1
|
Tao W, Ye Z, Wei Y, Wang J, Yang W, Yu G, Xiong J, Jia S. Insm1 regulates mTEC development and immune tolerance. Cell Mol Immunol 2023; 20:1472-1486. [PMID: 37990032 PMCID: PMC10687002 DOI: 10.1038/s41423-023-01102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
The expression of self-antigens in medullary thymic epithelial cells (mTECs) is essential for the establishment of immune tolerance, but the regulatory network that controls the generation and maintenance of the multitude of cell populations expressing self-antigens is poorly understood. Here, we show that Insm1, a zinc finger protein with known functions in neuroendocrine and neuronal cells, is broadly coexpressed with an autoimmune regulator (Aire) in mTECs. Insm1 expression is undetectable in most mimetic cell populations derived from mTECs but persists in neuroendocrine mimetic cells. Mutation of Insm1 in mice downregulated Aire expression, dysregulated the gene expression program of mTECs, and altered mTEC subpopulations and the expression of tissue-restricted antigens. Consistent with these findings, loss of Insm1 resulted in autoimmune responses in multiple peripheral tissues. We found that Insm1 regulates gene expression in mTECs by binding to chromatin. Interestingly, the majority of the Insm1 binding sites are co-occupied by Aire and enriched in superenhancer regions. Together, our data demonstrate the important role of Insm1 in the regulation of the repertoire of self-antigens needed to establish immune tolerance.
Collapse
Affiliation(s)
- Weihua Tao
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
- The Institute of Clinical Medicine, Jinan University, Guangzhou, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-Vascular Diseases, Guangzhou, China
| | - Zhihuan Ye
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
- The Institute of Clinical Medicine, Jinan University, Guangzhou, China
| | - Yiqiu Wei
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
- The Institute of Clinical Medicine, Jinan University, Guangzhou, China
| | - Jianxue Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weixin Yang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guoxing Yu
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
- The Institute of Clinical Medicine, Jinan University, Guangzhou, China
| | - Jieyi Xiong
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
- The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China.
- The Institute of Clinical Medicine, Jinan University, Guangzhou, China.
- Key Lab of Guangzhou Basic and Translational Research of Pan-Vascular Diseases, Guangzhou, China.
| |
Collapse
|
2
|
Wang L, Li X, Yang S, Chen X, Li J, Wang S, Zhang M, Zheng Z, Zhou J, Wang L, Wu Y. Proteomic identification of MHC class I-associated peptidome derived from non-obese diabetic mouse thymus and pancreas. J Proteomics 2023; 270:104746. [PMID: 36210013 DOI: 10.1016/j.jprot.2022.104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP), which regulates thymus development, peripheral survival and function during lifetime of CD8+ T cells. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cells destruction mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is an important animal model of T1D. Here, we deeply analyzed the MIP derived from NOD mice thymus and pancreas, and demonstrated that the thymus MIP source proteins partially shared with the MIP source proteins derived from NOD mice pancreas and β cell line. One H-2Kd restricted peptide SLC35B126-34 which was shared by MIP derived from both NOD mice pancreatic tissues and islet β-cell line, but absent in MIP from NOD thymus tissues, showed ability to stimulate IFN-γ secretion and proliferation of NOD mice splenic CD8+ T cells. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. Data are available via ProteomeXchange with identifier PXD031966. SIGNIFICANCE: The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP). The MIP presented by thymic antigen presenting cells (APCs) is crucial for shaping CD8+ T cell repertoire and self-tolerance, while the MIP presented by peripheral tissues and organs is not only involved in maintaining periphery CD8+ T cell survival and homeostasis, but also mediates immune surveillance and autoimmune responses of CD8+ T cells under pathological conditions. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by the destruction of pancreatic β cells, mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is one of important animal models of spontaneous autoimmune diabetes that shares several key features with human T1D. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a good biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. It has great significance for further clarifying the immune recognition and effect mechanism of autoreactive CD8+ T cells in the pathogenesis of T1D, and then developing antigen-specific immune intervention strategies.
Collapse
Affiliation(s)
- Lina Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Immunology, College of Basic Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiangqian Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shushu Yang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Li
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shufeng Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengjun Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengni Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jie Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Yuzhang Wu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China; Institute of Immunology PLA & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
3
|
Assis AF, Li J, Donate PB, Dernowsek JA, Manley NR, Passos GA. Predicted miRNA-mRNA-mediated posttranscriptional control associated with differences in cervical and thoracic thymus function. Mol Immunol 2018; 99:39-52. [DOI: 10.1016/j.molimm.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
|
4
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
5
|
Passos GA, Speck‐Hernandez CA, Assis AF, Mendes‐da‐Cruz DA. Update on Aire and thymic negative selection. Immunology 2018; 153:10-20. [PMID: 28871661 PMCID: PMC5721245 DOI: 10.1111/imm.12831] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
Twenty years ago, the autoimmune regulator (Aire) gene was associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, and was cloned and sequenced. Its importance goes beyond its abstract link with human autoimmune disease. Aire identification opened new perspectives to better understand the molecular basis of central tolerance and self-non-self distinction, the main properties of the immune system. Since 1997, a growing number of immunologists and molecular geneticists have made important discoveries about the function of Aire, which is essentially a pleiotropic gene. Aire is one of the functional markers in medullary thymic epithelial cells (mTECs), controlling their differentiation and expression of peripheral tissue antigens (PTAs), mTEC-thymocyte adhesion and the expression of microRNAs, among other functions. With Aire, the immunological tolerance became even more apparent from the molecular genetics point of view. Currently, mTECs represent the most unusual cells because they express almost the entire functional genome but still maintain their identity. Due to the enormous diversity of PTAs, this uncommon gene expression pattern was termed promiscuous gene expression, the interpretation of which is essentially immunological - i.e. it is related to self-representation in the thymus. Therefore, this knowledge is strongly linked to the negative selection of autoreactive thymocytes. In this update, we focus on the most relevant results of Aire as a transcriptional and post-transcriptional controller of PTAs in mTECs, its mechanism of action, and its influence on the negative selection of autoreactive thymocytes as the bases of the induction of central tolerance and prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Geraldo A. Passos
- Molecular Immunogenetics GroupDepartment of GeneticsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
- Discipline of Genetics and Molecular BiologyDepartment of Morphology, Physiology and Basic PathologySchool of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Cesar A. Speck‐Hernandez
- Graduate Programme in Basic and Applied ImmunologyRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Amanda F. Assis
- Molecular Immunogenetics GroupDepartment of GeneticsRibeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoSPBrazil
| | - Daniella A. Mendes‐da‐Cruz
- Laboratory on Thymus ResearchOswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
- National Institute of Science and Technology on NeuroimmunomodulationRio de JaneiroRJBrazil
| |
Collapse
|
6
|
Clark M, Kroger CJ, Tisch RM. Type 1 Diabetes: A Chronic Anti-Self-Inflammatory Response. Front Immunol 2017; 8:1898. [PMID: 29312356 PMCID: PMC5743904 DOI: 10.3389/fimmu.2017.01898] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Inflammation is typically induced in response to a microbial infection. The release of proinflammatory cytokines enhances the stimulatory capacity of antigen-presenting cells, as well as recruits adaptive and innate immune effectors to the site of infection. Once the microbe is cleared, inflammation is resolved by various mechanisms to avoid unnecessary tissue damage. Autoimmunity arises when aberrant immune responses target self-tissues causing inflammation. In type 1 diabetes (T1D), T cells attack the insulin producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by in part altering central and peripheral tolerance inducing events. This results in the development and expansion of β cell-specific effector T cells (Teff) which mediate islet inflammation. Unlike protective immunity where inflammation is terminated, autoimmunity is sustained by chronic inflammation. In this review, we will highlight the key events which initiate and sustain T cell-driven pancreatic islet inflammation in nonobese diabetic mice and in human T1D. Specifically, we will discuss: (i) dysregulation of thymic selection events, (ii) the role of intrinsic and extrinsic factors that enhance the expansion and pathogenicity of Teff, (iii) defects which impair homeostasis and suppressor activity of FoxP3-expressing regulatory T cells, and (iv) properties of β cells which contribute to islet inflammation.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Kulshrestha D, Yeh LT, Chien MW, Chou FC, Sytwu HK. Peripheral Autoimmune Regulator Induces Exhaustion of CD4 + and CD8 + Effector T Cells to Attenuate Autoimmune Diabetes in Non-Obese Diabetic Mice. Front Immunol 2017; 8:1128. [PMID: 28966617 PMCID: PMC5605615 DOI: 10.3389/fimmu.2017.01128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023] Open
Abstract
Autoimmune regulator (Aire) is one of the most crucial genes expressed in the thymus, where it orchestrates the promiscuous expression and presentation of tissue-specific antigens during thymocyte selection. The presence of Aire-expressing cells outside the thymus points toward its plausible extrathymic functions; however, the relative contribution of Aire-expressing cells of hematopoietic origin and their role in the modulation of autoimmune diseases are still obscure. Here, we report that non-obese diabetic mice with transgenic Aire expression under the control of the CD11c (integrin alpha X) promoter were significantly protected from autoimmune diabetes compared with their non-transgenic littermates. The protective effect of Aire transgene was mediated primarily by an increase in the “exhausted” populations of CD4+ and CD8+ T cells, both demonstrating poor expressions of interferon-γ and tumor necrosis factor-α. Both CD4+ and CD8+ effector T cells in transgenic mice displayed distinctive and differential expression of T-bet and Eomesodermin, respectively, in conjunction with high expression of programmed cell death protein-1 and other exhaustion-associated markers. Importantly, transgenic Aire expression did not result in any detectable changes in the population of Foxp3+ regulatory T (Treg) cells. Co-transfer experiments also demonstrated that Aire transgenic dendritic cells, as a “stand-alone” cell population, had the potential to suppress effector T cells in vivo without the support of Treg cells, but eventually failed to prevent the diabetogenesis in recipient mice. In conclusion, our study suggests that apart from its role in clonal deletion of autoreactive T cells or clonal diversion to Treg lineage, Aire can also contribute to tolerance by forcing effector T cells into a state of exhaustion with poor effector functions, thereby effectively containing autoimmune diseases.
Collapse
Affiliation(s)
- Divakar Kulshrestha
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Oliveira EH, Macedo C, Collares CV, Freitas AC, Donate PB, Sakamoto-Hojo ET, Donadi EA, Passos GA. Aire Downregulation Is Associated with Changes in the Posttranscriptional Control of Peripheral Tissue Antigens in Medullary Thymic Epithelial Cells. Front Immunol 2016; 7:526. [PMID: 27933063 PMCID: PMC5120147 DOI: 10.3389/fimmu.2016.00526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Autoimmune regulator (Aire) is a transcriptional regulator of peripheral tissue antigens (PTAs) and microRNAs (miRNAs) in medullary thymic epithelial cells (mTECs). In this study, we tested the hypothesis that Aire also played a role as an upstream posttranscriptional controller in these cells and that variation in its expression might be associated with changes in the interactions between miRNAs and the mRNAs encoding PTAs. We demonstrated that downregulation of Aire in vivo in the thymuses of BALB/c mice imbalanced the large-scale expression of these two RNA species and consequently their interactions. The expression profiles of a large set of mTEC miRNAs and mRNAs isolated from the thymuses of mice subjected (or not) to small-interfering-induced Aire gene knockdown revealed that 87 miRNAs and 4,558 mRNAs were differentially expressed. The reconstruction of the miRNA–mRNA interaction networks demonstrated that interactions between these RNAs were under Aire influence and therefore changed when this gene was downregulated. Prior to Aire-knockdown, only members of the miR-let-7 family interacted with a set of PTA mRNAs. Under Aire-knockdown conditions, a larger set of miRNA families and their members established this type of interaction. Notably, no previously described Aire-dependent PTA interacted with the miRNAs, indicating that these PTAs were somehow refractory. The miRNA–mRNA interactions were validated by calculating the minimal free energy of the pairings between the miRNA seed regions and the mRNA 3′ UTRs and within the cellular milieu using the luciferase reporter gene assay. These results suggest the existence of a link between transcriptional and posttranscriptional control because Aire downregulation alters the miRNA–mRNA network controlling PTAs in mTEC cells.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Claudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Cristhianna V Collares
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Ana Carolina Freitas
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Paula Barbim Donate
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Elza T Sakamoto-Hojo
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (USP) , São Paulo , Brazil
| | - Eduardo A Donadi
- Department of Clinical Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil; Discipline of Genetics and Molecular Biology, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
9
|
Pezzi N, Assis AF, Cotrim-Sousa LC, Lopes GS, Mosella MS, Lima DS, Bombonato-Prado KF, Passos GA. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction. Mol Immunol 2016; 77:157-73. [PMID: 27505711 DOI: 10.1016/j.molimm.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
Abstract
We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion.
Collapse
Affiliation(s)
- Nicole Pezzi
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Larissa Cotrim Cotrim-Sousa
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gabriel Sarti Lopes
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Maritza Salas Mosella
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Djalma Sousa Lima
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Karina F Bombonato-Prado
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Julián MT, Alonso N, Colobran R, Sánchez A, Miñarro A, Pujol-Autonell I, Carrascal J, Rodríguez-Fernández S, Ampudia RM, Vives-Pi M, Puig-Domingo M. CD26/DPPIV inhibition alters the expression of immune response-related genes in the thymi of NOD mice. Mol Cell Endocrinol 2016; 426:101-12. [PMID: 26911933 DOI: 10.1016/j.mce.2016.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
Abstract
The transmembrane glycoprotein CD26 or dipeptidyl peptidase IV (DPPIV) is a multifunctional protein. In immune system, CD26 plays a role in T-cell function and is also involved in thymic maturation and emigration patterns. In preclinical studies, treatment with DPPIV inhibitors reduces insulitis and delays or even reverses the new -onset of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. However, the specific mechanisms involved in these effects remain unknown. The aim of the present study was to investigate how DPPIV inhibition modifies the expression of genes in the thymus of NOD mice by microarray analysis. Changes in the gene expression of β-cell autoantigens and Aire in thymic epithelial cells (TECs) were also evaluated by using qRT-PCR. A DPPIV inhibitor, MK626, was orally administered in the diet for 4 and 6 weeks starting at 6-8 weeks of age. Thymic glands from treated and control mice were obtained for each study checkpoint. Thymus transcriptome analysis revealed that 58 genes were significantly over-expressed in MK626-treated mice after 6 weeks of treatment. Changes in gene expression in the thymus were confined mainly to the immune system, including innate immunity, chemotaxis, antigen presentation and immunoregulation. Most of the genes are implicated in central tolerance mechanisms through several pathways. No differences were observed in the expression of Aire and β-cell autoantigens in TECs. In the current study, we demonstrate that treatment with the DPPIV inhibitor MK626 in NOD mice alters the expression of the immune response-related genes in the thymus, especially those related to immunological central tolerance, and may contribute to the prevention of T1D.
Collapse
Affiliation(s)
- María Teresa Julián
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Health Sciences Research Institute and Hospital, 08916, Badalona, Spain; Department of Medicine, Autonomous University of Barcelona, 08193, Barcelona, Spain
| | - Núria Alonso
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Health Sciences Research Institute and Hospital, 08916, Badalona, Spain; Department of Medicine, Autonomous University of Barcelona, 08193, Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Roger Colobran
- Immunology Division, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Alex Sánchez
- Statistics Department, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain; Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain
| | - Antoni Miñarro
- Statistics Department, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Irma Pujol-Autonell
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Jorge Carrascal
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Silvia Rodríguez-Fernández
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Rosa María Ampudia
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Health Sciences Research Institute, 08916, Badalona, Autonomous University of Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Health Sciences Research Institute and Hospital, 08916, Badalona, Spain; Department of Medicine, Autonomous University of Barcelona, 08193, Barcelona, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
11
|
Dragin N, Bismuth J, Cizeron-Clairac G, Biferi MG, Berthault C, Serraf A, Nottin R, Klatzmann D, Cumano A, Barkats M, Le Panse R, Berrih-Aknin S. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases. J Clin Invest 2016; 126:1525-37. [PMID: 26999605 PMCID: PMC4811157 DOI: 10.1172/jci81894] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 01/21/2016] [Indexed: 01/01/2023] Open
Abstract
Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α-deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases.
Collapse
Affiliation(s)
- Nadine Dragin
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Jacky Bismuth
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | | | - Maria Grazia Biferi
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Claire Berthault
- INSERM U668, Unit for Lymphopoiesis, Immunology Department, Pasteur Institute, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Alain Serraf
- Hôpital Marie Lannelongue, Le Plessis–Robinson, France
| | - Rémi Nottin
- Hôpital Marie Lannelongue, Le Plessis–Robinson, France
| | - David Klatzmann
- Assistance Publique – Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Biotherapy, Paris, France
| | - Ana Cumano
- INSERM U668, Unit for Lymphopoiesis, Immunology Department, Pasteur Institute, Paris, France
| | - Martine Barkats
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Rozen Le Panse
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Universités, UPMC University of Paris 06, Paris, France
- INSERM U974, Paris, France
- CNRS FRE 3617, Paris, France
- AIM, Institute of Myology, Paris, France
| |
Collapse
|
12
|
Passos GA, Mendes-da-Cruz DA, Oliveira EH. The Thymic Orchestration Involving Aire, miRNAs, and Cell-Cell Interactions during the Induction of Central Tolerance. Front Immunol 2015; 6:352. [PMID: 26236310 PMCID: PMC4500981 DOI: 10.3389/fimmu.2015.00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/29/2015] [Indexed: 01/23/2023] Open
Abstract
Developing thymocytes interact sequentially with two distinct structures within the thymus: the cortex and medulla. Surviving single-positive and double-positive thymocytes from the cortex migrate into the medulla, where they interact with medullary thymic epithelial cells (mTECs). These cells ectopically express a vast set of peripheral tissue antigens (PTAs), a property termed promiscuous gene expression that is associated with the presentation of PTAs by mTECs to thymocytes. Thymocyte clones that have a high affinity for PTAs are eliminated by apoptosis in a process termed negative selection, which is essential for tolerance induction. The Aire gene is an important factor that controls the expression of a large set of PTAs. In addition to PTAs, Aire also controls the expression of miRNAs in mTECs. These miRNAs are important in the organization of the thymic architecture and act as posttranscriptional controllers of PTAs. Herein, we discuss recent discoveries and highlight open questions regarding the migration and interaction of developing thymocytes with thymic stroma, the ectopic expression of PTAs by mTECs, the association between Aire and miRNAs and its effects on central tolerance.
Collapse
Affiliation(s)
- Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, São Paulo , Brazil ; Disciplines of Genetics and Molecular Biology, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| |
Collapse
|
13
|
Macedo C, Oliveira EH, Almeida RS, Donate PB, Fornari TA, Pezzi N, Sakamoto-Hojo ET, Donadi EA, Passos GA. Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction. Immunobiology 2015; 220:93-102. [PMID: 25220732 DOI: 10.1016/j.imbio.2014.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/18/2023]
Abstract
The downregulation of PTA genes in mTECs is associated with the loss of self-tolerance, and the role of miRNAs in this process is not fully understood. Therefore, we studied the expression of mRNAs and miRNAs in mTECs from autoimmune NOD mice during the period when loss of self-tolerance occurs in parallel with non-autoimmune BALB/c mice. Although the expression of the transcriptional regulator Aire was unchanged, we observed downregulation of a set of PTA mRNAs. A set of miRNAs was also differentially expressed in these mice. The reconstruction of miRNA-mRNA interaction networks identified the controller miRNAs and predicted the PTA mRNA targets. Interestingly, the known Aire-dependent PTAs exhibited pronounced refractoriness in the networking interaction with miRNAs. This study reveals the existence of a new mechanism in mTECs, and this mechanism may have importance in the control of self-tolerance.
Collapse
Affiliation(s)
- Claudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Renata S Almeida
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Paula B Donate
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thaís A Fornari
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Nicole Pezzi
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Biology, Faculty of Philosophy, Sciences and Letters, USP, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Disciplines of Genetics and Molecular Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Berrih-Aknin S. Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun 2014; 52:1-28. [PMID: 24934596 DOI: 10.1016/j.jaut.2014.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Myasthenia Gravis (MG) is a paradigm of organ-specific autoimmune disease (AID). It is mediated by antibodies that target the neuromuscular junction. The purpose of this review is to place MG in the general context of autoimmunity, to summarize the common mechanisms between MG and other AIDs, and to describe the specific mechanisms of MG. We have chosen the most common organ-specific AIDs to compare with MG: type 1 diabetes mellitus (T1DM), autoimmune thyroid diseases (AITD), multiple sclerosis (MS), some systemic AIDs (systemic lupus erythematous (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS)), as well as inflammatory diseases of the gut and liver (celiac disease (CeD), Crohn's disease (CD), and primary biliary cirrhosis (PBC)). Several features are similar between all AIDs, suggesting that common pathogenic mechanisms lead to their development. In this review, we address the predisposing factors (genetic, epigenetic, hormones, vitamin D, microbiota), the triggering components (infections, drugs) and their interactions with the immune system [1,2]. The dysregulation of the immune system is detailed and includes the role of B cells, Treg cells, Th17 and cytokines. We particularly focused on the role of TNF-α and interferon type I whose role in MG is very analogous to that in several other AIDS. The implication of AIRE, a key factor in central tolerance is also discussed. Finally, if MG is a prototype of AIDS, it has a clear specificity compared to the other AIDS, by the fact that the target organ, the muscle, is not the site of immune infiltration and B cell expansion, but exclusively that of antibody-mediated pathogenic mechanisms. By contrast, the thymus in the early onset subtype frequently undergoes tissue remodeling, resulting in the development of ectopic germinal centers surrounded by high endothelial venules (HEV), as observed in the target organs of many other AIDs.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Myology Research Center UM76, F-75013 Paris, France; INSERM U974, F-75013 Paris, France; CNRS FRE 3617, F-75013 Paris, France; Institute of Myology, F-75013 Paris, France.
| |
Collapse
|
15
|
He Q, Morillon YM, Spidale NA, Kroger CJ, Liu B, Sartor RB, Wang B, Tisch R. Thymic development of autoreactive T cells in NOD mice is regulated in an age-dependent manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5858-66. [PMID: 24198282 PMCID: PMC3858497 DOI: 10.4049/jimmunol.1302273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inefficient thymic negative selection of self-specific T cells is associated with several autoimmune diseases, including type 1 diabetes. The factors that influence the efficacy of thymic negative selection, as well as the kinetics of thymic output of autoreactive T cells remain ill-defined. We investigated thymic production of β cell-specific T cells using a thymus-transplantation model. Thymi from different aged NOD mice, representing distinct stages of type 1 diabetes, were implanted into NOD.scid recipients, and the diabetogenicity of the resulting T cell pool was examined. Strikingly, the development of diabetes-inducing β cell-specific CD4(+) and CD8(+) T cells was regulated in an age-dependent manner. NOD.scid recipients of newborn NOD thymi developed diabetes. However, recipients of thymi from 7- and 10-d-old NOD donor mice remained diabetes-free and exhibited a progressive decline in islet infiltration and β cell-specific CD4(+) and CD8(+) T cells. A similar temporal decrease in autoimmune infiltration was detected in some, but not all, tissues of recipient mice implanted with thymi from NOD mice lacking expression of the autoimmune regulator transcription factor, which develop multiorgan T cell-mediated autoimmunity. In contrast, recipients of 10 d or older thymi lacked diabetogenic T cells but developed severe colitis marked by increased effector T cells reactive to intestinal microbiota. These results demonstrate that thymic development of autoreactive T cells is limited to a narrow time window and occurs in a reciprocal manner compared with colonic microbiota-responsive T cells in NOD mice.
Collapse
MESH Headings
- Adoptive Transfer
- Aging/immunology
- Animals
- Animals, Newborn
- Animals, Suckling
- Autoantigens/immunology
- Autoimmune Diseases/etiology
- Autoimmune Diseases/immunology
- Autoimmunity/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Clonal Selection, Antigen-Mediated
- Colitis/etiology
- Colitis/immunology
- Colon/immunology
- Colon/microbiology
- Colon/pathology
- Cytotoxicity, Immunologic
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Lymphoid Tissue/pathology
- Mice
- Mice, Inbred NOD/immunology
- Mice, Knockout
- Mice, SCID
- Organ Specificity
- Pancreas/immunology
- Pancreas/pathology
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/pathology
- Salivary Glands/immunology
- Salivary Glands/pathology
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Thymus Gland/pathology
- Thymus Gland/transplantation
- Transcription Factors/deficiency
- Transcription Factors/physiology
- AIRE Protein
Collapse
Affiliation(s)
- Qiuming He
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Y. Maurice Morillon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Nicholas A. Spidale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Charles J. Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Bo Liu
- Department of Medicine (Gastroenterology and Hepatology), University of North Carolina at Chapel Hill, North Carolina, USA
| | - R. Balfour Sartor
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Medicine (Gastroenterology and Hepatology), University of North Carolina at Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Oliveira EH, Macedo C, Donate PB, Almeida RS, Pezzi N, Nguyen C, Rossi MA, Sakamoto-Hojo ET, Donadi EA, Passos GA. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire). Immunobiology 2013; 218:96-104. [PMID: 22564670 DOI: 10.1016/j.imbio.2012.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 12/25/2022]
Abstract
In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14040-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Development of type 1 diabetes mellitus in nonobese diabetic mice follows changes in thymocyte and peripheral T lymphocyte transcriptional activity. Clin Dev Immunol 2011; 2011:158735. [PMID: 21765850 PMCID: PMC3135058 DOI: 10.1155/2011/158735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 12/15/2022]
Abstract
As early as one month of age, nonobese diabetic (NOD) mice feature pancreatic infiltration of autoreactive T lymphocytes, which destruct insulin-producing beta cells, producing autoimmune diabetes mellitus (T1D) within eight months. Thus, we hypothesized that during the development of T1D, the transcriptional modulation of immune reactivity genes may occur as thymocytes mature into peripheral T lymphocytes. The transcriptome of thymocytes and peripheral CD3+ T lymphocytes from prediabetic or diabetic mice analyzed through microarray hybridizations identified 2,771 differentially expressed genes. Hierarchical clustering grouped mice according to age/T1D onset and genes according to their transcription profiling. The transcriptional activity of thymocytes developing into peripheral T lymphocytes revealed sequential participation of genes involved with CD4+/CD8+ T-cell differentiation (Themis), tolerance induction by Tregs (Foxp3), and apoptosis (Fasl) soon after T-cell activation (IL4), while the emergence of T1D coincided with the expression of cytotoxicity (Crtam) and inflammatory response genes (Tlr) by peripheral T lymphocytes.
Collapse
|
18
|
Donate PB, Fornari TA, Junta CM, Magalhães DA, Macedo C, Cunha TM, Nguyen C, Cunha FQ, Passos GA. Collagen induced arthritis (CIA) in mice features regulatory transcriptional network connecting major histocompatibility complex (MHC H2) with autoantigen genes in the thymus. Immunobiology 2011; 216:591-603. [PMID: 21168240 DOI: 10.1016/j.imbio.2010.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/25/2022]
Abstract
Considering that imbalance of central tolerance in the thymus contributes to aggressive autoimmunity, we compared the expression of peripheral tissue autoantigens (PTA) genes, which are involved in self-representation in the thymic stroma, of two mouse strains; DBA-1/J (MHC-H2(q)) susceptible and DBA-2/J (MHC-H2(d)) resistant to collagen induced arthritis (CIA). We evaluate whether these strains differ in their thymic gene expression, allowing identification of genes that might play a role in susceptibility/resistance to CIA. Microarray profiling showed that 1093 PTA genes were differentially modulated between collagen immunized DBA-1/J and DBA-2/J mice. These genes were assigned to 17 different tissues/organs, including joints/bone, characterizing the promiscuous gene expression (PGE), which is implicated in self-representation. Hierarchical clustering of microarray data and quantitative RT-PCR analysis showed that Aire (autoimmune regulator), an important regulator of the PGE process, Aire-dependent (insulin), Aire-independent (Col2A1 and Gad67), and other 22 joint/bone autoantigen genes were down-regulated in DBA-1/J compared with DBA-2/J in the thymus. Considering the importance of MHC-H2 in peptide-self presentation and autoimmunity susceptibility, we reconstructed transcriptional networks of both strains based on actual microarray data. The networks clearly demonstrated different MHC-H2 transcriptional interactions with PTAs genes. DBA-1/J strain featured MHC-H2 as a node influencing downstream genes. Differently, in DBA-2/J strain network MHC-H2 was exclusively self-regulated and does not control other genes. These findings provide evidence that CIA susceptibility in mice may be a reflex of a cascade-like transcriptional control connecting different genes to MHC-H2 in the thymus.
Collapse
Affiliation(s)
- Paula B Donate
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, 14040-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|