1
|
SLC2A5 Correlated with Immune Infiltration: A Candidate Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma. J Immunol Res 2021; 2021:9938397. [PMID: 34604392 PMCID: PMC8483904 DOI: 10.1155/2021/9938397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of lung cancer with a relatively poor prognosis, requiring novel therapeutic approaches. Great advances in new immunotherapy strategies have shown encouraging results in lung cancer patients. This study is aimed at elucidating the function of SLC2A5 in the prognosis and pathogenesis of LUAD by analyzing public databases. The differential expression of SLC2A5 in various tissues from Oncomine, GEPIA, and other databases was obtained, and SLC2A5 expression at the protein level in normal and tumor tissues was detected with the use of the HPA database. Then, we used the UALCAN database to analyze the expression of SLC2A5 in different clinical feature subgroups. Notably, in both PrognoScan and Kaplan-Meier plotter databases, we found a certain association between SLC2A5 and poor OS outcomes in LUAD patients. Studies based on the TIMER database show a strong correlation between SLC2A5 expression and various immune cell infiltrates and markers. The data analysis in the UALCAN database showed that the decreased promoter methylation level of SLC2A5 in LUAD may lead to the high expression of SLC2A5. Finally, we used the LinkedOmics database to evaluate the SLC2A5-related coexpression and functional networks in LUAD and to investigate their role in tumor immunity. These findings suggest that SLC2A5 correlated with immune infiltration can be used as a candidate diagnostic and prognostic biomarker in LUAD patients.
Collapse
|
2
|
Jiang C, Zhao H, Yang B, Sun Z, Li X, Hu X. lnc-REG3G-3-1/miR-215-3p Promotes Brain Metastasis of Lung Adenocarcinoma by Regulating Leptin and SLC2A5. Front Oncol 2020; 10:1344. [PMID: 32903414 PMCID: PMC7434858 DOI: 10.3389/fonc.2020.01344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
This study aims to explore the role and mechanism of specific lncRNA in brain metastasis (BM) from lung adenocarcinoma (LADC), providing an effective biomarker for early diagnosis and targeted therapy of BM from LADC. Based on the gene expression profiles of lncRNA and mRNA in LADC and BM tissues detected by Gene Chip, lnc-REG3G-3-1 was selected, and the related genes, including miR-215-3p, leptin, and SLC2A5, were identified by data analysis. Human LADC cell lines A549 and H1299 were cultured. Dual-luciferase and endogenous validation experiments were used to confirm the regulation between these genes. Real-time quantitative reverse transcription-polymerase chain reaction and Western blotting were used to detect gene expression. The tumor metastasis-related gene function of lnc-REG3G-3-1 and miR-215-3p in H1299 cells was verified by Transwell invasion, migration assays, and scratch testing. Nude mice xenograft tumors constructed with decreased lnc-REG3G-3-1 confirmed the influences on gene expression in vivo. lnc-REG3G-3-1 was highly expressed in BM tissues that originated from LADC compared with that in primary cancer tissues. lnc-REG3G-3-1 reduced miR-215-3p expression, thereby regulating the target genes leptin and SLC2A5 and the signaling pathways, taking part in the lnc-REG3G-3-1/miR-215-3p axis in the process of BM from LADC. lnc-REG3G-3-1, leptin, and SLC2A5 through regulating signaling pathways may be jointly involved in the regulation of the biological process of BM in patients with LADC.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Hui Zhao
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Zengfeng Sun
- Key Laboratory of Cancer Prevention and Therapy, Department of Neurosurgery and Neurooncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Li
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Xiaoli Hu
- Department of Respiratory, The Second People's Hospital of Linhai City, Taizhou, China
| |
Collapse
|
3
|
Liu AG, Zhong JC, Chen G, He RQ, He YQ, Ma J, Yang LH, Wu XJ, Huang JT, Li JJ, Mo WJ, Qin XG. Upregulated expression of SAC3D1 is associated with progression in gastric cancer. Int J Oncol 2020; 57:122-138. [PMID: 32319600 PMCID: PMC7252452 DOI: 10.3892/ijo.2020.5048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
SAC3 domain containing 1 (SAC3D1) has been reported to be involved in numerous types of cancer. However, the role of SAC3D1 in GC has not yet been elucidated. In the present study, the mRNA expression level of SAC3D1 between GC and normal tissues were assessed with a continuous variable meta-analysis based on multiple datasets from public databases. The protein expression level of SAC3D1 in GC and normal tissues was assessed by an in-house immunohistochem-istry (IHC). The association between SAC3D1 expression and some clinical parameters was assessed based on the TCGA and IHC data. Survival analysis was performed to assess the association between SAC3D1 expression and the survival of GC patients. The co-expressed genes of SAC3D1 were determined by integrating three online tools, and the enrichment analyses were performed to determine SAC3D1-related pathways and hub co-expressed genes. SAC3D1 was significantly upregulated in GC tumor tissues in comparison to normal tissues with the SMD being 0.45 (0.12, 0.79). The IHC results also indicated that SAC3D1 protein expression in GC tissues was markedly higher than in normal tissues. The SMD following the addition of the IHC data was 0.59 (0.11, 1.07). The protein levels of SAC3D1 were positively associated with the histological grade, T stage and N stage of GC (P<0.001). The TCGA data also revealed that the SAC3D1 mRNA level was significantly associated with the N stage (P<0.001). Moreover, prognosis analysis indicated that SAC3D1 was closely associated with the prognosis of patients with GC. Moreover, 410 co-expressed genes of SAC3D1 were determined, and these genes were mainly enriched in the cell cycle. In total, 4 genes (CDK1, CCNB1, CCNB2 and CDC20) were considered key co-expressed genes. On the whole, these findings demonstrate that SAC3D1 is highly expressed in GC and may be associated with the progression of GC.
Collapse
Affiliation(s)
- An-Gui Liu
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Qiang He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Hua Yang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Jv Wu
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun-Tao Huang
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jian-Jun Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
4
|
Zhang X, Sun Y, Wang P, Yang C, Li S. Exploration of the molecular mechanism of prostate cancer based on mRNA and miRNA expression profiles. Onco Targets Ther 2017; 10:3225-3232. [PMID: 28721073 PMCID: PMC5499856 DOI: 10.2147/ott.s135764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer, the second most common cancer in men, has been rarely explored by integrating mRNA and miRNA expression profiles. In this study, we combined two mRNA expression datasets and six documented miRNAs to uncover the comprehensive molecular mechanism of prostate cancer. Results showed that a total of 30 genes were significantly differentially expressed in 49 tumor samples by comparing with 22 normal samples. Importantly, all samples from the two datasets can be clearly classified into two groups, tumor group and normal group, based on the selected differentially expressed genes (DEGs). The miRNA–mRNA regulation network indicated that 4 out of 30 DEGs can be regulated by three miRNAs. In addition, prognostic performance validation using in silico databases showed that the DEGs can significantly differentiate between low-risk and high-risk prostate cancer. In summary, multiple biological processes are probably involved in the development and progression of prostate cancer. First, dysregulation of SV2 can regulate transporter and transmembrane transporter activity and then provide the necessary nutrients for tumor cell proliferation. Second, HOXD10 can induce cell proliferation via TCF-4. Finally, dysregulation of CACNA1D can further suppress tumor apoptosis in prostate cancer. The identification of critical genes and valuable biological processes can be useful for the understanding of the molecular mechanism of prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Shengwei Li
- Surgery of Chinese Medicine, Yangzhou TCM Hospital, Nanjing University of Chinese Medicine, Yangzhou, People's Republic of China
| |
Collapse
|
5
|
Huang J, Wang L, Jiang M, Chen Q, Zhang X, Wang Y, Jiang Z, Zhang Z. Low BIK outside-inside-out interactive inflammation immune-induced transcription-dependent apoptosis through FUT3-PMM2-SQSTM1-SFN-ZNF384. Immunol Res 2016; 64:461-9. [PMID: 26423071 DOI: 10.1007/s12026-015-8701-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eighteen different Pearson mutual-positive-correlation BIK-activatory molecular feedback upstream and downstream networks were constructed from 79 overlapping of 376 GRNInfer and 98 Pearson under BIK CC ≥ 0.25 in low normal adjacent tissues of Taiwan compared with high lung adenocarcinoma. Our identified BIK interactive total feedback molecular network showed FUT3 [fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase Lewis blood group)], PMM2 (phosphomannomutase 2), SQSTM1 (sequestosome 1), SFN_2 [REX2 RNA exonuclease 2 homolog (S. cerevisiae)] and ZNF384 (zinc finger protein 384) in low normal adjacent tissues of lung adenocarcinoma. BIK interactive total feedback terms included mitochondrial envelope, endomembrane system, integral to membrane, Golgi apparatus, cytoplasm, nucleus, cytosol, intracellular signaling cascade, mitochondrion, extracellular space, inflammation, immune response, apoptosis, cell differentiation, cell cycle, regulation of cell cycle, cell proliferation, estrogen-responsive protein Efp controls cell cycle and breast tumors growth, induction or regulation of apoptosis based on integrative GO, KEGG, GenMAPP, BioCarta and disease databases in low normal adjacent tissues of lung adenocarcinoma. Therefore, we propose low BIK outside-inside-out interactive inflammation immune-induced transcription-dependent apoptosis through FUT3-PMM2-SQSTM1-SFN-ZNF384 in normal adjacent tissues of lung adenocarcinoma.
Collapse
Affiliation(s)
- Juxiang Huang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Lin Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Minghu Jiang
- Lab of Computational Linguistics, School of Humanities and Social Sciences, Tsinghua University, Beijing, 100084, China
| | - Qingchun Chen
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaoyu Zhang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yangming Wang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhenfu Jiang
- Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhongjie Zhang
- College of Information, North China University of Technology, Beijing, 100043, China
| |
Collapse
|
6
|
Abstract
Thyroid hormones (THs) have been shown to improve in vitro embryo production in cattle by increasing blastocyst formation rate, and the average cell number of blastocysts and by significantly decreasing apoptosis rate. To better understand those genetic aspects that may underlie enhanced early embryo development in the presence of THs, we characterized the bovine embryonic transcriptome at the blastocyst stage, and examined differential gene expression profiles using a bovine-specific microarray. We found that 1212 genes were differentially expressed in TH-treated embryos when compared with non-treated controls (>1.5-fold at P < 0.05). In addition 23 and eight genes were expressed uniquely in control and treated embryos, respectively. The expression of genes specifically associated with metabolism, mitochondrial function, cell differentiation and development were elevated. However, TH-related genes, including those encoding TH receptors and deiodinases, were not differentially expressed in treated embryos. Furthermore, the over-expression of 52 X-chromosome linked genes in treated embryos suggested a delay or escape from X-inactivation. This study highlights the significant impact of THs on differential gene expression in the early embryo; the identification of TH-responsive genes provides an insight into those regulatory pathways activated during development.
Collapse
|
7
|
Zhou H, Wang L, Huang J, Jiang M, Zhang X, Zhang L, Wang Y, Jiang Z, Zhang Z. High EGFR_1 Inside-Out Activated Inflammation-Induced Motility through SLC2A1-CCNB2-HMMR-KIF11-NUSAP1-PRC1-UBE2C. J Cancer 2015; 6:519-24. [PMID: 26000042 PMCID: PMC4439936 DOI: 10.7150/jca.11404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/20/2015] [Indexed: 12/29/2022] Open
Abstract
48 different Pearson mutual-positive-correlation epidermal growth factor receptor (EGFR_1)-activatory molecular feedback, up- and down-stream network was constructed from 171 overlapping of 366 GRNInfer and 223 Pearson under EGFR_1 CC ≥0.25 in high lung adenocarcinoma compared with low human normal adjacent tissues. Our identified EGFR_1 inside-out upstream activated molecular network showed SLC2A1 (solute carrier family 2 (facilitated glucose transporter) member 1), CCNB2 (cyclin B2), HMMR (hyaluronan-mediated motility receptor (RHAMM)), KIF11 (kinesin family member 11), NUSAP1 (nucleolar and spindle associated protein 1), PRC1 (protein regulator of cytokinesis 1), UBE2C (ubiquitin-conjugating enzyme E2C) in high lung adenocarcinoma. EGFR_1 inside-out upstream activated terms network includes intracellular, membrane fraction, cytoplasm, plasma membrane, integral to membrane, basolateral plasma membrane, transmembrane transport, nucleus, cytosol, cell surface; T cell homeostasis, inflammation; microtubule cytoskeleton, embryonic development (sensu Mammalia), cell cycle, mitosis, thymus development, cell division, regulation of cell cycle, Contributed--cellular process--Hs cell cycle KEGG, cytokinesis, M phase, M phase of mitotic cell cycle, estrogen-responsive protein Efp controls cell cycle and breast tumors growth, cell motility, locomotion, locomotory behavior, neoplasm metastasis, spindle pole, spindle microtubule, microtubule motor activity, microtubule-based movement, mitotic spindle organization and biogenesis, mitotic centrosome separation, spindle pole body organization and biogenesis, microtubule-based process, microtubule, cytokinesis after mitosis, mitotic chromosome condensation, establishment of mitotic spindle localization, positive regulation of mitosis, mitotic spindle elongation, spindle organization and biogenesis, positive regulation of exit from mitosis, regulation of cell proliferation, positive regulation of cell proliferation based on integrative GO, KEGG, GenMAPP, BioCarta and disease databases in high lung adenocarcinoma. Therefore, we propose high EGFR_1 inside-out activated inflammation-induced motility through SLC2A1-CCNB2-HMMR-KIF11-NUSAP1-PRC1-UBE2C in lung adenocarcinoma.
Collapse
Affiliation(s)
- Huilei Zhou
- 1. Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Lin Wang
- 1. Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Juxiang Huang
- 1. Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Minghu Jiang
- 2. Lab of Computational Linguistics, School of Humanities and Social Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyu Zhang
- 1. Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Liyuan Zhang
- 1. Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Yangming Wang
- 1. Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhenfu Jiang
- 1. Biomedical Center, School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhongjie Zhang
- 3. College of information, North China University of Technology, Beijing, 100043, China
| |
Collapse
|