1
|
Tang Z, Guo D, Xiong L, Wu B, Xu X, Fu J, Kong L, Liu Z, Xie C. TLR4/PKCα/occludin signaling pathway may be related to blood‑brain barrier damage. Mol Med Rep 2018; 18:1051-1057. [PMID: 29845266 DOI: 10.3892/mmr.2018.9025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/11/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhixian Tang
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Dan Guo
- Department of Histology and Embryology, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Liang Xiong
- Department of Preventive Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Bing Wu
- Department of Anatomy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xuehua Xu
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jinfeng Fu
- Department of Operation Room, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Liyun Kong
- Department of Operation Room, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Ziyou Liu
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Chunfa Xie
- Department of Cardiothoracic Surgery, Heart Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
2
|
Protein Kinase C-α is a Critical Protein for Antisense Oligonucleotide-mediated Silencing in Mammalian Cells. Mol Ther 2016; 24:1117-1125. [PMID: 26961407 DOI: 10.1038/mt.2016.54] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
We have identified the existence of a productive, PKC-α-dependent endocytotic silencing pathway that leads gymnotically-delivered locked nucleic acid (LNA)-gapmer phosphorothioate antisense oligonucleotides (ASOs) into late endosomes. By blocking the maturation of early endosomes to late endosomes, silencing the expression of PKC-α results in the potent reduction of ASO silencing ability in the cell. We have also demonstrated that silencing of gene expression in the cytoplasm is vitiated when PKC-α expression is reduced. Restoring PKC-α expression via a reconstitution experiment reinstates the ability of ASOs to silence. These results advance our understanding of intracellular ASO trafficking and activity following gymnotic delivery, and further demonstrate the existence of two distinct silencing pathways in mammalian cells, one in the cytoplasmic and the other in the nuclear compartment.
Collapse
|
3
|
Hutchinson TE, Patel JM. Peptide-stimulated angiogenesis: Role of lung endothelial caveolar signaling and nitric oxide. Nitric Oxide 2015; 51:43-51. [PMID: 26537637 DOI: 10.1016/j.niox.2015.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/29/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
Abstract
Endothelial nitric oxide (NO) synthase (eNOS)-derived NO plays a critical role in the modulation of angiogenesis in the pulmonary vasculature. We recently reported that an eleven amino acid (SSWRRKRKESS) cell penetrating synthetic peptide (P1) activates caveolar signaling, caveloae/eNOS dissociation, and enhance NO production in lung endothelial cells (EC). This study examines whether P1 promote angiogenesis via modulation of caveolar signaling and the level of NO generation in EC and pulmonary artery (PA) segments. P1-enhanced tube formation and cell sprouting were abolished by caveolae disruptor Filipin (FIL) in EC and PA, respectively. P1 enhanced eNOS activity and angiogenesis were attenuated by inhibition of eNOS as well as PLCγ-1, PKC-α but not PI3K-mediated caveolar signaling in intact EC and/or PA. P1 failed to enhance the catalytic activity of eNOS and angiogenesis in caveolae disrupted EC by FIL. Lower (0.01 mM) concentration of NOC-18 enhanced angiogenesis without inhibition of eNOS activity whereas higher concentration of NOC-18 (1.0 mM) inhibited eNOS activity and angiogenesis in EC. Inhibition of eNOS by l-NAME in the presence of P1 resulted in near total loss of tube formation in EC. Although P1 enhanced angiogenesis mimicked only by lower concentrations of NO generated by NOC-18, this response is independent of caveolar signaling/integrity. These results suggest that P1-enhanced angiogenesis is regulated by dynamic process involving caveolar signaling-mediated increased eNOS/NO activity or by the direct exposure to NOC-18 generating only physiologic range of NO independent of caveolae in lung EC and PA segments.
Collapse
Affiliation(s)
- Tarun E Hutchinson
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32608-1197, USA
| | - Jawaharlal M Patel
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32608-1197, USA; Research Service, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608-1197, USA.
| |
Collapse
|
4
|
Zemljič Jokhadar Š, Majhenc J, Svetina S, Batista U. Positioning of integrin β1, caveolin-1 and focal adhesion kinase on the adhered membrane of spreading cells. Cell Biol Int 2013; 37:1276-84. [DOI: 10.1002/cbin.10155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - Janja Majhenc
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| | - Saša Svetina
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
- Jožef Stefan Institute; Ljubljana Slovenia
| | - Urška Batista
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; Ljubljana Slovenia
| |
Collapse
|
5
|
Hu H, Zharikov S, Patel JM. Novel peptide for attenuation of hypoxia-induced pulmonary hypertension via modulation of nitric oxide release and phosphodiesterase -5 activity. Peptides 2012; 35:78-85. [PMID: 22465621 PMCID: PMC3335268 DOI: 10.1016/j.peptides.2012.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022]
Abstract
Pulmonary vascular endothelial nitric oxide (NO) synthase (eNOS)-derived NO is the major stimulant of cyclic guanosine 5'-monophosphate (cGMP) production and NO/cGMP-dependent vasorelaxation in the pulmonary circulation. We recently synthesized multiple peptides and reported that an eleven amino acid (SSWRRKRKESS) peptide (P1) but not scrambled P1 stimulated the catalytic activity but not expression of eNOS and causes NO/cGMP-dependent sustained vasorelaxation in isolated pulmonary artery (PA) segments and in lung perfusion models. Since cGMP levels can also be elevated by inhibition of phosphodiesterase type 5 (PDE-5), this study was designed to test the hypothesis that P1-mediated vesorelaxation is due to its unique dual action as NO-releasing PDE-5 inhibitor in the pulmonary circulation. Treatment of porcine PA endothelial cells (PAEC) with P1 caused time-dependent increase in intracellular NO release and inhibition of the catalytic activity of cGMP-specific PDE-5 but not PDE-5 protein expression leading to increased levels of cGMP. Acute hypoxia-induced PA vasoconstriction ex vivo and continuous telemetry monitoring of hypoxia (10% oxygen)-induced elevated PA pressure in freely moving rats were significantly restored by administration of P1. Chronic hypoxia (10% oxygen for 4 weeks)-induced alterations in PA perfusion pressure, right ventricular hypertrophy, and vascular remodeling were attenuated by P1 treatment. These results demonstrate the potential therapeutic effects of P1 to prevent and/or arrest the progression of hypoxia-induced PAH via NO/cGMP-dependent modulation of hemodynamic and vascular remodeling in the pulmonary circulation.
Collapse
Affiliation(s)
- Hanbo Hu
- Department of Medicine, University of Florida, Gainesville, FL 32610-0225, United States
| | | | | |
Collapse
|