1
|
Liang S, Zhang H, Jiao L, Shao R, Lan Y, Liao X, Mai K, Ai Q, Wan M. Vitamin D promotes the folate transport and metabolism in zebrafish ( Danio rerio). Am J Physiol Endocrinol Metab 2024; 326:E482-E492. [PMID: 38324257 DOI: 10.1152/ajpendo.00380.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Vitamin D (VD) is a fat-soluble sterol that possesses a wide range of physiological functions. The present study aimed to evaluate the effects of VD on folate metabolism in zebrafish and further investigated the underlying mechanism. Wild-type (WT) zebrafish were fed with a diet containing 0 IU/kg VD3 or 800 IU/kg VD3 for 3 wk. Meanwhile, cyp2r1 mutant zebrafish with impaired VD metabolism was used as another model of VD deficiency. Our results showed that VD deficiency in zebrafish suppressed the gene expression of folate transporters, including reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) in the intestine. Moreover, VD influenced the gene expression of several enzymes related to cellular folate metabolism in the intestine and liver of zebrafish. Importantly, VD-deficient zebrafish contained a remarkably lower level of folate content in the liver. Notably, VD was incapable of altering folate metabolism in zebrafish when gut microbiota was depleted by antibiotic treatment. Further studies proved that gut commensals from VD-deficient fish displayed a lower capacity to produce folate than those from WT fish. Our study revealed the potential correlation between VD and folate metabolism in zebrafish, and gut microbiota played a key role in VD-regulated folate metabolism in zebrafish.NEW & NOTEWORTHY Our study has identified that VD influences intestinal uptake and transport of folate in zebrafish while also altering hepatic folate metabolism and storage. Interestingly, the regulatory effects of VD on folate transport and metabolism diminished after the gut flora was interrupted by antibiotic treatment, suggesting that the regulatory effects of VD on folate metabolism in zebrafish are most likely dependent on the intestinal flora.
Collapse
Affiliation(s)
- Shufei Liang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Lin Jiao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Butts M, Sundaram VL, Murughiyan U, Borthakur A, Singh S. The Influence of Alcohol Consumption on Intestinal Nutrient Absorption: A Comprehensive Review. Nutrients 2023; 15:nu15071571. [PMID: 37049411 PMCID: PMC10096942 DOI: 10.3390/nu15071571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic alcohol use has been attributed to the development of malnutrition. This is in part due to the inhibitory effect of ethanol on the absorption of vital nutrients, including glucose, amino acids, lipids, water, vitamins, and minerals within the small intestine. Recent advances in research, along with new cutting-edge technologies, have advanced our understanding of the mechanism of ethanol's effect on intestinal nutrient absorption at the brush border membrane (BBM) of the small intestine. However, further studies are needed to delineate how ethanol consumption could have an impact on altered nutrient absorption under various disease conditions. Current research has elucidated the relationship of alcohol consumption on glucose, glutamine, vitamins B1 (thiamine), B2 (riboflavin), B9 (folate), C (ascorbic acid), selenium, iron, and zinc absorption within the small intestine. We conducted systematic computerized searches in PubMed using the following keywords: (1) "Alcohol effects on nutrient transport"; (2) "Alcohol mediated malabsorption of nutrients"; (3) "Alcohol effects on small intestinal nutrient transport"; and (4) "Alcohol mediated malabsorption of nutrients in small intestine". We included the relevant studies in this review. The main objective of this review is to marshal and analyze previously published research articles and discuss, in-depth, the understanding of ethanol's effect in modulating absorption of vital macro and micronutrients in health and disease conditions. This could ultimately provide great insights in the development of new therapeutic strategies to combat malnutrition associated with alcohol consumption.
Collapse
Affiliation(s)
- Molly Butts
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Vijaya Lakshmi Sundaram
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Usha Murughiyan
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Alip Borthakur
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| | - Soudamani Singh
- Department of Clinical and Translational Sciences, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
3
|
Wang W, Wu J, Liu P, Tang X, Pang H, Xie T, Xu F, Shao J, Chen Y, Liu B, Zheng Y. Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis and Phenotyping of Carotid Artery Stenosis. Front Mol Biosci 2021; 8:714706. [PMID: 34447787 PMCID: PMC8383446 DOI: 10.3389/fmolb.2021.714706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Carotid artery stenosis (CAS) is caused by the formation of atherosclerotic plaques inside the arterial wall and accounts for 20–30% of all strokes. The development of an early, noninvasive diagnostic method and the identification of high-risk patients for ischemic stroke is essential to the management of CAS in clinical practice. Methods: We used the data-independent acquisition (DIA) technique to conduct a urinary proteomic study in patients with CAS and healthy controls. We identified the potential diagnosis and risk stratification biomarkers of CAS. And Ingenuity pathway analysis was used for functional annotation of differentially expressed proteins (DEPs). Furthermore, receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic values of DEPs. Results: A total of 194 DEPs were identified between CAS patients and healthy controls by DIA quantification. The bioinformatics analysis showed that these DEPs were correlated with the pathogenesis of CAS. We further identified 32 DEPs in symptomatic CAS compared to asymptomatic CAS, and biological function analysis revealed that these proteins are mainly related to immune/inflammatory pathways. Finally, a biomarker panel of six proteins (ACP2, PLD3, HLA-C, GGH, CALML3, and IL2RB) exhibited potential diagnostic value in CAS and good discriminative power for differentiating symptomatic and asymptomatic CAS with high sensitivity and specificity. Conclusions: Our study identified novel potential urinary biomarkers for noninvasive early screening and risk stratification of CAS.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyu Pang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Xu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Shao
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bao Liu
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Syed Javid Hasan SAH, Pawirotaroeno RAO, Syed Javid Hasan SAH, Abzianidze E. Role of Chronic Alcoholism Causing Cancer in Omnivores and Vegetarians through Epigenetic Modifications. Glob Med Genet 2021; 7:80-86. [PMID: 33392610 PMCID: PMC7772008 DOI: 10.1055/s-0040-1721814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
One of the significant consequences of alcohol consumption is cancer formation via several contributing factors such as action of alcohol metabolites, vitamin deficiencies, and oxidative stress. All these factors have been shown to cause epigenetic modifications via DNA hypomethylation, thus forming a basis for cancer development. Several published reviews and studies were systematically reviewed. Omnivores and vegetarians differ in terms of nutritional intake and deficiencies. As folate deficiency was found to be common among the omnivores, chronic alcoholism could possibly cause damage and eventually cancer in an omnivorous individual via DNA hypomethylation due to folate deficiency. Furthermore, as niacin was found to be deficient among vegetarians, damage in vegetarian chronic alcoholics could be due to increased NADH/NAD
+
ratio, thus slowing alcohol metabolism in liver leading to increased alcohol and acetaldehyde which inhibit methyltransferase enzymes, eventually leading to DNA hypomethylation. Hence correcting the concerned deficiency and supplementation with S-adenosyl methionine could prove to be protective in chronic alcohol use.
Collapse
Affiliation(s)
| | | | | | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
5
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
6
|
Alam C, Kondo M, O'Connor DL, Bendayan R. Clinical Implications of Folate Transport in the Central Nervous System. Trends Pharmacol Sci 2020; 41:349-361. [PMID: 32200980 DOI: 10.1016/j.tips.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Folates are essential for key biosynthetic processes in mammalian cells and play a crucial role in the maintenance of central nervous system homeostasis. Mammals lack the metabolic capacity for folate biosynthesis; hence, folate requirements are largely met through dietary sources. To date, three major folate transport pathways have been characterized: the folate receptors (FRs), reduced folate carrier (RFC), and proton-coupled folate transporter (PCFT). This article reviews current knowledge on the role of folate transport systems in mediating folate delivery to vital tissues, particularly the brain, and how these pathways are modulated by various regulatory mechanisms. We will also briefly highlight the clinical significance of cerebral folate transport in relation to neurodevelopmental disorders associated with folate deficiency.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada; Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
7
|
Dietary B vitamin and methionine intakes and risk for colorectal cancer: a case-control study in China. Br J Nutr 2020; 123:1277-1289. [PMID: 32054547 DOI: 10.1017/s0007114520000501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
B vitamins (including folate, vitamin B2, vitamin B6 and vitamin B12) and methionine are essential for methylation reactions, nucleotide synthesis, DNA stability and DNA repair. However, epidemiological evidence among Chinese populations is limited. The objective of this study was to evaluate B vitamins and methionine in relation to colorectal cancer risk in a Chinese population. A case-control study was conducted from July 2010 to April 2019. A total of 2502 patients with colorectal cancer were recruited along with 2538 age- (5-year interval) and sex-matched controls. Dietary data were collected using a validated FFQ. Multivariable logistic regression was used to assess OR and 95 % CI. The intake of folate, vitamin B2, vitamin B6 and vitamin B12 was inversely associated with colorectal cancer risk. The multivariable OR for the highest quartile v. the lowest quartile were 0·62 (95 % CI 0·51, 0·74; Ptrend < 0·001) for folate, 0·46 (95 % CI 0·38, 0·55; Ptrend < 0·001) for vitamin B2, 0·55 (95 % CI 0·46, 0·76; Ptrend < 0·001) for vitamin B6 and 0·72 (95 % CI 0·60, 0·86; Ptrend < 0·001) for vitamin B12. No statistically significant association was found between methionine intake and colorectal cancer risk. Stratified analysis by sex showed that the inverse associations between vitamin B12 and methionine intake and colorectal cancer risk were found only among women. This study indicated that higher intake of folate, vitamin B2, vitamin B6 and vitamin B12 was associated with decreased risk of colorectal cancer in a Chinese population.
Collapse
|
8
|
Raz S, Stark M, Assaraf YG. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist Updat 2016; 28:43-64. [PMID: 27620954 DOI: 10.1016/j.drup.2016.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 01/26/2023]
Abstract
Mammalians are devoid of autonomous biosynthesis of folates and hence must obtain them from the diet. Reduced folate cofactors are B9-vitamins which play a key role as donors of one-carbon units in the biosynthesis of purine nucleotides, thymidylate and amino acids as well as in a multitude of methylation reactions including DNA, RNA, histone and non-histone proteins, phospholipids, as well as intermediate metabolites. The products of these S-adenosylmethionine (SAM)-dependent methylations are involved in the regulation of key biological processes including transcription, translation and intracellular signaling. Folate-dependent one-carbon metabolism occurs in several subcellular compartments including the cytoplasm, mitochondria, and nucleus. Since folates are essential for DNA replication, intracellular folate cofactors play a central role in cancer biology and inflammatory autoimmune disorders. In this respect, various folate-dependent enzymes catalyzing nucleotide biosynthesis have been targeted by specific folate antagonists known as antifolates. Currently, antifolates are used in drug treatment of multiple human cancers, non-malignant chronic inflammatory disorders as well as bacterial and parasitic infections. An obligatory key component of intracellular folate retention and intracellular homeostasis is (anti)folate polyglutamylation, mediated by the unique enzyme folylpoly-γ-glutamate synthetase (FPGS), which resides in both the cytoplasm and mitochondria. Consistently, knockout of the FPGS gene in mice results in embryonic lethality. FPGS catalyzes the addition of a long polyglutamate chain to folates and antifolates, hence rendering them polyanions which are efficiently retained in the cell and are now bound with enhanced affinity by various folate-dependent enzymes. The current review highlights the crucial role that FPGS plays in maintenance of folate homeostasis under physiological conditions and delineates the plethora of the molecular mechanisms underlying loss of FPGS function and consequent antifolate resistance in cancer.
Collapse
Affiliation(s)
- Shachar Raz
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Peng Q, Chen H, Huo JR. Alcohol consumption and corresponding factors: A novel perspective on the risk factors of esophageal cancer. Oncol Lett 2016; 11:3231-3239. [PMID: 27123096 DOI: 10.3892/ol.2016.4401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022] Open
Abstract
Esophageal cancer is the eighth most common type of cancer in the world, and the sixth most common cause of mortality from cancer. Alcohol consumption is the major risk factor for esophageal cancer, due to the worldwide prevalence and high carcinogenicity of the ethanol metabolite. In epidemiological studies, the efficiency of alcohol intake to enhance the risk of esophageal cancer is altered by daily ethanol consumption, type of alcoholic beverages ingested, time since quitting drinking, age of drinking initiation, differences in population and subtypes of esophageal cancer. Corresponding factors, including gene polymorphisms, tobacco smoking, oral microorganisms and folate deficiency, reveal a synergistic effect in concurrent alcohol users that may lead to an increased risk of developing esophageal cancer. Consequently, esophageal cancer prevention involves multiple aspects, including quitting drinking and smoking, maintaining an adequate oral health and ingesting adequate quantities of folate, particularly in genetically high-risk populations.
Collapse
Affiliation(s)
- Qiao Peng
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui Chen
- Department of Gastroenterology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Ji-Rong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
10
|
Cecil CAM, Walton E, Viding E. DNA Methylation, Substance Use and Addiction: a Systematic Review of Recent Animal and Human Research from a Developmental Perspective. CURRENT ADDICTION REPORTS 2015. [DOI: 10.1007/s40429-015-0072-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Raz S, Sheban D, Gonen N, Stark M, Berman B, Assaraf YG. Severe hypoxia induces complete antifolate resistance in carcinoma cells due to cell cycle arrest. Cell Death Dis 2014; 5:e1067. [PMID: 24556682 PMCID: PMC3944254 DOI: 10.1038/cddis.2014.39] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/14/2014] [Indexed: 02/08/2023]
Abstract
Antifolates have a crucial role in the treatment of various cancers by inhibiting key enzymes in purine and thymidylate biosynthesis. However, the frequent emergence of inherent and acquired antifolate resistance in solid tumors calls for the development of novel therapeutic strategies to overcome this chemoresistance. The core of solid tumors is highly hypoxic due to poor blood circulation, and this hypoxia is considered to be a major contributor to drug resistance. However, the cytotoxic activity of antifolates under hypoxia is poorly characterized. Here we show that under severe hypoxia, gene expression of ubiquitously expressed key enzymes and transporters in folate metabolism and nucleoside homeostasis is downregulated. We further demonstrate that carcinoma cells become completely refractory, even at sub-millimolar concentrations, to all hydrophilic and lipophilic antifolates tested. Moreover, tumor cells retained sensitivity to the proteasome inhibitor bortezomib and the topoisomerase II inhibitor doxorubicin, which are independent of cell cycle. We provide evidence that this antifolate resistance, associated with repression of folate metabolism, is a result of the inability of antifolates to induce DNA damage under hypoxia, and is attributable to a hypoxia-induced cell cycle arrest, rather than a general anti-apoptotic mechanism. Our findings suggest that solid tumors harboring a hypoxic core of cell cycle-arrested cells may display antifolate resistance while retaining sensitivity to the chemotherapeutics bortezomib and doxorubicin. This study bears important implications for the molecular basis underlying antifolate resistance under hypoxia and its rational overcoming in solid tumors.
Collapse
Affiliation(s)
- S Raz
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - D Sheban
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - N Gonen
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - M Stark
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - B Berman
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Y G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
12
|
Medici V, Halsted CH. Folate, alcohol, and liver disease. Mol Nutr Food Res 2012; 57:596-606. [PMID: 23136133 DOI: 10.1002/mnfr.201200077] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/09/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
Abstract
Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of ALD with particular focus on ethanol-induced alterations in methionine metabolism, which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of ALD based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, University of California Davis, Davis, CA 95817, USA.
| | | |
Collapse
|