1
|
Wang XX, Jia HJ, Lv YR, Sun HH, Wei XL, Tan JY, Jing ZZ. A Luciferase-EGFP Reporter System for the Evaluation of DNA Methylation in Mammalian Cells. Mol Biol 2021; 55:742-751. [PMID: 34226765 PMCID: PMC8244672 DOI: 10.1134/s0026893321040099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
DNA methylation is an essential epigenetic modification involved in numerous biological processes. Here, we present a cell-based system pLTR-Luc2P-EGFP for evaluation of DNA methylation in mammalian cells. In this system, the expression of reporter gene luciferase2P (Luc2P)-EGFP is under the control of HIV-1 promoter 5' long terminal repeat (LTR), which contains multiple CpG sites. Once these sites are methylated, the expression of Luc2P-EGFP is turned off, which may be visualized under fluorescence microscopy, with quantification performed in luciferase activity assay. As a proof of principle, pLTR-Luc2P-EGFP was methylated in vitro, and transfected into 293T cells, where the reduction of Luc2P-EGFP expression was confirmed. Premixed reporter DNA samples with the methylation levels varying from 0 to 100% were used for quantitative measurements of DNA methylation. The resulting standard curves indicated the accuracy of luciferase activity exceeding that of the Western blotting against EGFP. The Bland–Altman analysis showed that data from luciferase activity assay were in good agreement with the actual DNA methylation levels. In summary, we have established a reporter system coupled with reliable detection technique capable of efficient quantifying the changes in methylation in mammalian cells. This system may be utilized as a high throughput screening tool for identifying molecules that modulate DNA methylation.
Collapse
Affiliation(s)
- X X Wang
- School of Public Health, Lanzhou University, 730000 Lanzhou, China
| | - H J Jia
- State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| | - Y R Lv
- School of Public Health, Lanzhou University, 730000 Lanzhou, China.,State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| | - H H Sun
- School of Public Health, Lanzhou University, 730000 Lanzhou, China.,State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| | - X L Wei
- Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, China
| | - J Y Tan
- Institute of Immunology, School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, China
| | - Z Z Jing
- State Key Laboratory of Veterinary of Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730000 Lanzhou, China
| |
Collapse
|
2
|
Kimura AP, Yoneda R, Kurihara M, Mayama S, Matsubara S. A Long Noncoding RNA, lncRNA-Amhr2, Plays a Role in Amhr2 Gene Activation in Mouse Ovarian Granulosa Cells. Endocrinology 2017; 158:4105-4121. [PMID: 28938492 DOI: 10.1210/en.2017-00619] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
Anti-Müllerian hormone (AMH) is critical to the regression of Müllerian ducts during mammalian male differentiation and targets ovarian granulosa cells and testicular Sertoli and Leydig cells of adults. Specific effects of AMH are exerted via its receptor, AMH type II receptor (Amhr2), but the mechanism by which the Amhr2 gene is specifically activated is not fully understood. To see whether a proximal promoter was sufficient for Amhr2 gene activation, we generated transgenic mice that bore the enhanced green fluorescent protein (EGFP) gene driven by a 500-bp mouse Amhr2 gene promoter. None of the established 10 lines, however, showed appropriate EGFP expression, indicating that the 500-bp promoter was insufficient for Amhr2 gene activation. As a regulatory element, we found a long noncoding RNA, lncRNA-Amhr2, transcribed from upstream of the Amhr2 gene in ovarian granulosa cells and testicular Sertoli cells. In primary granulosa cells, knockdown of lncRNA-Amhr2 resulted in a decrease of Amhr2 messnger RNA level, and a transient reporter gene assay showed that lncRNA-Amhr2 activation increased Amhr2 promoter activity. The activity was correlated with lncRNA-Amhr2 transcription in stably transfected OV3121 cells derived from mouse granulosa cells. Moreover, by the Tet-on system, the induction of lncRNA-Amhr2 transcription dramatically increased Amhr2 promoter activity in OV3121 cells. These results indicate that lncRNA-Amhr2 plays a role in Amhr2 gene activation in ovarian granulosa cells by enhancing promoter activity, providing insight into Amhr2 gene regulation underlying the AMH signaling in the female reproductive system.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryoma Yoneda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Misuzu Kurihara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shota Mayama
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shin Matsubara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Manoharan A, Du Roure C, Rolink AG, Matthias P. De novo DNA Methyltransferases Dnmt3a and Dnmt3b regulate the onset of Igκ light chain rearrangement during early B-cell development. Eur J Immunol 2015; 45:2343-55. [PMID: 26059604 DOI: 10.1002/eji.201445035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/24/2015] [Accepted: 05/19/2015] [Indexed: 02/01/2023]
Abstract
Immunoglobulin genes V(D)J rearrangement during early lymphopoiesis is a critical process involving sequential recombination of the heavy and light chain loci. A number of transcription factors act together with temporally activated recombinases and chromatin accessibility changes to regulate this complex process. Here, we deleted the de novo DNA methyltransferases Dnmt3a and Dnmt3b in early B cells of conditionally targeted mice, and monitored the process of V(D)J recombination. Dnmt3a and Dnmt3b deletion resulted in precocious recombination of the immunoglobulin κ light chain without impairing the differentiation of mature B cells or overall B-cell development. Ex vivo culture of IL-7 restricted early B-cell progenitors lacking Dnmt3a and Dnmt3b showed precocious Vκ-Jκ rearrangements that are limited to the proximal Vκ genes. Furthermore, B-cell progenitors deficient in Dnmt3a and Dnmt3b showed elevated levels of germline transcripts at the proximal Vκ genes, alterations in methylation patterns at Igκ enhancer sites and increased expression of the transcription factor E2A. Our data suggest that Dnmt3a and Dnmt3b are critical to regulate the onset of Igκ light chain rearrangement during early B-cell development.
Collapse
Affiliation(s)
- Anand Manoharan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Camille Du Roure
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Yun C, DasGupta R. Luciferase reporter assay in Drosophila and mammalian tissue culture cells. CURRENT PROTOCOLS IN CHEMICAL BIOLOGY 2014; 6:7-23. [PMID: 24652620 PMCID: PMC4059354 DOI: 10.1002/9780470559277.ch130149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Luciferase reporter gene assays are one of the most common methods for monitoring gene activity. Because of their sensitivity, dynamic range, and lack of endogenous activity, luciferase assays have been particularly useful for functional genomics in cell-based assays, such as RNAi screening. This unit describes delivery of two luciferase reporters with other nucleic acids (siRNA/dsRNA), measurement of the dual luciferase activities, and analysis of data generated. The systematic query of gene function (RNAi) combined with the advances in luminescent technology have made it possible to design powerful whole genome screens to address diverse and significant biological questions.
Collapse
Affiliation(s)
- Chi Yun
- New York University School of Medicine, NYU RNAi Core, Department of Biochemistry and Molecular Pharmacology, Skirball Institute, Lab 3-7, 540 First Avenue, New York, NY 10016, Ph. (212) 263-9080, Fax (212) 283-7984
| | - Ramanuj DasGupta
- New York University School of Medicine, NYU Cancer Institute, Department of Biochemistry and Molecular Pharmacology, Smilow Research Building, Rm 1211, New York, NY 10016, Ph. (212) 263-9247, Fax (212) 263-9210
| |
Collapse
|
5
|
Atlasi Y, Noori R, Gaspar C, Franken P, Sacchetti A, Rafati H, Mahmoudi T, Decraene C, Calin GA, Merrill BJ, Fodde R. Wnt signaling regulates the lineage differentiation potential of mouse embryonic stem cells through Tcf3 down-regulation. PLoS Genet 2013; 9:e1003424. [PMID: 23658527 PMCID: PMC3642041 DOI: 10.1371/journal.pgen.1003424] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
Canonical Wnt signaling plays a rate-limiting role in regulating self-renewal and differentiation in mouse embryonic stem cells (ESCs). We have previously shown that mutation in the Apc (adenomatous polyposis coli) tumor suppressor gene constitutively activates Wnt signaling in ESCs and inhibits their capacity to differentiate towards ecto-, meso-, and endodermal lineages. However, the underlying molecular and cellular mechanisms through which Wnt regulates lineage differentiation in mouse ESCs remain to date largely unknown. To this aim, we have derived and studied the gene expression profiles of several Apc-mutant ESC lines encoding for different levels of Wnt signaling activation. We found that down-regulation of Tcf3, a member of the Tcf/Lef family and a key player in the control of self-renewal and pluripotency, represents a specific and primary response to Wnt activation in ESCs. Accordingly, rescuing Tcf3 expression partially restored the neural defects observed in Apc-mutant ESCs, suggesting that Tcf3 down-regulation is a necessary step towards Wnt-mediated suppression of neural differentiation. We found that Tcf3 down-regulation in the context of constitutively active Wnt signaling does not result from promoter DNA methylation but is likely to be caused by a plethora of mechanisms at both the RNA and protein level as shown by the observed decrease in activating histone marks (H3K4me3 and H3-acetylation) and the upregulation of miR-211, a novel Wnt-regulated microRNA that targets Tcf3 and attenuates early neural differentiation in mouse ESCs. Our data show for the first time that Wnt signaling down-regulates Tcf3 expression, possibly at both the transcriptional and post-transcriptional levels, and thus highlight a novel mechanism through which Wnt signaling inhibits neuro-ectodermal lineage differentiation in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Yaser Atlasi
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rubina Noori
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Claudia Gaspar
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Patrick Franken
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Andrea Sacchetti
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Haleh Rafati
- Department of Biochemistry, Erasmus MC, Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus MC, Rotterdam, The Netherlands
| | - Charles Decraene
- Translational Research Department, Institut Curie, Centre de Recherche, Paris, France
- CNRS, UMR144, Paris, France
| | - George A. Calin
- Department of Experimental Therapeutics and Center for RNA Interference and Non-Coding RNAs, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, United States of America
| | - Riccardo Fodde
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Abstract
Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.
Collapse
Affiliation(s)
- Nina Solberg
- Unit for Cell Signaling, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|