no therapy on the market that specifically targets fibrosis, the dynamic fibrogenic process is known to be regulated by multiple soluble mediators that may be therapeutically intervened. The failing hamster heart exhibits marked fibrosis and increased expression of secreted Frizzled-related protein 2 (sFRP2) amenable to reversal by mesenchymal stem cell (MSC) therapy. Given the previous demonstration that sFRP2-null mice subjected to myocardial infarction exhibited reduced fibrosis and improved function, we tested whether antibody-based sFRP2 blockade might counteract the fibrogenic pathway and repair cardiac injury. Cardiomyopathic hamsters were injected intraperitoneally twice a week each with 20 μg of sFRP2 antibody. Echocardiography, histology, and biochemical analyses were performed after 1 mo. sFRP2 antibody increased left ventricular ejection fraction from 40 ± 1.2 to 49 ± 6.5%, whereas saline and IgG control exhibited a further decline to 37 ± 0.9 and 31 ± 3.2%, respectively. Functional improvement is associated with a ∼ 50% reduction in myocardial fibrosis, ∼ 65% decrease in apoptosis, and ∼ 75% increase in wall thickness. Consistent with attenuated fibrosis, both MSC therapy and sFRP2 antibody administration significantly increased the activity of myocardial matrix metalloproteinase-2. Gene expression analysis of the hamster heart and cultured fibroblasts identified Axin2 as a downstream target, the expression of which was activated by sFRP2 but inhibited by therapeutic intervention. sFRP2 blockade also increased myocardial levels of VEGF and hepatocyte growth factor (HGF) along with increased angiogenesis. These findings highlight the pathogenic effect of dysregulated sFRP2, which may be specifically targeted for antifibrotic therapy.
Collapse
Affiliation(s)
- Michalis Mastri
- Department of Biochemistry and Department of Biomedical Engineering, Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, New York
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Maekawa K, Hirayama A, Iwata Y, Tajima Y, Nishimaki-Mogami T, Sugawara S, Ueno N, Abe H, Ishikawa M, Murayama M, Matsuzawa Y, Nakanishi H, Ikeda K, Arita M, Taguchi R, Minamino N, Wakabayashi S, Soga T, Saito Y. Global metabolomic analysis of heart tissue in a hamster model for dilated cardiomyopathy. J Mol Cell Cardiol 2013; 59:76-85. [PMID: 23454301 DOI: 10.1016/j.yjmcc.2013.02.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/08/2013] [Accepted: 02/06/2013] [Indexed: 11/30/2022]
Abstract
Dilated cardiomyopathy (DCM), a common cause of heart failure, is characterized by cardiac dilation and reduced left ventricular ejection fraction, but the underlying mechanisms remain unclear. To investigate the mechanistic basis, we performed global metabolomic analysis of myocardial tissues from the left ventricles of J2N-k cardiomyopathic hamsters. This model exhibits symptoms similar to those of human DCM, owing to the deletion of the δ-sarcoglycan gene. Charged and lipid metabolites were measured by capillary electrophoresis mass spectrometry (MS) and liquid chromatography MS(/MS), respectively, and J2N-k hamsters were compared with J2N-n healthy controls at 4 (presymptomatic phase) and 16weeks (symptomatic) of age. Disturbances in membrane phospholipid homeostasis were initiated during the presymptomatic phase. Significantly different levels of charged metabolites, occurring mainly in the symptomatic phase, were mapped to primary metabolic pathways. Reduced levels of metabolites in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, together with large decreases in major triacylglycerol levels, suggested that decreased energy production leads to cardiac contractile dysfunction in the symptomatic phase. A mild reduction in glutathione and a compensatory increase in ophthalmate levels suggest increased oxidative stress in diseased tissues, which was confirmed by histochemical staining. Increased levels of 4 eicosanoids, including prostaglandin (PG) E2 and 6-keto-PGF1α, in the symptomatic phase suggested activation of the protective response pathways. These results provide mechanistic insights into DCM pathogenesis and may help identify new targets for therapeutic intervention and diagnosis.
Collapse
Affiliation(s)
- Keiko Maekawa
- Project Team for Disease Metabolomics, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Galvao TF, Khairallah RJ, Dabkowski ER, Brown BH, Hecker PA, O'Connell KA, O'Shea KM, Sabbah HN, Rastogi S, Daneault C, Des Rosiers C, Stanley WC. Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. Am J Physiol Heart Circ Physiol 2012; 304:H12-21. [PMID: 23103493 DOI: 10.1152/ajpheart.00657.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction in heart failure includes greater susceptibility to mitochondrial permeability transition (MPT), which may worsen cardiac function and decrease survival. Treatment with a mixture of the n3 polyunsaturated fatty acids (n3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is beneficial in heart failure patients and increases resistance to MPT in animal models. We assessed whether DHA and EPA have similar effects when given individually, and whether they prolong survival in heart failure. Male δ-sarcoglycan null cardiomyopathic hamsters were untreated or given either DHA, EPA, or a 1:1 mixture of DHA + EPA at 2.1% of energy intake. Treatment did not prolong survival: mean survival was 298 ± 15 days in untreated hamsters and 335 ± 17, 328 ± 14, and 311 ± 15 days with DHA, EPA, and DHA + EPA, respectively (n = 27-32/group). A subgroup of cardiomyopathic hamsters treated for 26 wk had impaired left ventricular function and increased cardiomyocyte apoptosis compared with normal hamsters, which was unaffected by n3 PUFA treatment. Evaluation of oxidative phosphorylation in isolated subsarcolemmal and interfibrillar mitochondria with substrates for complex I or II showed no effect of n3 PUFA treatment. On the other hand, interfibrillar mitochondria from cardiomyopathic hamsters were significantly more sensitive to Ca(2+)-induced MPT, which was completely normalized by treatment with DHA and partially corrected by EPA. In conclusion, treatment with DHA or EPA normalizes Ca(2+)-induced MPT in cardiomyopathic hamsters but does not prolong survival or improve cardiac function. This suggest that greater susceptibility to MPT is not a contributor to cardiac pathology and poor survival in heart failure.
Collapse
Affiliation(s)
- Tatiana F Galvao
- Division of Cardiology, Department of Medicine, University of Maryland, 20 Penn St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mastri M, Shah Z, McLaughlin T, Greene CJ, Baum L, Suzuki G, Lee T. Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. Am J Physiol Cell Physiol 2012; 303:C1021-33. [PMID: 22843797 DOI: 10.1152/ajpcell.00191.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical trials of bone marrow mesenchymal stem cell (MSC) therapy have thus far demonstrated moderate and inconsistent benefits, indicating an urgent need to improve therapeutic efficacy. Although administration of sufficient cells is necessary to achieve maximal therapeutic benefits, documented MSC clinical trials have largely relied on injections of ∼1 × 10(6) cells/kg, which appears too low to elicit a robust therapeutic response according to published preclinical studies. However, repeated cell passaging necessary for large-scale expansion of MSC causes cellular senescence and reduces stem cell potency. Using the RNA mimetic polyinosinic-polycytidylic acid [poly(I:C)] to engage MSC Toll-like receptor 3 (TLR3), we found that poly(I:C), signaling through multiple mitogen-activated protein kinase pathways, induced therapeutically relevant trophic factors such as interleukin-6-type cytokines, stromal-derived factor 1, hepatocyte growth factor, and vascular endothelial growth factor while slightly inhibiting the proliferation and migration potentials of MSC. At the suboptimal injection dose of 1 × 10(6) cells/kg, poly(I:C)-treated MSC, but not untreated MSC, effectively stimulated regeneration of the failing hamster heart 1 mo after cell administration. The regenerating heart exhibited increased CD34(+)/Ki67(+) and CD34(+)/GATA4(+) progenitor cells in the presence of decreased inflammatory cells and cytokines. Cardiac functional improvement was associated with a ∼50% reduction in fibrosis, a ∼40% reduction in apoptosis, and a ∼55% increase in angiogenesis, culminating in prominent cardiomyogenesis evidenced by abundant distribution of small myocytes and a ∼90% increase in wall thickening. These functional, histological, and molecular characterizations thus establish the utility of TLR3 engagement for enabling the low-dose MSC therapy that may be translated to more efficacious clinical applications.
Collapse
Affiliation(s)
- Michalis Mastri
- Department of Biochemistry, Center for Research in Cardiovascular Medicine, University at Buffalo, 3435 Main St., Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Hecker PA, Galvao TF, O'Shea KM, Brown BH, Henderson R, Riggle H, Gupte SA, Stanley WC. High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy. Nutrition 2012; 28:520-6. [PMID: 22304857 DOI: 10.1016/j.nut.2011.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE A high-sugar intake increases heart disease risk in humans. In animals, sugar intake accelerates heart failure development by increased reactive oxygen species (ROS). Glucose-6-phosphate dehydrogenase (G6PD) can fuel ROS production by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH) for superoxide generation by NADPH oxidase. Conversely, G6PD also facilitates ROS scavenging using the glutathione pathway. We hypothesized that a high-sugar intake would increase flux through G6PD to increase myocardial NADPH and ROS and accelerate cardiac dysfunction and death. METHODS Six-week-old TO-2 hamsters, a non-hypertensive model of genetic cardiomyopathy caused by a δ-sarcoglycan mutation, were fed a long-term diet of high starch or high sugar (57% of energy from sucrose plus fructose). RESULTS After 24 wk, the δ-sarcoglycan-deficient animals displayed expected decreases in survival and cardiac function associated with cardiomyopathy (ejection fraction: control 68.7 ± 4.5%, TO-2 starch 46.1 ± 3.7%, P < 0.05 for TO-2 starch versus control; TO-2 sugar 58.0 ± 4.2%, NS, versus TO-2 starch or control; median survival: TO-2 starch 278 d, TO-2 sugar 318 d, P = 0.133). Although the high-sugar intake was expected to exacerbate cardiomyopathy, surprisingly, there was no further decrease in ejection fraction or survival with high sugar compared with starch in cardiomyopathic animals. Cardiomyopathic animals had systemic and cardiac metabolic abnormalities (increased serum lipids and glucose and decreased myocardial oxidative enzymes) that were unaffected by diet. The high-sugar intake increased myocardial superoxide, but NADPH and lipid peroxidation were unaffected. CONCLUSION A sugar-enriched diet did not exacerbate ventricular function, metabolic abnormalities, or survival in heart failure despite an increase in superoxide production.
Collapse
Affiliation(s)
- Peter A Hecker
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zisa D, Shabbir A, Mastri M, Taylor T, Aleksic I, McDaniel M, Suzuki G, Lee T. Intramuscular VEGF activates an SDF1-dependent progenitor cell cascade and an SDF1-independent muscle paracrine cascade for cardiac repair. Am J Physiol Heart Circ Physiol 2011; 301:H2422-32. [PMID: 21963833 DOI: 10.1152/ajpheart.00343.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The skeletal muscle is endowed with an impressive ability to regenerate after injury, and this ability is coupled to paracrine production of many trophic factors possessing cardiovascular benefits. Taking advantage of this humoral capacity of the muscle, we recently demonstrated an extracardiac therapeutic regimen based on intramuscular delivery of VEGF-A(165) for repair of the failing hamster heart. This distal organ repair mechanism activates production from the injected hamstring of many trophic factors, among which stromal-derived factor-1 (SDF1) prominently mobilized multi-lineage progenitor cells expressing CXCR4 and their recruitment to the heart. The mobilized bone marrow progenitor cells express the cardiac transcription factors myocyte enhancer factor 2c and GATA4 and several major trophic factors, most notably IGF1 and VEGF. SDF1 blockade abrogated myocardial recruitment of CXCR4(+) and c-kit(+) progenitor cells with an insignificant effect on the hematopoietic progenitor lineage. The knockdown of cardiac progenitor cells led to deprivation of myocardial trophic factors, resulting in compromised cardiomyogenesis and angiogenesis. However, the VEGF-injected hamstring continued to synthesize cardioprotective factors, contributing to moderate myocardial tissue viability and function even in the presence of SDF1 blockade. These findings thus uncover two distinct but synergistic cardiac therapeutic mechanisms activated by intramuscular VEGF. Whereas the SDF1/CXCR4 axis activates the progenitor cell cascade and its trophic support of cardiomyogenesis intramuscularly, VEGF amplifies the skeletal muscle paracrine cascade capable of directly promoting myocardial survival independent of SDF1. Given that recent clinical trials of cardiac repair based on the use of marrow-mobilizing agents have been disappointing, the proposed dual therapeutic modality warrants further investigation.
Collapse
Affiliation(s)
- David Zisa
- Department of Biochemistry and Biomedical Engineering, Center for Research in Cardiovascular Medicine, University at Buffalo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chelini MOM, Oliveira CAD, Otta E. Validação de um radioimunoensaio para a quantificação de metabólitos fecais de testosterona em hamster Sírio (Mesocricetus auratus). PESQUISA VETERINARIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000500015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modelo para o estudo de diversas doenças humanas, o hamster tem sido objeto de numerosos estudos comportamentais e envolvendo estresse e/ou comportamento agonístico que supõem, muitas vezes, o monitoramento das flutuações hormonais nos indivíduos envolvidos. O objetivo do presente trabalho foi confirmar a adequação de um conjunto comercial para dosagem de testosterona em sangue humano para a quantificação de metabólitos fecais de testosterona (MFT) em hamsters Sírios machos e fêmeas. Dez machos foram submetidos a um desafio com um agonista de GnRH para estimular a atividade testicular, elevando os níveis circulantes de testosterona. Cinco fêmeas receberam uma injeção de testosterona enquanto cinco outras receberam uma injeção de solução salina. Amostras de fezes coletadas antes e depois dos procedimentos, assim como amostras fecais de 20 fêmeas gestantes coletadas ao longo da gestação foram analisadas com um conjunto comercial para radioimunoensaio. Um pico de MFT 12h após a injeção seguido de uma queda abaixo do nível basal comprovou que, nos machos, as alterações nos níveis de MFT refletem as alterações da concentração de testosterona no sangue. Nestes observou-se um ciclo circadiano das concentrações de MFT com acrofase no início do período claro correspondendo ao ciclo descrito para as concentrações sanguíneas na literatura. Nas fêmeas a administração de testosterona exógena provocou uma elevação importante dos níveis de MFT, mas as concentrações medidas ao longo da gestação não refletiram o padrão dos níveis sanguíneos do hormônio endógeno. O conjunto para radioimunoensaio para testosterona em sangue humano mostrou-se adequado para o monitoramento da função testicular no hamster macho, mas um ensaio mais específico seria necessário para as fêmeas.
Collapse
|
11
|
Giulivi C, Ross-Inta C, Omanska-Klusek A, Napoli E, Sakaguchi D, Barrientos G, Allen PD, Pessah IN. Basal bioenergetic abnormalities in skeletal muscle from ryanodine receptor malignant hyperthermia-susceptible R163C knock-in mice. J Biol Chem 2011; 286:99-113. [PMID: 20978128 PMCID: PMC3013050 DOI: 10.1074/jbc.m110.153247] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/13/2010] [Indexed: 12/25/2022] Open
Abstract
Malignant hyperthermia (MH) and central core disease in humans have been associated with mutations in the skeletal ryanodine receptor (RyR1). Heterozygous mice expressing the human MH/central core disease RyR1 R163C mutation exhibit MH when exposed to halothane or heat stress. Considering that many MH symptoms resemble those that could ensue from a mitochondrial dysfunction (e.g. metabolic acidosis and hyperthermia) and that MH-susceptible mice or humans have a higher than normal cytoplasmic Ca(2+) concentration at rest, we evaluated the role of mitochondria in skeletal muscle from R163C compared with wild type mice under basal (untriggered) conditions. R163C skeletal muscle exhibited a significant increase in matrix Ca(2+), increased reactive oxygen species production, lower expression of mitochondrial proteins, and higher mtDNA copy number. These changes, in conjunction with lower myoglobin and glycogen contents, Myh4 and GAPDH transcript levels, GAPDH activity, and lower glucose utilization suggested a switch to a compromised bioenergetic state characterized by both low oxidative phosphorylation and glycolysis. The shift in bioenergetic state was accompanied by a dysregulation of Ca(2+)-responsive signaling pathways regulated by calcineurin and ERK1/2. Chronically elevated resting Ca(2+) in R163C skeletal muscle elicited the maintenance of a fast-twitch fiber program and the development of insulin resistance-like phenotype as part of a metabolic adaptation to the R163C RyR1 mutation.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shabbir A, Zisa D, Lin H, Mastri M, Roloff G, Suzuki G, Lee T. Activation of host tissue trophic factors through JAK-STAT3 signaling: a mechanism of mesenchymal stem cell-mediated cardiac repair. Am J Physiol Heart Circ Physiol 2010; 299:H1428-38. [PMID: 20852053 DOI: 10.1152/ajpheart.00488.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We recently demonstrated a cardiac therapeutic regimen based on injection of bone marrow mesenchymal stem cells (MSCs) into the skeletal muscle. Although the injected MSCs were trapped in the local musculature, the extracardiac cell delivery approach repaired the failing hamster heart. This finding uncovers a tissue repair mechanism mediated by trophic factors derived from the injected MSCs and local musculature that can be explored for minimally invasive stem cell therapy. However, the trophic factors involved in cardiac repair and their actions remain largely undefined. We demonstrate here a role of MSC-derived IL-6-type cytokines in cardiac repair through engagement of the skeletal muscle JAK-STAT3 axis. The MSC IL-6-type cytokines activated JAK-STAT3 signaling in cultured C2C12 skeletal myocytes and caused increased expression of the STAT3 target genes hepatocyte growth factor (HGF) and VEGF, which was inhibited by glycoprotein 130 (gp130) blockade. These in vitro findings were corroborated by in vivo studies, showing that the MSC-injected hamstrings exhibited activated JAK-STAT3 signaling and increased growth factor/cytokine production. Elevated host tissue growth factor levels were also detected in quadriceps, liver, and brain, suggesting a possible global trophic effect. Paracrine actions of these host tissue-derived factors activated the endogenous cardiac repair mechanisms in the diseased heart mediated by Akt, ERK, and JAK-STAT3. Administration of the cell-permeable JAK-STAT inhibitor WP1066 abrogated MSC-mediated host tissue growth factor expression and functional improvement. The study illustrates that the host tissue trophic factor network can be activated by MSC-mediated JAK-STAT3 signaling for tissue repair.
Collapse
Affiliation(s)
- Arsalan Shabbir
- Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Yu HW, Liu QF, Liu GN. Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-beta, ERK, JNK, and p38 MAPK signaling. Biochem Biophys Res Commun 2010; 396:451-6. [PMID: 20417179 DOI: 10.1016/j.bbrc.2010.04.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 11/29/2022]
Abstract
Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-beta (TGF-beta) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-beta DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-beta, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.
Collapse
Affiliation(s)
- Hong-Wei Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, 155th North of Nanjing Street, Heping Block, Shenyang, 110001 Liaoning Province, China
| | | | | |
Collapse
|
14
|
Sex differences in the excretion of fecal glucocorticoid metabolites in the Syrian hamster. J Comp Physiol B 2010; 180:919-25. [DOI: 10.1007/s00360-010-0467-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 03/07/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
15
|
Zisa D, Shabbir A, Suzuki G, Lee T. Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochem Biophys Res Commun 2009; 390:834-8. [PMID: 19836359 DOI: 10.1016/j.bbrc.2009.10.058] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/13/2009] [Indexed: 12/16/2022]
Abstract
We recently demonstrated a novel effective therapeutic regimen for treating hamster heart failure based on injection of bone marrow mesenchymal stem cells (MSCs) or MSC-conditioned medium into the skeletal muscle. The work highlights an important cardiac repair mechanism mediated by the myriad of trophic factors derived from the injected MSCs and local musculature that can be explored for non-invasive stem cell therapy. While this therapeutic regimen provides the ultimate proof that MSC-based cardiac repair is mediated by the trophic actions independent of MSC differentiation or stemness, the trophic factors responsible for cardiac regeneration after MSC therapy remain largely undefined. Toward this aim, we took advantage of the finding that human and porcine MSCs exhibit species-related differences in expression of trophic factors. We demonstrate that human MSCs when compared to porcine MSCs express and secrete 5-fold less vascular endothelial growth factor (VEGF) in conditioned medium (40+/-5 and 225+/-17 pg/ml VEGF, respectively). This deficit in VEGF output was associated with compromised cardiac therapeutic efficacy of human MSC-conditioned medium. Over-expression of VEGF in human MSCs however completely restored the therapeutic potency of the conditioned medium. This finding indicates VEGF as a key therapeutic trophic factor in MSC-mediated myocardial regeneration, and demonstrates the feasibility of human MSC therapy using trophic factor-based cell-free strategies, which can eliminate the concern of potential stem cell transformation.
Collapse
Affiliation(s)
- David Zisa
- Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
16
|
Zisa D, Shabbir A, Mastri M, Suzuki G, Lee T. Intramuscular VEGF repairs the failing heart: role of host-derived growth factors and mobilization of progenitor cells. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1503-15. [PMID: 19759338 DOI: 10.1152/ajpregu.00227.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle produces a myriad of mitogenic factors possessing cardiovascular regulatory effects that can be explored for cardiac repair. Given the reported findings that VEGF may modulate muscle regeneration, we investigated the therapeutic effects of chronic injections of low doses of human recombinant VEGF-A(165) (0.1-1 microg/kg) into the dystrophic hamstring muscle in a hereditary hamster model of heart failure and muscular dystrophy. In vitro, VEGF stimulated proliferation, migration, and growth factor production of cultured C2C12 skeletal myocytes. VEGF also induced production of HGF, IGF2, and VEGF by skeletal muscle. Analysis of skeletal muscle revealed an increase in myocyte nuclear [531 +/- 12 VEGF 1 microg/kg vs. 364 +/- 19 for saline (number/mm(2)) saline] and capillary [591 +/- 80 VEGF 1 microg/kg vs. 342 +/- 21 for saline (number/mm(2))] densities. Skeletal muscle analysis revealed an increase in Ki67(+) nuclei in the VEGF 1 microg/kg group compared with saline. In addition, VEGF mobilized c-kit(+), CD31(+), and CXCR4(+) progenitor cells. Mobilization of progenitor cells was consistent with higher SDF-1 concentrations found in hamstring, plasma, and heart in the VEGF group. Echocardiogram analysis demonstrated improvement in left ventricular ejection fraction (0.60 +/- 0.02 VEGF 1 microg/kg vs. 0.45 +/- 0.01 mm for saline) and an attenuation in ventricular dilation [5.59 +/- 0.12 VEGF 1 microg/kg vs. 6.03 +/- 0.09 for saline (mm)] 5 wk after initiating therapy. Hearts exhibited higher cardiomyocyte nuclear [845 +/- 22 VEGF 1 microg/kg vs. 519 +/- 40 for saline (number/mm(2))] and capillary [2,159 +/- 119 VEGF 1 microg/kg vs. 1,590 +/- 66 for saline (number/mm(2))] densities. Myocardial analysis revealed approximately 2.5 fold increase in Ki67+ cells and approximately 2.8-fold increase in c-kit(+) cells in the VEGF group, which provides evidence for cardiomyocyte regeneration and progenitor cell expansion. This study provides novel evidence of a salutary effect of VEGF in the cardiomyopathic hamster via induction of myogenic growth factor production by skeletal muscle and mobilization of progenitor cells, which resulted in attenuation of cardiomyopathy and repair of the heart.
Collapse
Affiliation(s)
- David Zisa
- Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
17
|
Muscular dystrophy therapy by nonautologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation 2009; 87:1275-82. [PMID: 19424025 DOI: 10.1097/tp.0b013e3181a1719b] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The use of nonautologous stem cells isolated from healthy donors for stem-cell therapy is an attractive approach, because the stem cells can be culture expanded in advance, thoroughly tested, and formulated into off-the-shelf medicine. However, human leukocyte antigen compatibility and related immunosuppressive protocols can compromise therapeutic efficacy and cause unwanted side effects. METHODS Mesenchymal stem cells (MSCs) have been postulated to possess unique immune regulatory function. We explored the immunomodulatory property of human and porcine MSCs for the treatment of delta-sarcoglycan-deficient dystrophic hamster muscle without immunosuppression. Circulating and tissue markers of inflammation were analyzed. Muscle regeneration and stem-cell fate were characterized. RESULTS Total white blood cell counts and leukocyte-distribution profiles were similar among the saline- and MSC-injected dystrophic hamsters 1 month posttreatment. Circulating levels of immunoglobulin A, vascular cell adhesion molecule-1, myeloperoxidase, and major cytokines involved in inflammatory response were not elevated by MSCs, nor were expression of the leukocyte common antigen CD45 and the cytokine transcriptional activator NF-kappaB in the injected muscle. Treated muscles exhibited increased cell-cycle activity and attenuated oxidative stress. Injected MSCs were found to be trapped in the musculature, contribute to both preexisting and new muscle fibers, and mediates capillary formation. CONCLUSIONS Intramuscular injection of nonautologous MSCs can be safely used for the treatment of dystrophic muscle in immunocompetent hosts without inflaming the host immune system.
Collapse
|
18
|
Liu QF, Yu HW, Liu GN. Egr-1 upregulates OPN through direct binding to its promoter and OPN upregulates Egr-1 via the ERK pathway. Mol Cell Biochem 2009; 332:77-84. [DOI: 10.1007/s11010-009-0176-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/09/2009] [Indexed: 11/29/2022]
|
19
|
Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 2009; 296:H1888-97. [PMID: 19395555 DOI: 10.1152/ajpheart.00186.2009] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure carries a poor prognosis with few treatment options. While myocardial stem cell therapeutic trials have traditionally relied on intracoronary infusion or intramyocardial injection routes, these cell delivery methods are invasive and can introduce harmful scar tissue, arrhythmia, calcification, or microinfarction in the heart. Given that patients with heart failure are at an increased surgical risk, the development of a noninvasive stem cell therapeutic approach is logistically appealing. Taking advantage of the trophic effects of bone marrow mesenchymal stem cells (MSCs) and using a hamster heart failure model, the present study demonstrates a novel noninvasive therapeutic regimen via the direct delivery of MSCs into the skeletal muscle bed. Intramuscularly injected MSCs and MSC-conditioned medium each significantly improved ventricular function 1 mo after MSC administration. MSCs at 4 million cells/animal increased fractional shortening by approximately 40%, enhanced capillary and myocyte nuclear density by approximately 30% and approximately 80%, attenuated apoptosis by approximately 60%, and reduced fibrosis by approximately 50%. Myocyte regeneration was evidenced by an approximately twofold increase in the expression of cell cycle markers (Ki67 and phosphohistone H(3)) and an approximately 13% reduction in mean myocyte diameter. Increased circulating levels of hepatocyte growth factor (HGF), leukemia inhibitory factor, and macrophage colony-stimulating factor were associated with the mobilization of c-Kit-positive, CD31-positive, and CD133-positive progenitor cells and a subsequent increase in myocardial c-Kit-positive cells. Trophic effects of MSCs further activated the expression of HGF, IGF-II, and VEGF in the myocardium. The work highlights a cardiac repair mechanism mediated by trophic cross-talks among the injected MSCs, bone marrow, and heart that can be explored for noninvasive stem cell therapy.
Collapse
Affiliation(s)
- Arsalan Shabbir
- Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|