1
|
Krześniak M, Łasut-Szyszka B, Będzińska A, Gdowicz-Kłosok A, Rusin M. The Strong Activation of p53 Tumor Suppressor Drives the Synthesis of the Enigmatic Isoform of DUSP13 Protein. Biomedicines 2024; 12:1449. [PMID: 39062022 PMCID: PMC11274236 DOI: 10.3390/biomedicines12071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The p53 tumor suppressor protein activates various sets of genes depending on its covalent modifications, which are controlled by the nature and intensity of cellular stress. We observed that actinomycin D and nutlin-3a (A + N) collaborate in inducing activating phosphorylation of p53. Our recent transcriptomic data demonstrated that these substances strongly synergize in the upregulation of DUSP13, a gene with an unusual pattern of expression, coding for obscure phosphatase having two isoforms, one expressed in the testes and the other in skeletal muscles. In cancer cells exposed to A + N, DUSP13 is expressed from an alternative promoter in the intron, resulting in the expression of an isoform named TMDP-L1. Luciferase reporter tests demonstrated that this promoter is activated by both endogenous and ectopically expressed p53. We demonstrated for the first time that mRNA expressed from this promoter actually produces the protein, which can be detected with Western blotting, in all examined cancer cell lines with wild-type p53 exposed to A + N. In some cell lines, it is also induced by clinically relevant camptothecin, by nutlin-3a acting alone, or by a combination of actinomycin D and other antagonists of p53-MDM2 interaction-idasanutlin or RG7112. This isoform, fused with green fluorescent protein, localizes in the perinuclear region of cells.
Collapse
Affiliation(s)
| | | | | | | | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-101 Gliwice, Poland; (M.K.); (B.Ł.-S.); (A.B.); (A.G.-K.)
| |
Collapse
|
2
|
Xue J, Lv Q, Khas E, Bai C, Ma B, Li W, Cao Q, Fan Z, Ao C. Tissue-specific regulatory mechanism of LncRNAs and methylation in sheep adipose and muscle induced by Allium mongolicum Regel extracts. Sci Rep 2021; 11:9186. [PMID: 33911127 PMCID: PMC8080592 DOI: 10.1038/s41598-021-88444-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Allium mongolicum Regel (A. mongolicum) is a perennial and xerophytic Liliaceous allium plant in high altitude desert steppe and desert areas. Feeding A. mongolicum greatly reduced unpleasant mutton flavor and improves meat quality of sheep. We analyzed epigenetic regulatory mechanisms of water extracts of A. mongolicum (WEA) on sheep muscle and adipose using RNA-Seq and whole-genome Bisulfite sequencing. Feeding WEA reduced differentially expressed genes and long non-coding RNAs (lncRNAs) between two tissues but increased differentially methylation regions (DMRs). LncRNA and DMR targets were both involved in ATP binding, ubiquitin, protein kinase binding, regulation of cell proliferation, and related signaling pathways, but not unsaturated fatty acids metabolism. Besides, tissue specific targets were involved in distinct functional annotations, e.g., Golgi membrane and endoplasmic reticulum for muscle lncRNA, oxidative phosphorylation metabolism for adipose lncRNA, dsRNA binding for muscle DMRs. Epigenetic regulatory networks were also discovered to discovered essential co-regulated modules, e.g., co-regulated insulin secretion module (PDPK1, ATP1A2, CACNA1S and CAMK2D) in adipose. The results indicated that WEA induced distinct epigenetic regulation on muscle and adipose to diminish transcriptome differences between tissues, which highlights biological functions of A. mongolicum, tissue similarity and specificity, as well as regulatory mechanism of mutton odor.
Collapse
Affiliation(s)
- Jiangdong Xue
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Qi Lv
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Erdene Khas
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chen Bai
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bingjie Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wangjiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qina Cao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zejun Fan
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Changjin Ao
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
3
|
Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int J Mol Sci 2019; 20:ijms20246157. [PMID: 31817617 PMCID: PMC6941053 DOI: 10.3390/ijms20246157] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/30/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Protein phosphorylation affects conformational change, interaction, catalytic activity, and subcellular localization of proteins. Because the post-modification of proteins regulates diverse cellular signaling pathways, the precise control of phosphorylation states is essential for maintaining cellular homeostasis. Kinases function as phosphorylating enzymes, and phosphatases dephosphorylate their target substrates, typically in a much shorter time. The c-Jun N-terminal kinase (JNK) signaling pathway, a mitogen-activated protein kinase pathway, is regulated by a cascade of kinases and in turn regulates other physiological processes, such as cell differentiation, apoptosis, neuronal functions, and embryonic development. However, the activation of the JNK pathway is also implicated in human pathologies such as cancer, neurodegenerative diseases, and inflammatory diseases. Therefore, the proper balance between activation and inactivation of the JNK pathway needs to be tightly regulated. Dual specificity phosphatases (DUSPs) regulate the magnitude and duration of signal transduction of the JNK pathway by dephosphorylating their substrates. In this review, we will discuss the dynamics of phosphorylation/dephosphorylation, the mechanism of JNK pathway regulation by DUSPs, and the new possibilities of targeting DUSPs in JNK-related diseases elucidated in recent studies.
Collapse
|
4
|
Wei CH, Min HG, Kim M, Kim GH, Chun HJ, Ryu SE. Two intermediate states of the conformational switch in dual specificity phosphatase 13a. Pharmacol Res 2017; 128:211-219. [PMID: 29106959 DOI: 10.1016/j.phrs.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central β-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity. Here, we determined the crystal structure of DUSP13a, and identified two different structures that represent intermediates of the postulated conformational switch. Amino acid sequence of DUSP13a is not significantly homologous to DUSPs with conformational switch, indicating that the conformational switch is not sequence-dependent, but rather determined by ligand interaction. The sequence-independency suggests that other DUSPs with canonical conformation may have the conformational switch during specific cellular regulation. The conformational switch leads to significant changes in the protein surface, including a hydrophobic surface and pockets, which can be exploited for development of allosteric modulators of drug target DUSPs.
Collapse
Affiliation(s)
- Chun Hwa Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Hee Gyeong Min
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Myeongbin Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Gwan Hee Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Ha-Jung Chun
- Department of Radiation onclogy, College of Medicine, Hanyang University, Seoul, Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
5
|
|
6
|
Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H, Kim DS, Kim SJ, Ryu SE. The family-wide structure and function of human dual-specificity protein phosphatases. ACTA ACUST UNITED AC 2014; 70:421-35. [PMID: 24531476 DOI: 10.1107/s1399004713029866] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/31/2013] [Indexed: 11/10/2022]
Abstract
Dual-specificity protein phosphatases (DUSPs), which dephosphorylate both phosphoserine/threonine and phosphotyrosine, play vital roles in immune activation, brain function and cell-growth signalling. A family-wide structural library of human DUSPs was constructed based on experimental structure determination supplemented with homology modelling. The catalytic domain of each individual DUSP has characteristic features in the active site and in surface-charge distribution, indicating substrate-interaction specificity. The active-site loop-to-strand switch occurs in a subtype-specific manner, indicating that the switch process is necessary for characteristic substrate interactions in the corresponding DUSPs. A comprehensive analysis of the activity-inhibition profile and active-site geometry of DUSPs revealed a novel role of the active-pocket structure in the substrate specificity of DUSPs. A structure-based analysis of redox responses indicated that the additional cysteine residues are important for the protection of enzyme activity. The family-wide structures of DUSPs form a basis for the understanding of phosphorylation-mediated signal transduction and the development of therapeutics.
Collapse
Affiliation(s)
- Dae Gwin Jeong
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bonsu Ku
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Tae Jin Jeon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Pham Ngoc Chien
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jae Kwan Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - So Ya Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Sook Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sun Young Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Deok-Soo Kim
- Department of Industrial Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung Jun Kim
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seong Eon Ryu
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
|
8
|
Tonks NK. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. FEBS J 2013; 280:346-78. [PMID: 23176256 DOI: 10.1111/febs.12077] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signalling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase family of enzymes. I have discussed various aspects of the structure, regulation and function of the protein tyrosine phosphatase family, which I hope will illustrate the fundamental importance of these enzymes in the control of signal transduction.
Collapse
Affiliation(s)
- Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724-2208, USA.
| |
Collapse
|
9
|
|