1
|
Guven C, Taskin E, Aydın Ö, Kaya ST, Sevgiler Y. Diazoxide attenuates DOX-induced cardiotoxicity in cultured rat myocytes. Biotech Histochem 2024; 99:113-124. [PMID: 38439686 DOI: 10.1080/10520295.2024.2324368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Doxorubicin (DOX)-induced cardiotoxicity is a well known clinical problem, and many investigations have been made of its possible amelioration. We have investigated whether diazoxide (DIA), an agonist at mitochondrial ATP-sensitive potassium channels (mitoKATP), could reverse DOX-induced apoptotic myocardial cell loss, in cultured rat cardiomyocytes. The role of certain proteins in this pathway was also studied. The rat cardiomyocyte cell line (H9c2) was treated with DOX, and also co-treated with DOX and DIA, for 24 h. Distribution of actin filaments, mitochondrial membrane potential, superoxide dismutase (SOD) activity, total oxidant and antioxidant status (TOS and TAS, respectively), and some protein expressions, were assessed. DOX significantly decreased SOD activity, increased ERK1/2 protein levels, and depolarised the mitochondrial membrane, while DIA co-treatment inhibited such changes. DIA co-treatment ameliorated DOX-induced cytoskeletal changes via F-actin distribution and mitoKATP structure. Co-treatment also decreased ERK1/2 and cytochrome c protein levels. Cardiomyocyte loss due to oxidative stress-mediated apoptosis is a key event in DOX-induced cytotoxicity. DIA had protective effects on DOX-induced cardiotoxicity, via mitoKATP integrity, especially with elevated SUR2A levels; but also by a cascade including SOD/AMPK/ERK1/2. Therefore, DIA may be considered a candidate agent for protecting cardiomyocytes against DOX chemotherapy.
Collapse
Affiliation(s)
- Celal Guven
- Department of Biophysics, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Eylem Taskin
- Department of Physiology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Özgül Aydın
- Department of Biology, Institute of Natural and Applied Sciences, Adıyaman University, Adıyaman, Turkey
| | - Salih Tunç Kaya
- Department of Biology, Faculty of Science and Letters, Düzce University, Düzce, Turkey
| | - Yusuf Sevgiler
- Department of Biology, Faculty of Science and Letters, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
2
|
Belyaeva EA. Modulators of mitochondrial ATP-sensitive potassium channel affect cytotoxicity of heavy metals: Action on isolated rat liver mitochondria and AS-30D ascites hepatoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114829. [PMID: 36989557 DOI: 10.1016/j.ecoenv.2023.114829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals are ubiquitous environmental pollutants that are extremely dangerous for public health, but the molecular mechanisms of their cytotoxic action are still not fully understood. In the present work, the possible contribution of the mitochondrial ATP-sensitive potassium channel (mK(ATP)), which is usually considered protective for the cell, to hepatotoxicity caused by heavy metals was investigated using polarography and swelling techniques as well as flow cytometry. Using isolated liver mitochondria from adult male Wistar rats and various potassium media containing or not containing penetrating anions (KNO3, KSCN, KAcet, KCl), we studied the effect of mK(ATP) modulators, namely its blockers (5-hydroxydecanoate, glibenclamide, ATP, ADP) and activators (diazoxide, malonate), on respiration and/or membrane permeability in the presence of hepatotoxins such as Cd2+, Hg2+, and Cu2+. It has been shown for the first time that, contrary to Hg2+ and depending on media used, the mK(ATP) modulators affect Cd2+- and/or Cu2+-induced alterations in mitochondrial swelling and respiration rates, although differently, nevertheless, in the ways compatible with mK(ATP) participation in both these cases. On rat AS-30D ascites hepatoma cells, it was found that, unlike Cd2+, an increase in the production of reactive oxygen species was observed with the simultaneous use of Cu2+ and diazoxide; in addition, there was no protective effect of diazoxide against cell death, which also occurred in the presence of Cu2+. In conclusion, the relationships (functional, structural and/or regulatory) between mK(ATP), components of the mitochondrial electron transport chain (CI, CII-CIII and/or ATP synthase, CV) and mitochondrial permeability transition pores were discussed, as well as the role of these molecular structures in the mechanisms of the cytotoxic action of heavy metals.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez av. 44, 194223, St.-Petersburg, Russia.
| |
Collapse
|
3
|
Therapeutic Targets for Regulating Oxidative Damage Induced by Ischemia-Reperfusion Injury: A Study from a Pharmacological Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8624318. [PMID: 35450409 PMCID: PMC9017553 DOI: 10.1155/2022/8624318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
Ischemia-reperfusion (I-R) injury is damage caused by restoring blood flow into ischemic tissues or organs. This complex and characteristic lesion accelerates cell death induced by signaling pathways such as apoptosis, necrosis, and even ferroptosis. In addition to the direct association between I-R and the release of reactive oxygen species and reactive nitrogen species, it is involved in developing mitochondrial oxidative damage. Thus, its mechanism plays a critical role via reactive species scavenging, calcium overload modulation, electron transport chain blocking, mitochondrial permeability transition pore activation, or noncoding RNA transcription. Other receptors and molecules reduce tissue and organ damage caused by this pathology and other related diseases. These molecular targets have been gradually discovered and have essential roles in I-R resolution. Therefore, the current study is aimed at highlighting the importance of these discoveries. In this review, we inquire about the oxidative damage receptors that are relevant to reducing the damage induced by oxidative stress associated with I-R. Several complications on surgical techniques and pathology interventions do not mitigate the damage caused by I-R. Nevertheless, these therapies developed using alternative targets could work as coadjuvants in tissue transplants or I-R-related pathologies
Collapse
|
4
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|
5
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
6
|
Yang HQ, Subbotina E, Ramasamy R, Coetzee WA. Cardiovascular K ATP channels and advanced aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32517. [PMID: 27733235 PMCID: PMC5061878 DOI: 10.3402/pba.v6.32517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature. Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging and argue that the channel can be further modulated by biochemical changes. The importance is widespread, given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be considered as a viable target for therapeutic intervention.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA
| | | | - Ravichandran Ramasamy
- Department of Medicine, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.,Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY, USA;
| |
Collapse
|
7
|
Kim DY, Abdelwahab MG, Lee SH, O’Neill D, Thompson RJ, Duff HJ, Sullivan PG, Rho JM. Ketones prevent oxidative impairment of hippocampal synaptic integrity through KATP channels. PLoS One 2015; 10:e0119316. [PMID: 25848768 PMCID: PMC4388385 DOI: 10.1371/journal.pone.0119316] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022] Open
Abstract
Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent studies have shown that ketones may modulate neuronal firing through interactions with ATP-sensitive potassium (KATP) channels. Here, we used a combination of electrophysiological, pharmacological, and biochemical assays to determine whether hippocampal synaptic protection by ketones is a consequence of KATP channel activation. Ketones dose-dependently reversed oxidative impairment of hippocampal synaptic integrity, neuronal viability, and bioenergetic capacity, and this action was mirrored by the KATP channel activator diazoxide. Inhibition of KATP channels reversed ketone-evoked hippocampal protection, and genetic ablation of the inwardly rectifying K+ channel subunit Kir6.2, a critical component of KATP channels, partially negated the synaptic protection afforded by ketones. This partial protection was completely reversed by co-application of the KATP blocker, 5-hydoxydecanoate (5HD). We conclude that, under conditions of oxidative injury, ketones induce synaptic protection in part through activation of KATP channels.
Collapse
Affiliation(s)
- Do Young Kim
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital & Medical Center, Phoenix, Arizona, United States of America
- * E-mail:
| | - Mohammed G. Abdelwahab
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital & Medical Center, Phoenix, Arizona, United States of America
| | - Soo Han Lee
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital & Medical Center, Phoenix, Arizona, United States of America
| | - Derek O’Neill
- Departments of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital & Medical Center, Phoenix, Arizona, United States of America
| | - Roger J. Thompson
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Henry J. Duff
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jong M. Rho
- Departments of Pediatrics and Clinical Neurosciences, Alberta Children’s Hospital, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2014; 2:702-14. [PMID: 24944913 PMCID: PMC4060303 DOI: 10.1016/j.redox.2014.05.006] [Citation(s) in RCA: 512] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 02/06/2023] Open
Abstract
Reductions in the blood supply produce considerable injury if the duration of ischemia is prolonged. Paradoxically, restoration of perfusion to ischemic organs can exacerbate tissue damage and extend the size of an evolving infarct. Being highly metabolic organs, the heart and brain are particularly vulnerable to the deleterious effects of ischemia/reperfusion (I/R). While the pathogenetic mechanisms contributing to I/R-induced tissue injury and infarction are multifactorial, the relative importance of each contributing factor remains unclear. However, an emerging body of evidence indicates that the generation of reactive oxygen species (ROS) by mitochondria plays a critical role in damaging cellular components and initiating cell death. In this review, we summarize our current understanding of the mechanisms whereby mitochondrial ROS generation occurs in I/R and contributes to myocardial infarction and stroke. In addition, mitochondrial ROS have been shown to participate in preconditioning by several pharmacologic agents that target potassium channels (e.g., ATP-sensitive potassium (mKATP) channels or large conductance, calcium-activated potassium (mBKCa) channels) to activate cell survival programs that render tissues and organs more resistant to the deleterious effects of I/R. Finally, we review novel therapeutic approaches that selectively target mROS production to reduce postischemic tissue injury, which may prove efficacious in limiting myocardial dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| | - Yimin Bao
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| |
Collapse
|
9
|
Abstract
Mitochondrial reactive oxygen species (ROS) have emerged as an important mechanism of disease and redox signaling in the cardiovascular system. Under basal or pathological conditions, electron leakage for ROS production is primarily mediated by the electron transport chain and the proton motive force consisting of a membrane potential (ΔΨ) and a proton gradient (ΔpH). Several factors controlling ROS production in the mitochondria include flavin mononucleotide and flavin mononucleotide-binding domain of complex I, ubisemiquinone and quinone-binding domain of complex I, flavin adenine nucleotide-binding moiety and quinone-binding pocket of complex II, and unstable semiquinone mediated by the Q cycle of complex III. In mitochondrial complex I, specific cysteinyl redox domains modulate ROS production from the flavin mononucleotide moiety and iron-sulfur clusters. In the cardiovascular system, mitochondrial ROS have been linked to mediating the physiological effects of metabolic dilation and preconditioning-like mitochondrial ATP-sensitive potassium channel activation. Furthermore, oxidative post-translational modification by glutathione in complex I and complex II has been shown to affect enzymatic catalysis, protein-protein interactions, and enzyme-mediated ROS production. Conditions associated with oxidative or nitrosative stress, such as myocardial ischemia and reperfusion, increase mitochondrial ROS production via oxidative injury of complexes I and II and superoxide anion radical-induced hydroxyl radical production by aconitase. Further insight into cellular mechanisms by which specific redox post-translational modifications regulate ROS production in the mitochondria will enrich our understanding of redox signal transduction and identify new therapeutic targets for cardiovascular diseases in which oxidative stress perturbs normal redox signaling.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH (Y.-R.C); and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH (J.L.Z.)
| | | |
Collapse
|
10
|
Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013; 140:167-75. [PMID: 23792087 DOI: 10.1016/j.pharmthera.2013.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Abstract
Diazoxide has been identified over the past 50years to have a number of physiological effects, including lowering the blood pressure and rectifying hypoglycemia. Today it is used clinically to treat these conditions. More recently, another important mode of action emerged: diazoxide has powerful protective properties against cardiac ischemia. The heart has intrinsic protective mechanisms against ischemia injury; one of which is ischemic preconditioning. Diazoxide mimics ischemic preconditioning. The purpose of this treatise is to review the literature in an attempt to identify the many effectors of diazoxide and discuss how they may contribute to diazoxide's cardioprotective properties. Particular emphasis is placed on the concentration ranges in which diazoxide affects its different targets and how this compares with the concentrations commonly used to study cardioprotection. It is concluded that diazoxide may have several potential effectors that may potentially contribute to cardioprotection, including KATP channels in the pancreas, smooth muscle, endothelium, neurons and the mitochondrial inner membrane. Diazoxide may also affect other ion channels and ATPases and may directly regulate mitochondrial energetics. It is possible that the success of diazoxide lies in this promiscuity and that the compound acts to rebalance multiple physiological processes during cardiac ischemia.
Collapse
Affiliation(s)
- William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, United States; Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
11
|
Dröse S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:578-87. [DOI: 10.1016/j.bbabio.2013.01.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
|
12
|
Bleier L, Dröse S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1320-31. [PMID: 23269318 DOI: 10.1016/j.bbabio.2012.12.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Apart from complex I (NADH:ubiquinone oxidoreductase) the mitochondrial cytochrome bc1 complex (complex III; ubiquinol:cytochrome c oxidoreductase) has been identified as the main producer of superoxide and derived reactive oxygen species (ROS) within the mitochondrial respiratory chain. Mitochondrial ROS are generally linked to oxidative stress, aging and other pathophysiological settings like in neurodegenerative diseases. However, ROS produced at the ubiquinol oxidation center (center P, Qo site) of complex III seem to have additional physiological functions as signaling molecules during cellular processes like the adaptation to hypoxia. The molecular mechanism of superoxide production that is mechanistically linked to the electron bifurcation during ubiquinol oxidation is still a matter of debate. Some insight comes from extensive kinetic studies with mutated complexes from yeast and bacterial cytochrome bc1 complexes. This review is intended to bridge the gap between those mechanistic studies and investigations on complex III ROS in cellular signal transduction and highlights factors that impact superoxide generation. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Lea Bleier
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
13
|
Dröse S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:145-69. [PMID: 22729857 DOI: 10.1007/978-1-4614-3573-0_6] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) in eukaryotic cells. Mitochondrial ROS production associated with a dysfunction of respiratory chain complexes has been implicated in a number of degenerative diseases and biological aging. Recent findings suggest that mitochondrial ROS can be integral components of cellular signal transduction as well. Within the respiratory chain, complexes I (NADH:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc (1) complex) are generally considered as the main producers of superoxide anions that are released into the mitochondrial matrix and the intermembrane space, respectively. The primary function of both respiratory chain complexes is to employ energy supplied by redox reactions to drive the vectorial transfer of protons into the mitochondrial intermembrane space. This process involves a set of distinct electron carriers designed to minimize the unwanted leak of electrons from reduced cofactors onto molecular oxygen and hence ROS generation under normal circumstances. Nevertheless, it seems plausible that superoxide is derived from intermediates of the normal catalytic cycles of complexes I and III. Therefore, a detailed understanding of the molecular mechanisms driving these enzymes is required to understand mitochondrial ROS production during oxidative stress and redox signalling. This review summarizes recent findings on the chemistry and control of the reactions within respiratory complexes I and III that result in increased superoxide generation. Regulatory contributions of other components of the respiratory chain, especially complex II (succinate:ubiquinone oxidoreductase) and the redox state of the ubiquinone pool (Q-pool) will be briefly discussed.
Collapse
Affiliation(s)
- Stefan Dröse
- Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | |
Collapse
|
14
|
Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res 2011; 28:2695-730. [PMID: 21863476 DOI: 10.1007/s11095-011-0566-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/10/2011] [Indexed: 12/23/2022]
Abstract
Succinate:quinone reductase (SQR) of Complex II occupies a unique central point in the mitochondrial respiratory system as a major source of electrons driving reactive oxygen species (ROS) production. It is an ideal pharmaceutical target for modulating ROS levels in normal cells to prevent oxidative stress-induced damage or alternatively,increase ROS in cancer cells, inducing cell death.The value of drugs like diazoxide to prevent ROS production,protecting normal cells, whereas vitamin E analogues promote ROS in cancer cells to kill them is highlighted. As pharmaceuticals these agents may prevent degenerative disease and their modes of action are presently being fully explored. The evidence that SDH/Complex II is tightly coupled to the NADH/NAD+ ratio in all cells,impacted by the available supplies of Krebs cycle intermediates as essential NAD-linked substrates, and the NAD+-dependent regulation of SDH/Complex II are reviewed, as are links to the NAD+-dependent dehydrogenases, Complex I and the E3 dihiydrolipoamide dehydrogenase to produce ROS. This review collates and discusses diverse sources of information relating to ROS production in different biological systems, focussing on evidence for SQR as the main source of ROS production in mitochondria, particularly its relevance to protection from oxidative stress and to the mitochondrial-targeted anti cancer drugs (mitocans) as novel cancer therapies [corrected].
Collapse
|
15
|
Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol 2011; 300:C951-67. [PMID: 21178108 PMCID: PMC3093942 DOI: 10.1152/ajpcell.00512.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 12/19/2022]
Abstract
The ability to sense and respond to oxygen deprivation is required for survival; thus, understanding the mechanisms by which changes in oxygen are linked to cell viability and function is of great importance. Ion channels play a critical role in regulating cell function in a wide variety of biological processes, including neuronal transmission, control of ventilation, cardiac contractility, and control of vasomotor tone. Since the 1988 discovery of oxygen-sensitive potassium channels in chemoreceptors, the effect of hypoxia on an assortment of ion channels has been studied in an array of cell types. In this review, we describe the effects of both acute and sustained hypoxia (continuous and intermittent) on mammalian ion channels in several tissues, the mode of action, and their contribution to diverse cellular processes.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Div. of Pulmonary and Critical Care Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
16
|
Dröse S, Bleier L, Brandt U. A Common Mechanism Links Differently Acting Complex II Inhibitors to Cardioprotection: Modulation of Mitochondrial Reactive Oxygen Species Production. Mol Pharmacol 2011; 79:814-22. [DOI: 10.1124/mol.110.070342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|