1
|
Hussain Y, Singh J, Meena A, Sinha RA, Luqman S. Escin-sorafenib synergy up-regulates LC3-II and p62 to induce apoptosis in hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:840-856. [PMID: 37853854 DOI: 10.1002/tox.23988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a common solid cancer and the leading cause of cancer deaths worldwide. Sorafenib is the first drug used to treat HCC but its effectiveness needs to be improved, and it is important to find ways to treat cancer that combine sorafenib with other drugs. Synergistic therapies lower effective drug doses and side effects while enhancing the anticancer effect. PURPOSE In the present study, the therapeutic potential of sorafenib in combination with escin and its underlying mechanism in targeting liver cancer has been established. STUDY DESIGN/METHODS The IC50 of sorafenib and escin against HepG2, PLC/PRF5 and Huh7 cell lines were determined using MTT assay. The combination index, dose reduction index, isobologram and concentrations producing synergy were evaluated using the Chou-Talaly algorithm. The sub-effective concentration of sorafenib and escin was selected to analyze cytotoxic synergistic potential. Cellular ROS, mitochondrial membrane potential, annexin V and cell cycle were evaluated using a flow-cytometer, and autophagy biomarkers were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role. A DEN-induced liver cancer rat model was developed to check the synergy of sorafenib and escin. RESULTS Different concentrations of escin reduced the IC50 of sorafenib in HepG2, PLC/PRF5 and Huh7 cell lines. Chou-Talaly algorithm determined cytotoxic synergistic concentrations of sorafenib and escin in these cell lines. Mechanistically, this combination over-expressed p62 and LC-II, reflecting autophagy block and induced late apoptosis, further reconfirmed by ATG5 knockdown. Sorafenib and escin combination reduced HCC serum biomarker α-feto protein (α-FP) by 1.5 folds. This combination restricted liver weight, tumor number and size, also, conserved morphological features of liver cells. The combination selectively targeted the G0 /G1 phase of cancer cells. CONCLUSION Escin and sorafenib combination potentially up-regulates p62 to block autophagy to induce late apoptosis in liver cancer cells.
Collapse
Affiliation(s)
- Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Ghamry HI. Impending Chemotherapeutic Impact of Arthrospira platensis Nanoparticles and/or Sorafenib against Hepatocellular Carcinoma through Modulation of Antioxidant Status, Tumor Marker Genes, and Anti-Inflammatory Signaling Pathways. TOXICS 2023; 11:107. [PMID: 36850982 PMCID: PMC9964820 DOI: 10.3390/toxics11020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
This study investigated Arthrospira platensis nanoparticles (NSP) to overcome sorafenib resistance in diethyl nitrosamine-induced hepatocellular carcinoma (HCC) in rats. This study used sixty Wistar male rats randomly grouped into two main groups, the normal control group, and the HCC model. For the normal control group (n = 12), animals were injected i.p. with PBS two times/week for 16 weeks. The remaining 48 rats were injected i.p. with using a single dose of diethyl nitrosamine (DENA) (200 mg/kg, ip), followed by phenobarbital sodium (0.05%) in drinking water for 16 weeks. At the end of the 16th week, rats were allocated into four groups (11 rats/each), one group was left without treatment (DENA group), and the other three groups were treated with either sorafenib (30 mg/kg; p.o.) or Arthrospira platensis Nanoparticles (NSP) (0.5 mg/kg body weight) once daily orally with the aid of gastric gavage or their combination for another four weeks. Blood and tissue samples were collected for further biochemical, histological, immunohistochemical, and gene expression analysis. Our result revealed that DENA-treated rats showed a marked elevation of hepatic enzyme markers with an increase in the total protein and globulin and decreases in the hepatic SOD. Catalase and GSH, with significantly increased MDA levels, subsequently increased the tumor biomarkers (AFP and CEA). On the molecular level, the DENA-treated rats showed significant up-regulation of Cyp19 mRNA and the inflammatory cytokines (TNF-α, iNOS, and TGF-1β) as well as the Ki-67 gene expression (p < 0.05) with down-regulation of the PPAR-γ and FOXO-1. In addition, the HCC group showed a loss of hepatic architecture, as well as atypia, swelling, macrosteatosis of hepatocytes, and fibrosis, besides increased vascularization. The immunohistochemical findings show increased expression of both GPC-3 and Hep Par 1 in the HCC group. SOR, NSP, or a combination of NSP and SOR.NSP treatment significantly overturned the DENA's harmful effect near the normal levels and restored all cancer biomarkers and antioxidant activities, indicating the chemotherapeutic impact of NSP. The present study provides evidence that NSP exerts a major anticancer effect on DENA-induced HCC. SOR/NSP is a promising combination for tumor suppression and overcoming sorafenib resistance in HCC by modulating antioxidants, anti-inflammatory signals, and tumor markers.
Collapse
Affiliation(s)
- Heba I Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| |
Collapse
|
3
|
Patel DK. Biological Importance and Therapeutic Benefit of Rhamnocitrin: A Review of Pharmacology and Analytical Aspects. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:150-158. [PMID: 35794741 DOI: 10.2174/2949681015666220609100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Humans have a long history of the uses of plant based products, including extracts and pure phytoconstituents for the treatment of human diseases in the different system of medicine. In the developing countries, phytoproducts play an important role in the healthcare systems due to their medicinal importance and pharmacological activities. Flavonoids class phytochemicals are beneficial for human beings because of their free radical scavenging properties and trace metals chelating potential. Flavonoids have inhibitory potential for the growth of bacteria and virus mainly through enzyme inhibition functions and viral translation. Rhamnocitrin is also called 7- methyl-kaempferol is important flavonoids, which has been isolated from different medicinal plants and has pharmacological activities in the medicine. METHODS Present paper describes the biological potential and health beneficial aspects of rhamnocitrin in the medicine through the data analysis of published papers in the recent years in the field of medicine and modern medical sciences. Scientific data on rhamnocitrin have been collected from electronic databases such as PubMed, Google Scholar, Google, Scopus and Science Direct in the present investigation and analyzed to know the biological importance and pharmacological activities of rhamnocitrin. Pharmacological scientific data of rhamnocitrin have been collected and analyzed in the present work with their analytical aspects. RESULTS Literature data analysis of different scientific work on rhamnocitrin revealed the biological importance of rhamnocitrin in medicine. Rhamnocitrin is known to be a promising phytoconstituents found to be present in medicinal plants with a wide range of biological activities. Rhamnocitrin was found to have pharmacological activities, including anti-atherogenic, anti-oxidant, anti-cancer, anti-bacterial, anti-inflammatory, enzymatic and neuroprotective potential. Further biological effect of rhamnocitrin on adipocyte differentiation has been also studied in the present work. Analytical data on rhamnocitrin signified the application of different analytical techniques for the separation, isolation and identification of rhamnocitrin in medicine. CONCLUSION Literature data analysis of different scientific research works revealed the biological importance and therapeutic benefit of rhamnocitrin in medicine.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
4
|
Shkondrov A, Popova P, Ionkova I, Krasteva I. Flavonoids in in vitro cultures of Astragalus hamosus. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e76460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Astragalus hamosus contains valuable biologically active compounds, incl. flavonoids. The possibility for in vitro cultivation of the species as a source of important flavonoids was studied. Shoot and callus cultures were established and successfully cultivated on different nutrition media, complemented or not with growth regulators. An ultra-high performance liquid chromatography – high-resolution electrospray ionisation mass spectrometry (UHPLC-HRESIMS) qualitative and quantitative analysis of non-purified methanol extracts of these cultures was performed. It was found that the cultures produced rutin in comparable quantity. Interestingly, both shoots and callus cultures accumulated the rare triglycosides alcesefoliside and mauritianin. The quantity of mauritianin, biosynthesized in shoots, was significantly higher to that in callus cultures. Alcesefoliside, was in lower quantity, compared to mauritianin. In addition, callus cultures produced alcesefoliside trice as the shoots, besides their lower level of differentiation. These findings could serve as initial research to establish the value of in vitro cultures from A. hamosus as an alternative mean of production of pharmaceutically important flavonol glycosides.
Collapse
|
5
|
Shkondrov A, Krasteva I. Liquid chromatography – high resolution mass spectrometry screening of Astragalus hamosus and Astragalus corniculatus. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e60621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Astragalus hamosus and Astragalus corniculatus were examined for the presence of flavoalkaloids, acylated and highly glycosylated flavonoids. Non-purified extracts of the overground parts of the species were subjected to ultra-high performance liquid chromatography – high resolution electrospray ionisation mass spectrometry (UHPLC-HRESIMS) analysis and the results were compared to authentic reference substances. A flavoalkaloid of kaempferol was newly identified in an extract of A. hamosus. In addition, three compounds – quercetin and kaempferol flavonoids, acylated with hydroxymethylglutaric acid and alcesefoliside, were found in extracts of A. hamosus and A. corniculatus for the first time.
Collapse
|
6
|
Abd-Elbaset M, Mansour AM, Ahmed OM, Abo-Youssef AM. The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1611-1624. [PMID: 32270258 DOI: 10.1007/s00210-020-01863-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Proliferation and apoptosis are two primary driving forces behind the pathogenesis of hepatocellular carcinoma (HCC). HCC is associated with Ki-67 and Bcl-2 overexpression, reduced Bax expression inducing disturbance of equilibrium between cellular proliferation and apoptosis, and exacerbated by reduced expression of PPAR-γ and FOXO-1. Our objective was to examine the mechanism by which the cyclic isoprenoid, β-ionone (βI), attenuated hepatocarcinogenesis and compare its possible anticancer activity with sorafenib (SF) as standard HCC treatment. HCC induction was achieved by supplying Wistar rats with 0.01% diethylnitrosamine (DENA) for 8 consecutive weeks by free access of drinking water. The effects of βI (160 mg/kg/day) administered orally were evaluated by biochemical, oxidative stress, macroscopical, and histopathological analysis. In addition, immunohistochemical assay for localization and expression of Bax and Bcl-2 and RT-PCR for expression levels of PPAR-γ, FOXO-1, and Ki-67 mRNA were performed. βI treatment significantly reduced the incidence, total number, and multiplicity of visible hepatocyte nodules, attenuated LPO, near-normal restoration of all cancer biomarkers, and antioxidant activities, indicating the chemotherapeutic impact of βI. Histopathological analysis of the liver confirmed that further. βI also induced pro-apoptotic protein Bax expression and reduced anti-apoptotic expression of Bcl-2 protein. Moreover, βI induced mRNA expression of tumor suppressor genes (PPAR-γ and FOXO-1) and decreased proliferative marker Ki-67 mRNA expression. For the first time, the present study provides evidence that βI exerts a major anticancer effect on DENA-induced HCC, at least in part, through inhibition of cell proliferation, oxidative stress, and apoptogenic signal induction mediated by downregulation of Bcl-2 and upregulation of Bax, PPAR-γ, and FOXO-1 expressions.
Collapse
Affiliation(s)
- Mohamed Abd-Elbaset
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt.
| | - Ahmed M Mansour
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt
| |
Collapse
|
7
|
Tang Q, Zhang M, Hong Z, Chen Y, Wang P, Wang J, Wang Z, Fang R, Jin M. Effects of astragalus injection on different stages of early hepatocarcinogenesis in a two-stage hepatocarcinogenesis model using rats. J Toxicol Pathol 2019; 32:155-164. [PMID: 31402807 PMCID: PMC6682553 DOI: 10.1293/tox.2019-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
To clarify the suppressive effects of astragalus injection (AI) on different stages of
early hepatocarcinogenesis induced by weak promotion, SD rats initiated with a single
intraperitoneal (i.p.) injection of N-diethylnitrosamine (DEN) at 200
mg/kg body weight and promoted with 0.5% piperonyl butoxide (PBO) in diet were repeatedly
administered AI at 5 ml/kg body weight/day in the early postinitiation (EPI) or late
postinitiation (LPI) period for 2 or 8 weeks, respectively. The number and area of
glutathione S-transferase placental form (GST-P)-immunoreactive
(+) foci tended to increase in the DEN+PBO group compared with the DEN-alone
group. Among the PBO-promoted groups, number and area of GST-P+ foci did not
visibly change in the DEN+PBO+AI-EPI group compared with the DEN+PBO group. In contrast,
number and area of GST-P+ foci tended to decrease in the DEN+PBO+AI-LPI group
compared with the DEN+PBO group. Number of Ki67+ cells was increased in the
DEN+PBO group compared with the DEN-alone group and was decreased in both AI-administered
groups compared with the DEN+PBO group. Gene expression analysis revealed that the
DEN+PBO+AI-LPI group showed increased transcript levels of Ccne1,
Cdkn1b, Rb1, Bax,
Bcl2, Casp3, and Casp9 compared with
the DEN+PBO group; however, the DEN+PBO+AI-EPI group did not show changes in the
transcript levels of any genes examined compared with the DEN+PBO. These results suggest
that AI administration during the LPI period caused weak suppression of
hepatocarcinogenesis under weak promotion with a low PBO dose by the mechanism involving
facilitation of cell cycle suppression causing G1/S arrest and apoptosis via the
mitochondrial pathway. In addition, the results suggest that AI administration during the
EPI period has no effect on weakly promoted hepatocarcinogenesis.
Collapse
Affiliation(s)
- Qian Tang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Mei Zhang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Zexuan Hong
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Yao Chen
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Pan Wang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Jian Wang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Zili Wang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Rendong Fang
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| | - Meilan Jin
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, College of Animal Science and Technology, Southwest University, 1-13-4 Hongyuhuayuan, No. 196 Beinan Road, BeiBei District, Chongqing 400700, P.R. China
| |
Collapse
|
8
|
Hassanzadeh-Taheri M, Hosseini M, Salimi M, Moodi H, Dorranpour D. Acute and Sub-Acute Oral Toxicity Evaluation of Astragalus hamosus Seedpod Ethanolic Extract in Wistar Rats. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.05] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Flavonoids Effects on Hepatocellular Carcinoma in Murine Models: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6328970. [PMID: 29681978 PMCID: PMC5850900 DOI: 10.1155/2018/6328970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
The hepatocellular carcinoma (HCC) is the second most common cause of cancer deaths worldwide. It occurs primarily as manifestation of other pathological processes, such as viral hepatitis, cirrhosis, and toxin exposure that affect directly the cellular process. Studies were selected from PubMed and Scopus databases according to the PRISMA statement. The research filters were constructed using three parameters: flavonoids, hepatocellular carcinoma, and animal model. The bias analysis of the 34 selected works was done using the ARRIVE guidelines. The most widely used flavonoid in the studies was epigallocatechin gallate extracted from green tea. In general, the treatment with different flavonoids presented inhibition of tumor growth and antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory activities. The bias analysis evidenced the absence of methodological processes in all studies, such as the age or weight of the animals, the method of flavonoids' extraction, or the experimental designs, analytical methods, and outcome measures. It has been known that flavonoids have a protective effect against HCC. However, the absence or incomplete characterization of the animal models, treatment protocols, and phytochemical and toxicity analyses impaired the internal validity of the individual studies, making it difficult to determine the effectiveness of plant-derived products in the treatment of HCC.
Collapse
|
10
|
Li Y, Ye Y, Chen H. Astragaloside IV inhibits cell migration and viability of hepatocellular carcinoma cells via suppressing long noncoding RNA ATB. Biomed Pharmacother 2018; 99:134-141. [PMID: 29331759 DOI: 10.1016/j.biopha.2017.12.108] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Astragaloside IV (AS-IV), the major active component of Astragalus membranaceus, has shown attractive anticancer effects in certain cancers. However, the roles and action mechanisms of AS-IV in hepatocellular carcinoma (HCC) are largely unclear. Long noncoding RNAs (lncRNAs) are recently revealed to have crucial roles in HCC initiation and progression, but whether lncRNAs participate in the anticancer roles of AS-IV are unknown. In this study, we demonstrated that AS-IV significantly downregulated lncRNA-ATB expression in a dose- and time-dependent manner in HCC cells. Through downregulating lncRNA-ATB, AS-IV repressed epithelial-mesenchymal transition (EMT) and migration of HCC cells. Furthermore, through downregulating lncRNA-ATB, AS-IV inactivated IL-11/STAT3 signaling, induced HCC cell apoptosis, and decreased HCC cell viability. Overexpression of lncRNA-ATB reversed the effects of AS-IV on HCC cell migration, EMT, cell apoptosis, cell viability, and IL-11/STAT3 signaling. Taken together, our results showed that AS-IV inhibited migration and cell viability of HCC cells via downregulating lncRNA-ATB. Thus, our data provided a novel molecular basis for the applications of AS-IV in the therapy of HCC.
Collapse
Affiliation(s)
- Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongyan Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 2017; 8:868-886. [PMID: 29344421 PMCID: PMC5758356 DOI: 10.14336/ad.2017.0816] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy and the Family Planning program of the 1970s - 1990s, China is rapidly becoming an aging society. Therefore, the investigation of healthspan-extending drugs becomes more urgent. Astragalus membranaceus (Huangqi) is a major medicinal herb that has been commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders, or marketed as life-prolonging extracts for human use in China, for more than 2000 years. The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Pharmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects. A proprietary extract of the dried root of Astragalus membranaceus, called TA-65, was associated with a significant age-reversal effect in the immune system. Our review focuses on the function and the underlying mechanisms of Astragalus membranaceus in lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer effects, based on experimental and clinical studies.
Collapse
Affiliation(s)
- Ping Liu
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
12
|
Alam MJ, Alam O, Khan SA, Naim MJ, Islamuddin M, Deora GS. Synthesis, anti-inflammatory, analgesic, COX1/2-inhibitory activity, and molecular docking studies of hybrid pyrazole analogues. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3529-3543. [PMID: 27826185 PMCID: PMC5096746 DOI: 10.2147/dddt.s118297] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article reports on the design, synthesis, and pharmacological activity of a new series of hybrid pyrazole analogues: 5a–5u. Among the series 5a–5u, the compounds 5u and 5s exhibited potent anti-inflammatory activity of 80.63% and 78.09% and inhibition of 80.87% and 76.56% compared with the standard drug ibuprofen, which showed 81.32% and 79.23% inhibition after 3 and 4 hours, respectively. On the basis of in vivo studies, 12 compounds were selected for assessment of their in vitro inhibitory action against COX1/2 and TNFα. The compounds 5u and 5s showed high COX2-inhibitory activity, with half-maximal inhibitory concentrations of 1.79 and 2.51 μM and selectivity index values of 72.73 and 65.75, respectively, comparable to celecoxib (selectivity index =78.06). These selected compounds were also tested for TNFα, cytotoxicity, and ulcerogenicity. Docking studies were also carried out to determine possible interactions of the potent compounds (5u and 5s), which also showed high docking scores of −12.907 and −12.24 compared to celecoxib, with a −9.924 docking score. These selective COX2 inhibitors were docked into the active site of COX2, and showed the same orientation and binding mode to that of celecoxib (selective COX2 inhibitor). Docking studies also showed that the SO2NH2 of 5u and 5s is inserted deep inside the selective pocket of the COX2-active site and formed a hydrogen-bond interaction with His90, Arg513, Phe518, Ser353, Gln192, and Ile517, which was further validated by superimposed docked pose with celecoxib.
Collapse
Affiliation(s)
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy
| | | | | | - Mohammad Islamuddin
- Parasite Immunology Laboratory, Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi
| | | |
Collapse
|
13
|
Kondeva-Burdina M, Krasteva I, Mitcheva M. Effects of rhamnocitrin 4-β-D-galactopyranoside, isolated from Astragalus hamosus on toxicity models in vitro. Pharmacogn Mag 2014; 10:S487-93. [PMID: 25298664 PMCID: PMC4189262 DOI: 10.4103/0973-1296.139778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/01/2014] [Accepted: 08/30/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Astragalus hamosus L. (Fabaceae) is used in herbal medicine as emollient, demulcent, phrodisiac, diuretic, laxative, and good for inflammation, ulcers, and leukoderma. It is useful in treating irritation of the mucous membranes, nervous affections, and catarrh. OBJECTIVE Rhamnocitrin 4-β-D-galactopyranoside (RGP), isolated from A. hamosus, was investigated for its possible protective effect on different models of toxicity in vitro on sub-cellular and cellular level. MATERIALS AND METHODS The effects of RGP were evaluated on isolated rat brain synaptosomes, prepared by Percoll reagent and on rat hepatocytes, isolated by two-stepped collagenase perfusion. RESULTS In synaptosomes, RGP had statistically significant protective effect, similar to those of silymarin, on 6-hydroxy (OH)-dopamine-induced oxidative stress. These results correlate with literature data about protective effects of kempferol and rhamnocitrin on oxidative damage in rat pheochromocytoma PC12 cells. In rat hepatocytes, we investigate the effect of RGP on two models of liver toxicity: Bendamustine and cyclophosphamide. In these models, the compound had statistically significant cytoprotective and antioxidant activity, similar to those of silymarin. CONCLUSION According to these results, we can suggest that such cytoprotective effect of RGP might be due to an influence on bendamustine and cyclophosphamide metabolism in rat hepatocytes. In isolated rat hepatocytes, in combination with bendamustine and cyclophosphamide and in 6-OH-dopamine-induced oxidative stress in isolated rat synaptosomes, RGP, isolated from A. hamosus, was effective protector and antioxidant. The effects were closed to those of flavonoid silymarin-the classical hepatoprotector and antioxidant.
Collapse
Affiliation(s)
- Magdalena Kondeva-Burdina
- Laboratory for Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Sofia, Bulgaria
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Mitka Mitcheva
- Laboratory for Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Sofia, Bulgaria
| |
Collapse
|