1
|
Liu W, Zhao M, Zhang X, Chi J, Yin X, Liu Y. Alcohol Intake Provoked Cardiomyocyte Apoptosis Via Activating Calcium-Sensing Receptor and Increasing Endoplasmic Reticulum Stress and Cytosolic [Ca2+]i. Cell Biochem Biophys 2023; 81:707-716. [PMID: 37639185 DOI: 10.1007/s12013-023-01167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cardiomyocyte apoptosis plays an important role in alcoholic cardiac injury. However, the association between calcium-sensing receptor (CaSR) and alcohol-induced cardiomyocyte apoptosis remain unclear. Therefore, we investigated the role and its moleculer mechanism of CaSR in rat cardiomyocyte apoptosis induced by alcohol. METHODS Alcohol-induced cardiomyocyte apoptosis in vivo and in vitro model of rats were applied in this study. The expression of CaSR, endoplasmic reticulum stress markers and apoptosis were tested by immunohistological staining, western blot, TUNEL and flow cytometry, respectively. [Ca2+]i were detected by confocal laser scanning microscopy. RESULTS Compared with the control group, alcohol intake (AI) led to abnormal arrangements of cardiomyocytes and obvious increase of myocardial apoptosis. Moreover, AI also significantly upregulated protein expression of CaSR, GRP94, caspase-12 and CHOP. Alcohol induced apoptosis of cultured cardiomyocytes of rats in a dose-dependent way. Activation of CaSR markedly enhanced cardiomyocyte apoptosis and ERS induced by alcohol, ERS inducer also significantly increased cardiomyocyte apoptosis without activating CaSR. Furthermore, GdCl3 augmented alcohol-induced increase of [Ca2+]i in cardiomyocytes, which was attenuated by NPS2390 but not 4-PBA pre-treatment. CONCLUSIONS Alcohol could induce cardiomyocyte apoptosis in rats in vivo and in vitro, which was mediated probably via activating CaSR, and then ERS and the increase of the cytosolic [Ca2+]i. This provides a potential target for preventing cardiomyocyte apoptosis and cardiomyopathy induced by alochol.
Collapse
Affiliation(s)
- Wenxiu Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Meng Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Xin Zhang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Jinyu Chi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China
| | - Xinhua Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China.
| | - Yue Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, PR China.
| |
Collapse
|
2
|
Yue R, Lv M, Lan M, Zheng Z, Tan X, Zhao X, Zhang Y, Pu J, Xu L, Hu H. Irisin protects cardiomyocytes against hypoxia/reoxygenation injury via attenuating AMPK mediated endoplasmic reticulum stress. Sci Rep 2022; 12:7415. [PMID: 35523819 PMCID: PMC9076689 DOI: 10.1038/s41598-022-11343-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER) stress plays a central role in myocardial ischemia/reperfusion (I/R) injury. Irisin has been reported to have protective properties in ischemia disease. In this study, we aimed at investigating whether irisin could alleviate myocardial I/R injury by ER stress attenuation. The in vitro model of hypoxia/reoxygenation (H/R) was established, which resembles I/R in vivo. Cell viability and apoptosis were estimated. Expressions of cleaved caspase-3, cytochrome c, GRP78, pAMPK, CHOP, and eIF2α were assessed by western blot. Our results revealed that pre-treatment with irisin significantly decreased cytochrome c release from mitochondria and caspase-3 activation caused by H/R. Irsin also reduced apoptosis and increased cell viability. These effects were abolished by AMPK inhibitor compound C pre-treatment. Also, GRP78 and CHOP expressions were up-regulated in the H/R group compared to the control group; however, irisin attenuated their expression. The pAMPK level was significantly decreased compared to the control, and this effect could be partly reversed by metformin pre-treatment. These results suggest that ER stress is associated with cell viability decreasing and cardiomyocytes apoptosis induced by H/R. Irisin could efficiently protect cardiomyocytes from H/R-injury via attenuating ER stress and ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China.,Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.,Cardiovascular Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Mingming Lv
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Meide Lan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Zaiyong Zheng
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xin Tan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Xuemei Zhao
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Yulong Zhang
- Anesthesiology Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jun Pu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Lei Xu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China. .,Department of Cardiology, Central Hospital of Guangyuan, No. 16, Jing Alley, Lizhou District, Guangyuan, 628000, Sichuan, People's Republic of China.
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No. 63, Wenhua Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China. .,Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Zhang S, Xu C, Sun Y, Sui S, Zhang Z, Luan Y. The Protective of Baicalin on Myocardial Ischemia-Reperfusion Injury. Curr Pharm Biotechnol 2020; 21:1386-1393. [PMID: 32503406 DOI: 10.2174/1389201021666200605104540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/28/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The aim of this study was to explore the inhibitory effect of baicalin on myocardial apoptosis induced by Ischemia-Reperfusion (I/R). METHODS Sprague Dawley rats' heart and myocardial cells I/R model were established in vivo and vitro, then 100 mg/kg and 10 μmol/l baicalin were administrated, respectively. The experiment was randomly divided into 4 groups (n=10): Control; I/R; IR+DMEM; and I/R+baicalin groups. Postoperation, the Left Ventricular (LV) End-Diastolic Pressure (LVEDP), the maximum velocity of LV contraction (dP/dtmax) and the maximum velocity of LV diastole (dP/dtmin) were recorded by the transthoracic echocardiography; the myocardial apoptosis percentage was analyzed by Annexin VFITC/ PI and TUNEL staining, and the apoptosis gene and protein were detected by RT-PCR and western blot. Furthermore, the protein expression of the calcium-sensing receptor (CaSR) and ERK1/2 phosphorylation were observed by western blot and Fura-2-acetoxymethyl ester. Moreover, primary rats' cardiomyocytes were cultured and ERK1/2 specific inhibitor PD98059 was added to the culture medium. The cell survival rate, vitality and apoptosis were detected by MTT, lactate dehydrogenase (LDH) and TUNEL staining assay Kit, respectively. RESULTS Our present study showed that baicalin significantly improved LV hemodynamic parameters and myocardial apoptosis in myocardial I/R injury rats. Furthermore, we found that baicalin could down-regulate the protein expression of CaSR, but up-regulate the protein expression of ERK1/2. Furthermore, when the cells were pretreated with ERK1/2 inhibitor PD98059, the cells survival rate significantly decreased, but LDH activity and apoptosis significantly increased. The results indicated that the effect of baicalin on myocardial I/R injury could be inhibited by ERK1/2 inhibitor. CONCLUSION In conclusion, our data suggests that baicalin attenuates I/R-induced myocardial injury maybe through the suppression of the CaSR/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, P.R. China,Institute of Biotherapy for Hematological Malignancies, The Second Hospital, Cheeloo College of Medicine, Shandong University, P.R. China
| | - Shanshan Zhang
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, P.R. China
| | - Chaoyue Xu
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, P.R. China
| | - Yongchao Sun
- Department of Medicine, Jinan Vocational College of Nursing, Shandong, P.R. China
| | - Shujian Sui
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, P.R. China
| | - Zhaohua Zhang
- Department of Pediatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, P.R. China
| | - Yun Luan
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Dajie, Jinan, 250033, P.R. China
| |
Collapse
|
4
|
Liu C, Liu H, Luo Y, Lu T, Fu X, Cui S, Zhu S, Hou Y. The extracellular calcium-sensing receptor promotes porcine egg activation via calcium/calmodulin-dependent protein kinase II. Mol Reprod Dev 2020; 87:598-606. [PMID: 32017318 DOI: 10.1002/mrd.23322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
Extracellular calcium is required for intracellular Ca2+ oscillations needed for egg activation, but the regulatory mechanism is still poorly understood. The present study was designed to demonstrate the function of calcium-sensing receptor (CASR), which could recognize extracellular calcium as first messenger, during porcine egg activation. CASR expression was markedly upregulated following egg activation. Functionally, the addition of CASR agonist NPS R-568 significantly enhanced pronuclear formation rate, while supplementation of CASR antagonist NPS2390 compromised egg activation. There was no change in NPS R-568 group compared with control group when the egg activation was performed without extracellular calcium addition. The addition of NPS2390 precluded the activation-dependent [Ca2+ ]i rise. When egg activation was conducted in intracellular Ca2+ chelator BAPTA-AM and NPS R-568 containing medium, CASR function was abolished. Meanwhile, CASR activation increased the level of the [Ca2+ ]i effector p-CAMKII, and the presence of KN-93, an inhibitor of CAMKII, significantly reduced the CASR-mediated increasement of pronuclear formation rate. Furthermore, the increase of CASR expression following activation was reversed by inhibiting CAMKII activity, supporting a positive feedback loop between CAMKII and CASR. Altogether, these findings provide a new pathway of egg activation about CASR, as the extracellular Ca2+ effector, promotes egg activation via its downstream effector and upstream regulator CAMKII.
Collapse
Affiliation(s)
- Cong Liu
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Huage Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tengfei Lu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sheng Cui
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int J Mol Sci 2018; 19:E999. [PMID: 29584660 PMCID: PMC5979557 DOI: 10.3390/ijms19040999] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| |
Collapse
|
6
|
Dyukova E, Schreckenberg R, Arens C, Sitdikova G, Schlüter KD. The Role of Calcium-Sensing Receptors in Endothelin-1-Dependent Effects on Adult Rat Ventricular Cardiomyocytes: Possible Contribution to Adaptive Myocardial Hypertrophy. J Cell Physiol 2017; 232:2508-2518. [DOI: 10.1002/jcp.25612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Dyukova
- Physiologisches Institut; Justus-Liebig-Universität Gießen; Giessen Germany
- Institute of Fundamental Medicine and Biology; Kazan Federal University; Kazan Russia
| | - Rolf Schreckenberg
- Physiologisches Institut; Justus-Liebig-Universität Gießen; Giessen Germany
| | - Christoph Arens
- Physiologisches Institut; Justus-Liebig-Universität Gießen; Giessen Germany
| | - Guzel Sitdikova
- Institute of Fundamental Medicine and Biology; Kazan Federal University; Kazan Russia
| | | |
Collapse
|
7
|
Paquot F, Huart J, Defraigne JO, Krzesinski JM, Jouret F. Implications of the calcium-sensing receptor in ischemia/reperfusion. Acta Cardiol 2017; 72:125-131. [PMID: 28597792 DOI: 10.1080/00015385.2017.1291136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) which was first isolated from bovine parathyroid glands. Its complex structure has been well characterized, which helped to better understand its function. The CaSR activity can be modulated by various ligands, either activators (also called "calcimimetics") or inhibitors (or "calcilytics"). The main role of the CaSR concerns Ca2+ homeostasis. In bone, intestine and kidney, the CaSR acts as a sensor for extracellular ionized Ca2+ concentration ([Ca2+]e) to keep it stable. Such a homeostatic function is well illustrated by human inherited diseases caused by mutations in CASR gene, characterized by Ca2+ balance disturbances. Interestingly, the CaSR is also expressed in numerous tissues which are not directly involved in Ca2+ regulation. There, the CaSR has been implicated in regulatory pathways, including cell proliferation, differentiation and apoptosis. Moreover, recent observations suggest that the CaSR may be involved in ischaemia/reperfusion (I/R) cascades. In cardiomyocytes, the expression and activation of the CaSR are significantly induced at the time of I/R, which induces apoptotic pathways. Likewise, the activation of the CaSR in I/R in brain, liver and kidney has been associated with increased cell death and aggravated structural and functional damage. The present review summarizes these observations and hypothesizes a novel therapeutic option targeting the CaSR in I/R.
Collapse
Affiliation(s)
- François Paquot
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
| | - Justine Huart
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
| | - Jean-Olivier Defraigne
- Division of Cardiovascular Surgery, University of Liège Hospital, Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Jean-Marie Krzesinski
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - François Jouret
- Division of Nephrology, University of Liège Hospital, Liège, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
8
|
Zhang L, Cao S, Deng S, Yao G, Yu T. Ischemic postconditioning and pinacidil suppress calcium overload in anoxia-reoxygenation cardiomyocytes via down-regulation of the calcium-sensing receptor. PeerJ 2016; 4:e2612. [PMID: 27833799 PMCID: PMC5101590 DOI: 10.7717/peerj.2612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/26/2016] [Indexed: 01/23/2023] Open
Abstract
Ischemic postconditioning (IPC) and ATP sensitive potassium channel (KATP) agonists (e.g. pinacidil and diazoxide) postconditioning are effective methods to defeat myocardial ischemia-reperfusion (I/R) injury, but their specific mechanisms of reducing I/R injury are not fully understood. We observed an intracellular free calcium ([Ca2+]i) overload in Anoxia/reoxygenation (A/R) cardiomyocytes, which can be reversed by KATP agonists diazoxide or pinacidil. The calcium-sensing receptor (CaSR) regulates intracellular calcium homeostasis. CaSR was reported to be involved in the I/R-induced apoptosis in rat cardiomyocytes. We therefore hypothesize that IPC and pinacidil postconditioning (PPC) reduce calcium overload in I/R cardiomyocytes by the down-regulation of CaSR. A/R model was established with adult rat caridomyocyte. mRNA and protein expression of CaSR were detected, IPC, PPC and KATP’s effects on [Ca2+]i concentration was assayed too. IPC and PPC ameliorated A/R insult induced [Ca2+]i overload in cardiomyocytes. In addition, they down-regulated the mRNA and protein level of CaSR as we expected. CaSR agonist spermine and KATP blocker glibenclamide offset IPC’s effects on CaSR expression and [Ca2+]i modulation. Our data indicate that CaSR down-regulation contributes to the mitigation of calcium overload in A/R cardiomyocytes, which may partially represents IPC and KATP’s myocardial protective mechanism under I/R circumstances.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Shengli Deng
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Gang Yao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
9
|
Influence of Ischemic Pre- and Post-Conditioning on Cardiac Expression of Calcium-Sensing Receptor. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0316-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Discrepancy in calcium release from the sarcoplasmic reticulum and intracellular acidic stores for the protection of the heart against ischemia/reperfusion injury. J Physiol Biochem 2016; 72:495-508. [PMID: 27325083 DOI: 10.1007/s13105-016-0498-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
We and others have demonstrated a protective effect of pacing postconditioning (PPC) against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection are not completely clear. In the present study, we evaluated the effects of calcium release from the sarcoplasmic reticulum (SR) and the novel intracellular acidic stores (AS). Isolated rat hearts (n = 6 per group) were subjected to coronary occlusion followed by reperfusion using a modified Langendorff system. Cardiac hemodynamics and contractility were assessed using a data acquisition program, and cardiac injury was evaluated by creatine kinase (CK) and lactate dehydrogenase (LDH) levels. Hearts were subjected to 30 min of regional ischemia, produced by ligation of the left anterior descending (LAD) coronary artery, followed by 30 min of reperfusion. The hearts were also subjected to PPC (3 cycles of 30 s of left ventricle (LV) pacing alternated with 30 s of right atrium (RA) pacing) and/or were treated during reperfusion with agonists or antagonists of release of calcium from SR or AS. PPC significantly (P < 0.05) normalized LV, contractility, and coronary vascular dynamics and significantly (P < 0.001) decreased heart enzyme levels compared to the control treatments. The blockade of SR calcium release resulted in a significant (P < 0.01) recovery in LV function and contractility and a significant reduction in CK and LDH levels (P < 0.01) when applied alone or in combination with PPC. Interestingly, the release of calcium from AS alone or in combination with PPC significantly improved LV function and contractility (P < 0.05) and significantly decreased the CK and LDH levels (P < 0.01) compared to the control treatments. An additive effect was produced when agonism of calcium release from AS or blockade of calcium release from the SR was combined with PPC. Calcium release from AS and blockade of calcium release from the SR protect the heart against I/R. Combining calcium release from acidic stores or blockade of calcium release from the SR with PPC produced a synergistic protective effect.
Collapse
|
11
|
Luz A, Santos M, Magalhães R, Oliveira JC, Pacheco A, Silveira J, Cabral S, Torres S, Leite-Moreira AF, Carvalho H. Soluble TNF-related apoptosis induced ligand (sTRAIL) is augmented by Post-Conditioning and correlates to infarct size and left ventricle dysfunction in STEMI patients: a substudy from a randomized clinical trial. Heart Vessels 2016; 32:117-125. [DOI: 10.1007/s00380-016-0851-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/20/2016] [Indexed: 01/15/2023]
|
12
|
Liu C, Wu GQ, Fu XW, Mo XH, Zhao LH, Hu HM, Zhu SE, Hou YP. The Extracellular Calcium-Sensing Receptor (CASR) Regulates Gonadotropins-Induced Meiotic Maturation of Porcine Oocytes. Biol Reprod 2015; 93:131. [PMID: 26490840 DOI: 10.1095/biolreprod.115.128579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Gonadotropins and epidermal growth factor (EGF) play crucial roles in promoting oocyte maturation. The regulatory network downstream of these key factors is not well understood. The present study was designed to investigate the role of the calcium-sensing receptor (CASR) in porcine oocyte in vitro maturation. CASR expression was up-regulated in oocytes matured in gonadotropin-containing medium. Cortical distribution of CASR was enhanced with gonadotropins but not EGF. Supplementation of a CASR agonist (NPS R-568) in the gonadotropin (FSH and/or LH)-containing maturation medium significantly enhanced oocyte nuclear maturation. Addition of NPS2390, a CASR antagonist, compromised oocyte nuclear maturation. Furthermore, increased cortical distribution and decreased expression of CASR was observed after the NPS R-568 treatment. Oocytes treated with NPS R-568 had higher concentration of CYCLIN B1, decreased reactive oxygen species, and increased glutathione levels, indicative of advanced cytoplasmic maturation. In contrast, NPS2390 treatment compromised oocyte cytoplasmic maturation. A higher blastocyst formation rate after parthenogenetic activation was observed when oocytes were matured in the presence of the CASR agonist, NPS R-568. MAPK3/1 phosphorylation was increased during in vitro maturation and after NPS R-568 treatment, and decreased following CASR antagonist supplementation. Taken together, our data showed that the CASR is a gonadotropin-regulated factor that promotes porcine oocyte maturation in a MAPK-dependent manner.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guo-Quan Wu
- Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Xiang-Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian-Hong Mo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li-Hong Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong-Mei Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shi-En Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yun-Peng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Xu M, Wu X, Jie B, Zhang X, Zhang J, Xin Y, Guo Y. Neuregulin-1 protects myocardial cells against H2 O2 -induced apoptosis by regulating endoplasmic reticulum stress. Cell Biochem Funct 2014; 32:464-9. [PMID: 24867233 DOI: 10.1002/cbf.3038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 01/23/2023]
Abstract
Neuregulin-1 (NRG-1) is a stress-mediated growth factor secreted by cardiovascular endothelial cells and provides the protection to myocardial cells, but the underlying mechanisms are not fully understood. This study aimed to demonstrate that NRG-1 protects myocardial cells exposed to oxidative damage by regulating endoplasmic reticulum (ER) stress. Neonatal rat cardiac myocytes (NRCMs) were isolated and treated with H2 O2 as a cellular model of ER stress. NRCMs were pretreated with different concentrations of NRG-1. We found that NRG-1 increased the viability and reduced the apoptosis of NRCMs treated by H2 O2 . Moreover, NRG-1 reduced lactate dehydrogenase level, increased superoxide dismutase activity and decreased malondialdehyde content in NRCMs treated by H2 O2 . Finally, we demonstrated that NRG-1 alleviated ER stress and decreased CHOP and GRP78 protein levels in NRCMs treated by H2 O2 . Taken together, these data indicate that NRG-1 relieves oxidative and ER stress in NRCMs and suggest that NRG-1 is a promising agent for cardioprotection.
Collapse
Affiliation(s)
- Min Xu
- Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Shi FH, Cheng YS, Dai DZ, Peng HJ, Cong XD, Dai Y. Depressed calcium-handling proteins due to endoplasmic reticulum stress and apoptosis in the diabetic heart are attenuated by argirein. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:521-31. [PMID: 23525487 DOI: 10.1007/s00210-013-0852-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/11/2013] [Indexed: 12/27/2022]
Abstract
Diabetic cardiomyopathy (DC) is a unique disease frequently complicated to diabetes mellitus, manifesting endoplasmic reticulum (ER) stress and depressed calcium-handling proteins. We hypothesized that the abnormal FKBP12.6, SERCA2a, and CASQ2 are consequent to ER stress and apoptosis that are likely due to an entity of inflammation. These abnormalities may be attributed to reactive oxygen species genesis from activated NADPH oxidase which could respond to argirein (AR) through its anti-inflammatory activity. Sprague Dawley rats were randomly divided into six groups. Except the normal group, rats were injected with streptozotocin (STZ; 60 mg/kg, i.p.) once. During weeks 5 to 8 following STZ injection, rats were treated (in milligrams per kilogram per day, i.g.) with aminoguanidine (AMG, 100; an inducible nitric oxide synthase and AGEs inhibitor) or three doses of AR (50, 100, and 200). FKBP12.6, SERCA2a, and CASQ2 and ER stress chaperones Bip and PERK and apoptotic molecules were monitored in vivo and in vitro. Impaired cardiac performance and downregulated FKBP12.6, SERCA2a, and CASQ2 were significant in DC in vivo, and abnormal calcium-handling proteins were also found in high-glucose-incubated myocytes in vitro. ER stress manifested by upregulated Bip and PERK was predominant in association with DNA ladder and upregulated Bax and downregulated BCL-2 in vivo and in vitro. AR is effective to attenuate these abnormalities compared to AMG. Diabetic myocardium has inflammatory entity expressed as ER stress contributing to downregulated calcium-handling proteins. AR has potential in managing DC through attenuating depressed calcium-handling proteins, activated ER stress, and apoptosis in the myocardium.
Collapse
Affiliation(s)
- F H Shi
- Research Division of Pharmacology, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 210009, China
| | | | | | | | | | | |
Collapse
|