1
|
Krasnodębski M, Morawski M, Borkowski J, Grąt K, Stypułkowski J, Skalski M, Zhylko A, Krawczyk M, Grąt M. Skin Autofluorescence Measurement as Initial Assessment of Hepatic Parenchyma Quality in Patients Undergoing Liver Resection. J Clin Med 2022; 11:jcm11185341. [PMID: 36142988 PMCID: PMC9503381 DOI: 10.3390/jcm11185341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Skin autofluorescence (SAF) can detect advanced glycation end products (AGEs) that accumulate in tissues over time. AGEs reflect patients’ general health, and their pathological accumulation has been associated with various diseases. This study aimed to determine whether its measurements can correlate with the liver parenchyma quality. This prospective study included 186 patients who underwent liver resections. Liver fibrosis and/or steatosis > 10% were found in almost 30% of the patients. ROC analysis for SAF revealed the optimal cutoff point of 2.4 AU as an independent predictor for macrovesicular steatosis ≥ 10% with an AUC of 0.629 (95% CI 0.538−0.721, p = 0.006), 59.9% sensitivity, 62.4% specificity, and positive (PPV) and negative (NPV) predictive values of 45.7% and 74.1%, respectively. The optimal cutoff point for liver fibrosis was 2.3 AU with an AUC of 0.613 (95% CI 0.519−0.708, p = 0.018), 67.3% sensitivity, 55.2% specificity, and PPV and NPV of 37.1% and 81.2%, respectively. In the multivariable logistic regression model, SAF ≥ 2.4 AU (OR 2.16; 95% CI 1.05−4.43; p = 0.036) and BMI (OR 1.21; 95% CI 1.10−1.33, p < 0.001) were independent predictors of macrovesicular steatosis ≥ 10%. SAF may enhance the available non-invasive methods of detecting hepatic steatosis and fibrosis in patients prior to liver resection.
Collapse
Affiliation(s)
- Maciej Krasnodębski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-599-25-45
| | - Marcin Morawski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jan Borkowski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karolina Grąt
- Second Department of Clinical Radiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jan Stypułkowski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Skalski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Andriy Zhylko
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Marek Krawczyk
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Michał Grąt
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Singh S, Siva BV, Ravichandiran V. Advanced Glycation End Products: key player of the pathogenesis of atherosclerosis. Glycoconj J 2022; 39:547-563. [PMID: 35579827 DOI: 10.1007/s10719-022-10063-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is the most common type of cardiovascular disease, and it causes intima thickening, plaque development, and ultimate blockage of the artery lumen. Advanced glycation end products (AGEs) are thought to have a role in the development and progression of atherosclerosis. there is developing an enthusiasm for AGEs as a potential remedial target. AGES mainly induce arterial damage and exacerbate the development of atherosclerotic plaques by triggering cell receptor-dependent signalling. The interplay of AGEs with RAGE, a transmembrane signalling receptor present across all cells important to atherosclerosis, changes cell activity, boosts expression of genes, and increases the outflow of inflammatory compounds, resulting in arterial wall injury and plaque formation. Here in this review, function of AGEs in the genesis, progression, and instability of atherosclerosis is discussed. In endothelial and smooth muscle cells, as well as platelets, the interaction of AGEs with their transmembrane cell receptor, RAGE, triggers intracellular signalling, resulting in endothelial damage, vascular smooth muscle cell function modification, and changed platelet activity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India.
| | - Boddu Veerabadra Siva
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| |
Collapse
|
3
|
Rehman S, Song J, Faisal M, Alatar AA, Akhter F, Ahmad S, Hu B. The Neoepitopes on Methylglyoxal- (MG-) Glycated Fibrinogen Generate Autoimmune Response: Its Role in Diabetes, Atherosclerosis, and Diabetic Atherosclerosis Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621568. [PMID: 34970417 PMCID: PMC8714332 DOI: 10.1155/2021/6621568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES In diabetes mellitus, hyperglycemia-mediated nonenzymatic glycosylation of fibrinogen protein plays a crucial role in the pathogenesis of micro- and macrovascular complications especially atherosclerosis via the generation of advanced glycation end products (AGEs). Methylglyoxal (MG) induces glycation of fibrinogen, resulting in structural alterations that lead to autoimmune response via the generation of neoepitopes on protein molecules. The present study was designed to probe the prevalence of autoantibodies against MG-glycated fibrinogen (MG-Fib) in type 2 diabetes mellitus (T2DM), atherosclerosis (ATH), and diabetic atherosclerosis (T2DM-ATH) patients. Design and Methods. The binding affinity of autoantibodies in patients' sera (T2DM, n = 100; ATH, n = 100; and T2DM-ATH, n = 100) and isolated immunoglobulin G (IgG) against native fibrinogen (N-Fib) and MG-Fib to healthy subjects (HS, n = 50) was accessed by direct binding ELISA. The results of direct binding were further validated by competitive/inhibition ELISA. Moreover, AGE detection, ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), thiobarbituric acid reactive substances (TBARS), and carboxymethyllysine (CML) concentrations in patients' sera were also determined. Furthermore, free lysine and free arginine residues were also estimated. RESULTS The high binding affinity was observed in 54% of T2DM, 33% of ATH, and 65% of T2DM-ATH patients' samples with respect to healthy subjects against MG-Fib antigen in comparison to N-Fib (p < 0.05 to p < 0.0001). HS sera showed nonsignificant binding (p > 0.05) with N-Fib and MG-Fib. Other biochemical parameters were also found to be significant (p < 0.05) in the patient groups with respect to the HS group. CONCLUSIONS These findings in the future might pave a way to authenticate fibrinogen as a biomarker for the early detection of diabetes-associated micro- and macrovascular complications.
Collapse
Affiliation(s)
- Shahnawaz Rehman
- Department of Biochemistry, Sir Syed Faculty of Science, Mohammad Ali Jauhar University, Rampur, U.P., India
| | - Jiantao Song
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, New York, USA
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
4
|
A global map of associations between types of protein posttranslational modifications and human genetic diseases. iScience 2021; 24:102917. [PMID: 34430807 PMCID: PMC8365368 DOI: 10.1016/j.isci.2021.102917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/27/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
There are >200 types of protein posttranslational modifications (PTMs) described in eukaryotes, each with unique proteome coverage and functions. We hypothesized that some genetic diseases may be caused by the removal of a specific type of PTMs by genomic variants and the consequent deregulation of particular functions. We collected >320,000 human PTMs representing 59 types and crossed them with >4M nonsynonymous DNA variants annotated with predicted pathogenicity and disease associations. We report >1.74M PTM-variant co-occurrences that an enrichment analysis distributed into 215 pairwise associations between 18 PTM types and 148 genetic diseases. Of them, 42% were not previously described. Removal of lysine acetylation exerts the most pronounced effect, and less studied PTM types such as S-glutathionylation or S-nitrosylation show relevance. Using pathogenicity predictions, we identified PTM sites that may produce particular diseases if prevented. Our results provide evidence of a substantial impact of PTM-specific removal on the pathogenesis of genetic diseases and phenotypes. There is an enrichment of disease-associated nsSNVs preventing certain types of PTMs We report 215 pairwise associations between 18 PTM types and 148 genetic diseases The removal of lysine acetylation exerts the most pronounced effect We report a set of PTM sites that may produce particular diseases if prevented
Collapse
|
5
|
Wan L, Xu K, Chen Z, Tang B, Jiang H. Roles of Post-translational Modifications in Spinocerebellar Ataxias. Front Cell Neurosci 2018; 12:290. [PMID: 30283301 PMCID: PMC6156280 DOI: 10.3389/fncel.2018.00290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, SUMOylation, etc., of proteins can modulate protein properties such as intracellular distribution, activity, stability, aggregation, and interactions. Therefore, PTMs are vital regulatory mechanisms for multiple cellular processes. Spinocerebellar ataxias (SCAs) are hereditary, heterogeneous, neurodegenerative diseases for which the primary manifestation involves ataxia. Because the pathogenesis of most SCAs is correlated with mutant proteins directly or indirectly, the PTMs of disease-related proteins might functionally affect SCA development and represent potential therapeutic interventions. Here, we review multiple PTMs related to disease-causing proteins in SCAs pathogenesis and their effects. Furthermore, we discuss these PTMs as potential targets for treating SCAs and describe translational therapies targeting PTMs that have been published.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Department of Neurology, Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
6
|
The status of glycation in protein aggregation. Int J Biol Macromol 2017; 100:67-74. [PMID: 26751401 DOI: 10.1016/j.ijbiomac.2015.12.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
|
7
|
Soaita I, Yin W, Rubenstein DA. Glycated albumin modifies platelet adhesion and aggregation responses. Platelets 2017; 28:682-690. [PMID: 28067098 DOI: 10.1080/09537104.2016.1260703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A diabetic vasculature is detrimental to cardiovascular health through the actions of advanced glycation end products (AGEs) on endothelial cells and platelets. Platelets activated by AGEs agonize endothelial responses promoting cardiovascular disease (CVD) development. While it has been established that AGEs can alter platelet functions, little is known about the specific platelet pathways that AGEs modify. Therefore, we evaluated the effects of AGEs on specific salient platelet pathways related to CVDs and whether the effects that AGEs elicit are dependent on glycation extent. To accomplish our objective, platelets were incubated with reversibly or irreversibly glycated albumin. A time course for adhesion and aggregation agonist receptor expression was assessed. Optical platelet aggregometry was used to confirm the functional activity of platelets after AGE exposure. In general, platelets subjected to glycated albumin had a significantly enhanced adhesion and aggregation potential. Furthermore, we observed an enhancement in dense body secretion and intracellular calcium concentration. This was especially prevalent for platelets exposed to irreversibly glycated albumin. Additionally, functional aggregation correlated well with receptor expression, suggesting that AGE-induced altered receptor sensitivity translated to altered platelet functions. Our findings indicate that under diabetic vascular conditions platelets become more susceptible to activation and aggregation due to an overall enhanced receptor expression, which may act to promote CVD development.
Collapse
Affiliation(s)
- Ioana Soaita
- a Department of Biomedical Engineering , Stony Brook University , Stony Brook , NY , USA
| | - Wei Yin
- a Department of Biomedical Engineering , Stony Brook University , Stony Brook , NY , USA
| | - David A Rubenstein
- a Department of Biomedical Engineering , Stony Brook University , Stony Brook , NY , USA
| |
Collapse
|
8
|
Venkataiah V, Vickram, Thirumalarao KR, Raiker VG, Puttaswamy SH. Effects of Diaceto-Dipropyl-Disulphide on Plasma Sialic Acid and Renal Tissue Thiol Levels in Alloxan Diabetic Rats. J Clin Diagn Res 2016; 10:BF06-8. [PMID: 27504279 DOI: 10.7860/jcdr/2016/19241.8058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/23/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Plasma sialic acid levels are elevated in Diabetes Mellitus (DM) patients with proteinuria. Renal damage is mainly caused by free radicals that are excessively generated in DM. Thiols play an important role in the cellular antioxidative defence mechanisms mainly through thiol-disulphide exchange reaction. Diallyl disulphide, a garlic oil principle component, is known for its anti-diabetic properties. Its structural analogue, Diaceto-Dipropyl Disulphide (DADPDS), is a less toxic and more palatable disulphide and possesses similar anti-diabetic actions. AIM This study was undertaken to assess the usefulness of DADPDS in prevention of de-sialation of Glomerular Basement Membrane (GBM) in alloxan diabetic rats and to assess effect of DADPDS on renal tissue thiol levels. MATERIALS AND METHODS Rats were divided into Normal, Diabetic and DADPDS treated diabetic groups. Diabetes was induced by intraperitoneal injection (IP) of alloxan. DADPDS was fed by gastric intubation. Plasma Sialic acid was determined by Ehrlich's method and renal tissue thiol levels by Nitroprusside reaction method. RESULTS This study showed a significant decrease (p<0.001) in plasma sialic acid, plasma glucose and renal tissue TBARS levels along with significant increase (p<0.001) in renal tissue thiol levels in DADPDS treated alloxan diabetic rats when compared to diabetic control rats. CONCLUSION Hence it may be concluded that DADPDS helps in preventing de-sialation of GBM in alloxan diabetic rats and improves renal tissue antioxidant defence mechanisms, may be through thiol-disulphide exchange reaction and thereby exhibits a possible clinical use in prevention of renal complications like diabetic nephropathy.
Collapse
Affiliation(s)
- Vijay Venkataiah
- Associate Professor, Department of Biochemistry, Vijayanagara Institute of Medical Sciences , Ballari, Karnataka, India
| | - Vickram
- Assistant Professor, Department of Biochemistry, DMWIMS , Waynad, Kerala, India
| | | | - Veena Gajana Raiker
- Tutor, Department of Biochemistry, Basaveshwara Medical College and Hospital , Chitradurga, Karnataka, India
| | | |
Collapse
|
9
|
Awasthi S, Murugan NA, Saraswathi NT. Advanced Glycation End Products Modulate Structure and Drug Binding Properties of Albumin. Mol Pharm 2015; 12:3312-22. [DOI: 10.1021/acs.molpharmaceut.5b00318] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Saurabh Awasthi
- Molecular
Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613401, Tamilnadu, India
| | - N. Arul Murugan
- Division
of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - N. T. Saraswathi
- Molecular
Biophysics Lab, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613401, Tamilnadu, India
| |
Collapse
|
10
|
Cadau S, Leoty-Okombi S, Pain S, Bechetoille N, André-Frei V, Berthod F. In vitro glycation of an endothelialized and innervated tissue-engineered skin to screen anti-AGE molecules. Biomaterials 2015; 51:216-225. [PMID: 25771012 DOI: 10.1016/j.biomaterials.2015.01.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/12/2015] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
Glycation is one of the major processes responsible for skin aging through induction of the detrimental formation of advanced glycation end-products (AGEs). We developed an innovative tissue-engineered skin combining both a capillary-like and a nerve networks and designed a protocol to induce continuous AGEs formation by a treatment with glyoxal. We determined the optimal concentration of glyoxal to induce AGEs formation identified by carboxymethyl-lysin expression while keeping their toxic effects low. We showed that our tissue-engineered skin cultured for 44 days and treated with 200 μm glyoxal for 31 days displayed high carboxymethyl-lysine expression, which induced a progressively increased alteration of its capillary and nerve networks between 28 and 44 days. Moreover, it produced an epidermal differentiation defect evidenced by the lack of loricrin and filaggrin expression in the epidermis. These effects were almost completely prevented by addition of aminoguanidine 1.5 mm, an anti-glycation compound, and only slightly decreased by alagebrium 500 μm, an AGE-breaker molecule. This tissue-engineered skin model is the first one to combine a capillary and nerve network and to enable a continuous glycation over a long-term culture period. It is a unique tool to investigate the effects of glycation on skin and to screen new molecules that could prevent AGEs formation.
Collapse
Affiliation(s)
- Sébastien Cadau
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC G1J 1Z4, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | | | - Sabine Pain
- BASF Beauty Care Solutions, 32 Rue Saint Jean de Dieu, Lyon 69007, France
| | | | - Valérie André-Frei
- BASF Beauty Care Solutions, 32 Rue Saint Jean de Dieu, Lyon 69007, France
| | - François Berthod
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec, 1401, 18e Rue, Québec, QC G1J 1Z4, Canada; Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
11
|
Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
|
12
|
Chilelli NC, Burlina S, Lapolla A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view. Nutr Metab Cardiovasc Dis 2013; 23:913-919. [PMID: 23786818 DOI: 10.1016/j.numecd.2013.04.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/18/2013] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
AIMS Advanced glycation end products (AGE) excess is one of the most important mechanisms involved in the pathophysiology of chronic diabetic complications. This review first summarizes the role of these compounds in microvascular pathogenesis, particularly in the light of recently proposed biochemical mechanisms for diabetic retinopathy, nephropathy and neuropathy. Then we focus on the relationship between AGE and metabolic memory, trying to clarify the former's role in the missing link between micro- and macrovascular complications. DATA SYNTHESIS An excessive AGE formation has been demonstrated in the newly disclosed biochemical pathways involved in the microvascular pathobiology of type 2 diabetes, confirming the central role of AGE in the progression of diabetic neuropathy, retinopathy and nephropathy. As shown by recent studies, AGE seem to be not "actors", but "directors" of processes conducting to these complications, for at least two main reasons: first, AGE have several intra- and extracellular targets, so they can be seen as a "bridge" between intracellular and extracellular damage; secondly, whatever the level of hyperglycemia, AGE-related intracellular glycation of the mitochondrial respiratory chain proteins has been found to produce more reactive oxygen species, triggering a vicious cycle that amplifies AGE formation. This may help to explain the clinical link between micro- and macrovascular disease in diabetes, contributing to clarify the mechanisms behind metabolic memory. CONCLUSIONS The pathophysiological cascades triggered by AGE have a dominant, hyperglycemia-independent role in the onset of the microvascular complications of diabetes. An effective approach to prevention and treatment must therefore focus not only on early glycemic control, but also on reducing factors related to oxidative stress, and the dietary intake of exogenous AGE in particular.
Collapse
Affiliation(s)
- N C Chilelli
- Department of Medicine, Division of Metabolic Diseases, University of Padova, Via Giustiniani n 2, 35128 Padova, Italy
| | | | | |
Collapse
|
13
|
Stewart BJ, Navid A, Kulp KS, Knaack JLS, Bench G. D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae. Yeast 2013; 30:81-91. [PMID: 23361949 DOI: 10.1002/yea.2942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/08/2013] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal, a reactive, toxic dicarbonyl, is generated by the spontaneous degradation of glycolytic intermediates. Methylglyoxal can form covalent adducts with cellular macromolecules, potentially disrupting cellular function. We performed experiments using the model organism Saccharomyces cerevisiae, grown in media containing low, moderate and high glucose concentrations, to determine the relationship between glucose consumption and methylglyoxal metabolism. Normal growth experiments and glutathione depletion experiments showed that metabolism of methylglyoxal by log-phase yeast cultured aerobically occurred primarily through the glyoxalase pathway. Growth in high-glucose media resulted in increased generation of the methylglyoxal metabolite D-lactate and overall lower efficiency of glucose utilization as measured by growth rates. Cells grown in high-glucose media maintained higher glucose uptake flux than cells grown in moderate-glucose or low-glucose media. Computational modelling showed that increased glucose consumption may impair catabolism of triose phosphates as a result of an altered NAD⁺:NADH ratio.
Collapse
Affiliation(s)
- Benjamin J Stewart
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | | | | | | | | |
Collapse
|
14
|
Kim MJ, Kim DW, Lee BR, Shin MJ, Kim YN, Eom SA, Park BJ, Cho YS, Han KH, Park J, Hwang HS, Eum WS, Choi SY. Transduced Tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model. Biochem Biophys Res Commun 2013; 430:294-300. [DOI: 10.1016/j.bbrc.2012.10.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 10/31/2012] [Indexed: 01/10/2023]
|
15
|
Melo T, Silva EMP, Simões C, Domingues P, Domingues MRM. Photooxidation of glycated and non-glycated phosphatidylethanolamines monitored by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:68-78. [PMID: 23303749 DOI: 10.1002/jms.3129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 06/01/2023]
Abstract
Phosphatidylethanolamines (PE) are one of the major components of cells membranes, namely in skin and in retina, that are continuously exposed to solar UV radiation being major targets of photooxidation damage. In addition, due to the presence of the free amine group, PE can also undergo glycation, in hyperglycemic conditions which may increase the susceptibility to oxidation. The aim of this study is to develop a model, based on mass spectrometry (MS) analysis, to identify photooxidative degradation of selected PE (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4) and glycated PEs due to UV irradiation. Photooxidation products were analysed by electrospray ionization MS (ESI-MS) and tandem MS (ESI-MS/MS) in positive and negative mode. Emphasis is placed in the influence of glycation in the generation of distinct photooxidation products. ESI-MS spectra of PE after UV photo-irradiation showed mainly hydroperoxy derivatives, due to oxidation of unsaturated fatty acyl chains. Glycated PE gave rise to several new photooxidation products formed due to oxidative cleavages of the glucose moiety, namely between C1 and C2, C2 and C3, and C5 and C6 of this sugar unit. These new products were identified by ESI-MS/MS in positive mode showing distinct neutral loss depending on the different structure of the polar head group. These new identified advanced glycated photooxidation products may have a deleterious role in the etiology of diabetic retinopathy and in diabetic retinal microvascular complications.
Collapse
Affiliation(s)
- Tânia Melo
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | | | | | | |
Collapse
|
16
|
Burd J, Lum S, Cahn F, Ignotz K. Simultaneous noninvasive clinical measurement of lens autofluorescence and rayleigh scattering using a fluorescence biomicroscope. J Diabetes Sci Technol 2012; 6:1251-9. [PMID: 23294769 PMCID: PMC3570864 DOI: 10.1177/193229681200600603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lens autofluorescence increases with the age of the subject, and the fluorophores responsible are associated with cataract, retinopathy, and other complications of diabetes. We built a scanning confocal lens fluorescence biomicroscope suitable for routine clinical measurement of lens autofluorescence and light scattering and report data from 127 healthy subjects. METHOD The fluorescence biomicroscope focuses a beam of light from a blue light-emitting diode on the lens and measures fluorescent green light and blue scattered light using a sensitive silicon photomultiplier. The system includes a target fixation light and a video camera for alignment and automatic pupil tracking. Under software control, a volume of measurement is scanned from behind the posterior lens capsule, through the lens to the aqueous humor, and then back again. Software computes the average ratio of lens autofluorescence to scattered light in the central portion of the lens. Self-reported healthy nondiabetic subjects were examined by an optometrist; if their eyes were healthy and without significant cataract, they were entered into the study. RESULTS Valid lens autofluorescence data were collected from 127 subjects between 21 and 70 years of age. A linear model for lens autofluorescence intensity with age was highly statistically significant, and the improvement in fit for higher-order polynomial models was not statistically significant. The ratio of lens autofluorescence to light scatter was also calculated; regression analysis showed significant curvature for the relationship of the fluorescence ratio to age, so a nonlinear model was used to estimate the mean ratio of autofluorescence to scatter and its prediction intervals as a function of age. CONCLUSIONS Our observation of a strongly significant linear regression of fluorescence intensity with age of the subjects agrees with the results from previous studies, as does a nonlinear model for the fluorescence ratio. The fluorescence biomicroscope enables the clinician to identify patients with fluorescence ratio significantly higher than expected for their age.
Collapse
Affiliation(s)
- John Burd
- Freedom Meditech, San Diego, California
| | | | | | | |
Collapse
|
17
|
Jack M, Wright D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res 2012; 159:355-65. [PMID: 22500508 PMCID: PMC3329218 DOI: 10.1016/j.trsl.2011.12.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022]
Abstract
Diabetic neuropathy is the most common and debilitating complication of diabetes mellitus with more than half of all patients developing altered sensation as a result of damage to peripheral sensory neurons. Hyperglycemia results in altered nerve conduction velocities, loss of epidermal innervation, and development of painful or painless signs and symptoms in the feet and hands. Current research has been unable to determine whether a patient will develop insensate or painful neuropathy or be protected from peripheral nerve damage all together. One mechanism that has been recognized to have a role in the pathogenesis of sensory neuron damage is the process of reactive dicarbonyls forming advanced glycation endproducts (AGEs) as a direct result of hyperglycemia. The glyoxalase system, composed of the enzymes glyoxalase I (GLO1) and glyoxalase II, is the main detoxification pathway involved in breaking down toxic reactive dicarbonyls before producing carbonyl stress and forming AGEs on proteins, lipids, or nucleic acids. This review discusses AGEs, GLO1, their role in diabetic neuropathy, and potential therapeutic targets of the AGE pathway.
Collapse
Affiliation(s)
- Megan Jack
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, School of Medicine, Kansas City, KS 66160, USA
| | | |
Collapse
|
18
|
Farris PK. Innovative cosmeceuticals: sirtuin activators and anti-glycation compounds. ACTA ACUST UNITED AC 2012; 30:163-6. [PMID: 21925370 DOI: 10.1016/j.sder.2011.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 10/17/2022]
Abstract
Skin aging is a combination of natural aging with superimposed photoaging. Naturally aged skin is thin, fragile and finely wrinkled whereas photoaged skin is rough and thickened with deep coarse wrinkles. In addition photoaging is characterized by mottled pigmentation, solar lentigines, telangectasias and a loss of elasticity. The science behind skin aging has exploded in the past decade. Skin aging has now been defined on both a cellular and molecular level. The study of genomics in aging skin provides us with potential targets as points for intervention. In this regard, the science behind skin aging becomes a platform for the development of new anti-aging strategies and products. In this paper two new and emerging approaches to treat aging skin will be discussed. Sirtuin activating and anti-glycation products are already being marketed by cosmetic and pharmaceutical companies. These anti-aging approaches are backed by basic science research and the ingredients used are supported by proof of concept studies although clinical trials are often lacking. It is this bench to beauty counter approach to cosmeceuticals that remains an industry standard today.
Collapse
|
19
|
de Laat MA, Kyaw-Tanner MT, Sillence MN, McGowan CM, Pollitt CC. Advanced glycation endproducts in horses with insulin-induced laminitis. Vet Immunol Immunopathol 2011; 145:395-401. [PMID: 22240145 DOI: 10.1016/j.vetimm.2011.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 01/07/2023]
Abstract
Advanced glycation endproducts (AGEs) have been implicated in the pathogenesis of cancer, inflammatory conditions and diabetic complications. An interaction of AGEs with their receptor (RAGE) results in increased release of pro-inflammatory cytokines and reactive oxygen species (ROS), causing damage to susceptible tissues. Laminitis, a debilitating foot condition of horses, occurs in association with endocrine dysfunction and the potential involvement of AGE and RAGE in the pathogenesis of the disease has not been previously investigated. Glucose transport in lamellar tissue is thought to be largely insulin-independent (GLUT-1), which may make the lamellae susceptible to protein glycosylation and oxidative stress during periods of increased glucose metabolism. Archived lamellar tissue from horses with insulin-induced laminitis (n=4), normal control horses (n=4) and horses in the developmental stages (6h, 12h and 24h) of the disease (n=12) was assessed for AGE accumulation and the presence of oxidative protein damage and cellular lipid peroxidation. The equine-specific RAGE gene was identified in lamellar tissue, sequenced and is now available on GenBank. Lamellar glucose transporter (GLUT-1 and GLUT-4) gene expression was assessed quantitatively with qRT-PCR in laminitic and control horses and horses in the mid-developmental time-point (24 h) of the disease. Significant AGE accumulation had occurred by the onset of insulin-induced laminitis (48 h) but not at earlier time-points, or in control horses. Evidence of oxidative stress was not found in any group. The equine-specific RAGE gene was not expressed differently in treated and control animals, nor was the insulin-dependent glucose transporter GLUT-4. However, the glucose transporter GLUT-1 was increased in lamellar tissue in the developmental stages of insulin-induced laminitis compared to control horses and the insulin-independent nature of the lamellae may facilitate AGE formation. However, due to the lack of AGE accumulation during disease development and a failure to detect an increase in ROS or upregulation of RAGE, it appears unlikely that oxidative stress and protein glycosylation play a central role in the pathogenesis of acute, insulin-induced laminitis.
Collapse
Affiliation(s)
- M A de Laat
- Australian Equine Laminitis Research Unit, School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland 4343, Australia.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Abstract Geroprotectors are drugs that decrease the rate of aging and therefore extend life span. Metformin has been described as a geroprotector, and several studies have shown that metformin can slow down the rate of aging. The mechanisms behind the geroprotective effect of metformin are less established. The goal of this review is to investigate the evidence for the geroprotective effect of metformin and to describe the possible mechanisms behind it.
Collapse
|
21
|
Nedic O, Filimonovic D, Mikovic Z, Masnikosa R. Influence of placental mannose/n-acetyl glucosamine-binding proteins on the interaction of insulin and insulin-like growth factors with their receptors. BIOCHEMISTRY. BIOKHIMIIA 2011; 76:1003-1008. [PMID: 22082268 DOI: 10.1134/s0006297911090033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Placenta is a source of carbohydrate-binding proteins that function as molecular scavengers, but they could also be involved in interactions that assist in metabolic control. Mannose/N-acetyl-glucosamine (Man/GlcNAc)-binding proteins from placenta were isolated and their reactivity towards placental insulin and insulin-like growth factor receptors (IR and IGF-Rs) was analyzed. The lectins reduced the binding of insulin and IGF-I in a dose-dependent manner, while almost no effect was observed on the binding of IGF-II. The shape of the inhibition curves changed, suggesting altered binding specificity. The presence of sugar could not reverse completely the effect of the lectins, implicating both lectin-sugar and protein-protein conformational recognition. Since biological molecules in our experimental system were those that are in close relation in vivo, placental Man/GlcNAc-specific lectins may be regarded as potential allosteric modulators of ligand-receptor interactions in a system of homologous ligands, selectively affecting only binding to tyrosine kinase type receptors (IR and IGF-1R).
Collapse
Affiliation(s)
- O Nedic
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia.
| | | | | | | |
Collapse
|
22
|
Jack MM, Ryals JM, Wright DE. Characterisation of glyoxalase I in a streptozocin-induced mouse model of diabetes with painful and insensate neuropathy. Diabetologia 2011; 54:2174-82. [PMID: 21633909 PMCID: PMC3762253 DOI: 10.1007/s00125-011-2196-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/27/2011] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Diabetic peripheral neuropathy (DN) is a common complication of diabetes; however, the mechanisms producing positive or negative symptoms are not well understood. The enzyme glyoxalase I (GLO1) detoxifies reactive dicarbonyls that form AGEs and may affect the way sensory neurons respond to heightened AGE levels in DN. We hypothesised that differential GLO1 levels in sensory neurons may lead to differences in AGE formation and modulate the phenotype of DN. METHODS Inbred strains of mice were used to assess the variability of Glo1 expression by quantitative RT-PCR. Non-diabetic C57BL/6 mice were used to characterise the distribution of GLO1 in neural tissues by immunofluorescence. Behavioural assessments were conducted in diabetic A/J and C57BL/6 mice to determine mechanical sensitivity, and GLO1 abundance was determined by western blot. RESULTS GLO1 immunoreactivity was found throughout the nervous system, but selectively in small, unmyelinated peptidergic dorsal root ganglia (DRG) neurons that are involved in pain transmission. GLO1 protein was present at various levels in DRG from different inbred mice strains. Diabetic A/J and C57BL/6 mice, two mouse strains with different levels of GLO1, displayed dramatically different behavioural responses to mechanical stimuli. Diabetic C57BL/6 mice also had a reduced abundance of GLO1 following diabetes induction. CONCLUSIONS/INTERPRETATION These findings reveal that the abundance of GLO1 varies between different murine strains and within different sensory neuron populations. These differences could lead to different responses of sensory neurons to the toxic effects of hyperglycaemia and reactive dicarbonyls associated with diabetes.
Collapse
Affiliation(s)
- M M Jack
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
23
|
Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. JOURNAL OF AMINO ACIDS 2011; 2011:207691. [PMID: 22312457 PMCID: PMC3268018 DOI: 10.4061/2011/207691] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 01/08/2023]
Abstract
Posttranslational modifications (PTMs) modulate protein function in most eukaryotes and have a ubiquitous role in diverse range of cellular functions. Identification, characterization, and mapping of these modifications to specific amino acid residues on proteins are critical towards understanding their functional significance in a biological context. The interpretation of proteome data obtained from the high-throughput methods cannot be deciphered unambiguously without a priori knowledge of protein modifications. An in-depth understanding of protein PTMs is important not only for gaining a perception of a wide array of cellular functions but also towards developing drug therapies for many life-threatening diseases like cancer and neurodegenerative disorders. Many of the protein modifications like ubiquitination play a decisive role in various drug response(s) and eventually in disease prognosis. Thus, many commonly observed PTMs are routinely tracked as disease markers while many others are used as molecular targets for developing target-specific therapies. In this paper, we summarize some of the major, well-studied protein alterations and highlight their importance in various chronic diseases and normal development. In addition, other promising minor modifications such as SUMOylation, observed to impact cellular dynamics as well as disease pathology, are mentioned briefly.
Collapse
Affiliation(s)
- Tejaswita M Karve
- Department of Biochemistry, Cellular & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington DC 20057, USA
| | | |
Collapse
|
24
|
Sado T, Naruse K, Noguchi T, Haruta S, Yoshida S, Tanase Y, Kitanaka T, Oi H, Kobayashi H. Inflammatory pattern recognition receptors and their ligands: factors contributing to the pathogenesis of preeclampsia. Inflamm Res 2011; 60:509-20. [PMID: 21380737 PMCID: PMC7095834 DOI: 10.1007/s00011-011-0319-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 02/02/2011] [Accepted: 02/17/2011] [Indexed: 01/01/2023] Open
Abstract
Problem Preeclampsia, a pregnancy-specific hypertensive syndrome, is one of the leading causes of premature births as well as fetal and maternal death. Preeclampsia lacks effective therapies because of the poor understanding of disease pathogenesis. The aim of this paper is to review molecular signaling pathways that could be responsible for the pathogenesis of preeclampsia. Method of study This article reviews the English-language literature for pathogenesis and pathophysiological mechanisms of preeclampsia based on genome-wide gene expression profiling and proteomic studies. Results We show that the expression of the genes and proteins involved in response to stress, host-pathogen interactions, immune system, inflammation, lipid metabolism, carbohydrate metabolism, growth and tissue remodeling was increased in preeclampsia. Several significant common pathways observed in preeclampsia overlap the datasets identified in TLR (Toll-like receptor)- and RAGE (receptor for advanced glycation end products)-dependent signaling pathways. Placental oxidative stress and subsequent chronic inflammation are considered to be major contributors to the development of preeclampsia. Conclusion This review summarizes recent advances in TLR- and RAGE-mediated signaling and the target molecules, and provides new insights into the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Toshiyuki Sado
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|