1
|
Wagenaar GTM, Moll GN. Evolving views on the first two ligands of the angiotensin II type 2 receptor. From putative antagonists to potential agonists? Eur J Pharmacol 2023; 961:176189. [PMID: 37951489 DOI: 10.1016/j.ejphar.2023.176189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The renin-angiotensin system is one of the most complex regulatory systems that controls multiple organ functions. One of its key components, angiotensin II (Ang II), stimulates two G-protein coupled class A receptors: the Ang II type 1 (AT1) receptor and the Ang II type 2 (AT2) receptor. While stimulation of the AT1 receptor causes G-protein-dependent signaling and arrestin recruitment, the AT2 receptor seems to have a constitutively active-like conformation and appears to act via G-protein-dependent and -independent pathways. Overstimulation of the AT1 receptor may lead to unwanted effects like inflammation and fibrosis. In contrast, stimulation of the AT2 receptor leads to opposite effects thus restoring the balance. However, the role of the AT2 receptor has become controversial due to beneficial effects of putative AT2 receptor antagonists. The two first synthetic AT2 receptor-selective ligands, peptide CGP42112 and small molecule PD123319, were initially both considered antagonists. CGP42112 was subsequently considered a partial agonist and it was recently demonstrated to be a full agonist. Based on the search-term PD123319 in Pubmed, 1652 studies have investigated putative AT2 receptor antagonist PD123319. Here, we put forward literature that shows beneficial effects of PD123319 alone, even at doses too low for antagonist efficacy. These beneficial effects appear compatible with agonist-like activity via the AT2 receptor. Taken together, a more consistent image of a therapeutic role of stimulated AT2 receptor emerges which may clarify current controversies.
Collapse
Affiliation(s)
| | - Gert N Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, the Netherlands.
| |
Collapse
|
2
|
Xia WH, Yang CL. Self-reported sleep characteristics are linked to type 2 diabetes in middle-aged and elderly individuals: a cross-sectional study based on NHANES. Ir J Med Sci 2023; 192:2769-2776. [PMID: 36976264 DOI: 10.1007/s11845-023-03352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE This study was aimed to evaluate the link between sleep characteristics and type 2 diabetes of middle-aged and elderly individuals. METHODS Twenty thousand four hundred ninety-seven individuals enrolled in National Health and Nutritional Examination Survey (NHANES) form periods of 2005-2008 were included in this study, and 3965 individuals aged 45 years and older with complete data were detected. Variables related to sleep characteristics were analyzed by univariate analysis to identify the risk factors of type 2 diabetes, the logistic regression model was used to test for the tendency across the sections of sleep duration, and the link between sleep duration and risk of type 2 diabetes was manifested as odds ratio (OR) and 95% confidence interval (CI). RESULTS Six hundred ninety-four individuals with type 2 diabetes were identified and enrolled in the type 2 diabetes group, while the remaining individuals (n = 3271) were enrolled in the non-type 2 diabetes group. Individuals in the type 2 diabetes group (63.9 ± 10.2) were older than those in the non-type 2 diabetes group (61.2 ± 11.5, P < 0.001). Factors of taking longer time to fall asleep (P < 0.001), sleeping less (≤ 4 h) or more (≥ 9 h) (P < 0.001), having trouble in falling asleep (P = 0.001), frequent snoring (P < 0.001), frequent sleep apnea (P < 0.001), frequent nighttime awakenings (P = 0.004), and frequent excessive daytime sleepiness (P < 0.001) were linked to the risk of type 2 diabetes. CONCLUSION Our study revealed that sleep characteristics were closely linked to type 2 diabetes in middle-aged and elderly individuals, and a longer sleep duration might have protective effects against type 2 diabetes, but it should be constrained within 9 h/night.
Collapse
Affiliation(s)
- Wen-Han Xia
- Department of Intensive Care Unit, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Chun-Li Yang
- Department of Intensive Care Unit, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Ranjit A, Khajehpour S, Aghazadeh-Habashi A. Update on Angiotensin II Subtype 2 Receptor: Focus on Peptide and Nonpeptide Agonists. Mol Pharmacol 2021; 99:469-487. [PMID: 33795351 DOI: 10.1124/molpharm.121.000236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (Ang II) is the most dominant effector component of the renin-angiotensin system (RAS) that generally acts through binding to two main classes of G protein-coupled receptors, namely Ang II subtype 1 receptor (AT1R) and angiotensin II subtype 2 receptor (AT2R). Despite some controversial reports, the activation of AT2R generally antagonizes the effects of Ang II binding on AT1R. Studying AT2R signaling, function, and its specific ligands in cell culture or animal studies has confirmed its beneficial effects throughout the body. These characteristics classify AT2R as part of the protective arm of the RAS that, along with functions of Ang (1-7) through Mas receptor signaling, modulates the harmful effects of Ang II on AT1R in the activated classic arm of the RAS. Although Ang II is the primary ligand for AT2R, we have summarized other natural or synthetic peptide and nonpeptide agonists with critical evaluation of their structure, mechanism of action, and biologic activity. SIGNIFICANCE STATEMENT: AT2R is one of the main components of the RAS and has a significant prospective for mediating the beneficial action of the RAS through its protective arm on the body's homeostasis. Targeting AT2R offers substantial clinical application possibilities for modulating various pathological conditions. This review provided concise information regarding the AT2R peptide and nonpeptide agonists and their potential clinical applications for various diseases.
Collapse
Affiliation(s)
- Arina Ranjit
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | - Sana Khajehpour
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | | |
Collapse
|
4
|
Bian Q, Cheng YH, Wilson JP, Su EY, Kim DW, Wang H, Yoo S, Blackshaw S, Cahan P. A single cell transcriptional atlas of early synovial joint development. Development 2020; 147:dev.185777. [PMID: 32580935 DOI: 10.1242/dev.185777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Synovial joint development begins with the formation of the interzone, a region of condensed mesenchymal cells at the site of the prospective joint. Recently, lineage-tracing strategies have revealed that Gdf5-lineage cells native to and from outside the interzone contribute to most, if not all, of the major joint components. However, there is limited knowledge of the specific transcriptional and signaling programs that regulate interzone formation and fate diversification of synovial joint constituents. To address this, we have performed single cell RNA-Seq analysis of 7329 synovial joint progenitor cells from the developing murine knee joint from E12.5 to E15.5. By using a combination of computational analytics, in situ hybridization and in vitro characterization of prospectively isolated populations, we have identified the transcriptional profiles of the major developmental paths for joint progenitors. Our freely available single cell transcriptional atlas will serve as a resource for the community to uncover transcriptional programs and cell interactions that regulate synovial joint development.
Collapse
Affiliation(s)
- Qin Bian
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Jordan P Wilson
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Seth Blackshaw
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA .,Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore MD 21205, USA.,Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore MD 21205, USA
| |
Collapse
|
5
|
Ramalingam L, Sopontammarak B, Menikdiwela KR, Moustaid-Moussa N. Endoplasmic Reticulum (ER) Stress in Part Mediates Effects of Angiotensin II in Pancreatic Beta Cells. Diabetes Metab Syndr Obes 2020; 13:2843-2853. [PMID: 32884312 PMCID: PMC7443445 DOI: 10.2147/dmso.s257797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The renin angiotensin aldosterone system (RAAS) is a hormone system known for its role in regulating blood pressure and fluid balance. Numerous RAAS inhibitors routinely prescribed for hypertension have also beneficial effects in type 2 diabetes (T2D) prevention. RAAS components are expressed locally in many tissues, including adipose tissue and pancreas, where they exert metabolic effects through RAAS bioactive hormone angiotensin II (Ang II). Pancreatic beta cells are specialized insulin-producing cells; they have also developed endoplasmic reticulum (ER), which contributes to beta cell dysfunction, when proteins are misfolded in disease states such as T2D. However, no studies have investigated the relationship between RAAS and ER stress in beta cells as a mechanism linking pancreatic RAAS to T2D. Hence, we hypothesized that Ang II treatment of beta cells increases ER stress and inflammation leading to reduced insulin secretion. METHODS To test this hypothesis, we treated clonal INS-1E beta cells and human islets with Ang II and assessed changes in ER stress markers. INS-1E beta cells were also used for measuring insulin secretion and for assessing the effects of various RAAS and ER stress inhibitors. RESULTS We demonstrated that Ang II significantly increased the expression of ER stress genes such as Chop and Atf4 and reduced insulin secretion. Furthermore, inhibition of Ang II production with an angiotensin converting enzyme inhibitor (ACEi, captopril) significantly reduced ER stress. Moreover, the Ang II receptor blockade reduced ER stress significantly and rescued insulin secretion. DISCUSSION This research provides new mechanistic insight into the role of RAAS activation via ER stress on beta cell dysfunction and provides additional evidence for protective effects of RAAS inhibition in T2D.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
| | - Boontharick Sopontammarak
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
| | - Kalhara R Menikdiwela
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, And Obesity Research Institute, Texas Tech University, Lubbock, TX79424, USA
- Correspondence: Naima Moustaid-Moussa Texas Tech University, Department of Nutritional Sciences & Obesity Research Institute, 1301 Akron Street, Lubbock, TX79409-1270, USATel + 806-834-7946 Email
| |
Collapse
|
6
|
Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes. Nat Commun 2018; 9:321. [PMID: 29358691 PMCID: PMC5778074 DOI: 10.1038/s41467-017-02380-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662075, associated with a twofold increased risk for T2D in males. rs146662075 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches. Genome-wide association studies have uncovered several loci associated with diabetes risk. Here, the authors reanalyse public type 2 diabetes GWAS data to fine map 50 known loci and identify seven new ones, including one near ATGR2 on the X-chromosome that doubles the risk of diabetes in men.
Collapse
|
7
|
Pei N, Mao Y, Wan P, Chen X, Li A, Chen H, Li J, Wan R, Zhang Y, Du H, Chen B, Jiang G, Xia M, Sumners C, Hu G, Gu D, Li H. Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:77. [PMID: 28599664 PMCID: PMC5466725 DOI: 10.1186/s13046-017-0542-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Background Bladder cancer (BCa) is the ninth most common form of cancer in the world. There is a continuing need not only for improving the accuracy of diagnostic markers but also for the development of new treatment strategies. Recent studies have shown that the renin-angiotensin system (RAS), which include the angiotensin type 1 (AT1R), type 2(AT2R), and Mas receptors, play an important role in tumorigenesis and may guide us in meeting those needs. Results In this study, we first observed that AT1R and Mas expression levels were significantly upregulated in BCa specimens while AT2R was significantly downregulated. Viral vector mediated overexpression of AT2R induced apoptosis and dramatically suppressed BCa cell proliferation in vitro, suggesting a therapeutic effect. Investigation into the mechanism revealed that the overexpression of AT2R increases the expression levels of caspase-3, caspase-8, and p38 and decreases the expression level of pErk. AT2R overexpression also leads to upregulation of 2 apoptosis-related genes (BCL2A1, TNFSF25) and downregulation of 8 apoptosis-related genes (CASP 6, CASP 9, DFFA, IGF1R, PYCARD, TNF, TNFRSF21, TNFSF10, NAIP) in transduced EJ cells as determined by PCR Array analysis. In vivo, we observed that AT2R overexpression caused significant reduction in xenograft tumors sizes by downregulation VEGF and induction of apoptosis. Conclusions Taken together, the data suggest that AT1R, AT2R or Mas could be used as a diagnostic marker of BCa and AT2R is a promising novel target gene for BCa gene therapy.
Collapse
Affiliation(s)
- Nana Pei
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.,School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Yingying Mao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Pengfei Wan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Xinglu Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns University School of Medicine, Baltimore, USA
| | - Huiying Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Renqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong, China
| | - Yanling Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Baihong Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China
| | - Guangyu Jiang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Minghan Xia
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, People's Republic of China.
| | - Dongsheng Gu
- Department of Urology, the 421 St Hospital of PLA, No. 350, Xinggang Rd, Haizhu district, Guangzhou, Guangdong, 510318, China.
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
8
|
Al-Maghrebi M, Renno WM. The tACE/Angiotensin (1-7)/Mas Axis Protects Against Testicular Ischemia Reperfusion Injury. Urology 2016; 94:312.e1-8. [PMID: 27125877 DOI: 10.1016/j.urology.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To investigate whether exogenous angiotensin (Ang)-(1-7) administration can protect against the damaging consequences of testicular ischemia reperfusion (tIR) injury. MATERIALS AND METHODS Eighteen male Sprague-Dawley rats were divided equally among the following 3 groups: sham, unilateral tIR injury (1 hour of ischemic treatment and 4 hours of reperfusion), and tIR + Ang-(1-7) (0.3 mg/kg). Testicular tissues obtained from the rats were evaluated for the expression of testicular angiotensin-converting enzyme (tACE), Ang-(1-7), and the Ang-(1-7)-specific receptor Mas by immunohistochemistry and enzyme-linked immunosorbent assay. Reduced spermatogenesis, induction of the caspase-8 pathway, and nitric oxide (NO) generation were assessed. The effects of tIR and Ang-(1-7) treatment on the PI3K/Akt antiapoptosis pathway were also investigated. RESULTS Testicular morphological changes and reduced spermatogenesis associated with decreased expression of the tACE/Ang-(1-7)/Mas axis were observed during tIR. These effects were also accompanied by increased activity of caspase-3 and -8, downregulation of the survivin and BAD transcripts, and decreased NO formation. During tIR, PTEN expression was increased, leading to inactivation of the PI3K/Akt pathway. Acute treatment with Ang-(1-7) prior to reperfusion attenuated the tIR-induced damage described above. CONCLUSION Expression of the tACE/Ang-(1-7)/Mas axis was downregulated during tIR. Administration of exogenous Ang-(1-7) prior to reperfusion rescued tACE and Mas expression and protected against germ cell apoptosis and oxidative stress. Increased NO generation and activation of the PI3K/Akt signaling pathway may have partially contributed to these effects. The tACE/Ang-(1-7)/Mas axis likely plays a role in the maintenance of normal testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- May Al-Maghrebi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait.
| | - Waleed M Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Jabriyah, Kuwait
| |
Collapse
|
9
|
Li J, Luo J, Gu D, Jie F, Pei N, Li A, Chen X, Zhang Y, Du H, Chen B, Gu W, Sumners C, Li H. Adenovirus-Mediated Angiotensin II Type 2 Receptor Overexpression Inhibits Tumor Growth of Prostate Cancer In Vivo. J Cancer 2016; 7:184-91. [PMID: 26819642 PMCID: PMC4716851 DOI: 10.7150/jca.12841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/17/2015] [Indexed: 12/29/2022] Open
Abstract
The renin-angiotensin system (RAS) plays important roles in tumorigenesis and is involved with several hallmarks of cancer. Evidence shows that angiotensin II (AngII) type 1 receptor (AT1R) blockers may be associated with improved outcome in prostate cancer patients. Furthermore, our previous studies indicate that increased expression of Ang II type 2 receptor (AT2R) alone induced apoptosis in human prostate cancer lines, an effect that did not require Ang II. This study aimed to investigate the effects of AT2R on tumor growth in vivo and we hypothesized that AT2R over-expression would inhibit proliferation and induce apoptosis in vivo. Human prostate cancer DU145 xenograft mouse model was used to assess the effect of AT2R on tumor growth in vivo. Mice bearing a palpable tumor were chosen and divided randomly into three treatment groups: AT2R, GFP, and PBS. Then we directly injected into the xenograft tumors of the mice every three days with recombinant adenoviruses encoding AT2R (Ad5-CMV-AT2R-EGFP), EGFP (Ad5-CMV-EGFP) and PBS, respectively. The tumor sizes of the tumor bearing mice were then measured. Immunohistochemical Ki-67 staining and TUNEL assay were performed to examine the inhibitory effect of AT2R on tumor cell proliferation. The results showed that AT2R overexpression can inhibit tumor growth of prostate cancer in vivo by inhibiting proliferation and inducing apoptosis of tumor cells. GADD45A is involved in the AT2R-induced antitumor activity. This suggests that AT2R is a potentially useful gene for prostate gene therapy.
Collapse
Affiliation(s)
- Jinlong Li
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Luo
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongsheng Gu
- 5. Department of Urology, the 421st Hospital of PLA, Guangzhou, Guangdong, China
| | - Feilong Jie
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Nana Pei
- 6. Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Andrew Li
- 3. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xinglu Chen
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanling Zhang
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Baihong Chen
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Weiwang Gu
- 2. Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, Guangdong, China
| | - Colin Sumners
- 4. Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA; and
| | - Hongwei Li
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Zhou MS, Liu C, Tian R, Nishiyama A, Raij L. Skeletal muscle insulin resistance in salt-sensitive hypertension: role of angiotensin II activation of NFκB. Cardiovasc Diabetol 2015; 14:45. [PMID: 25928697 PMCID: PMC4422462 DOI: 10.1186/s12933-015-0211-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background We have previously shown that in hypertensive Dahl salt-sensitive (DS) rats, impaired endothelium-dependent relaxation to acetylcholine and to insulin is mechanistically linked to up-regulation of angiotensin (Ang) II actions and the production of reactive oxygen species (ROS) and to activation of the proinflammatory transcription factor (NF)κB. Here we investigated whether Ang II activation of NFκB contributed to insulin resistance in the skeletal muscle of this animal model. Methods DS rats were fed either a normal (NS, 0.5% NaCl) or high (HS, 4% NaCl) salt diet for 6 weeks. In addition, 3 separate groups of HS rats were given angiotensin receptor 1 blocker candesartan (ARB, 10 mg/kg/day in drinking water), antioxidant tempol (1 mmol/L in drinking water) or NFκB inhibitor PDTC (150 mg/kg in drinking water). Results DS rats manifested an increase in soleus muscle Ang II content, ROS production and phosopho-IκBα/IκBα ratio, ARB or tempol reduced ROS and phospho-IκBα/IκBα ratio. Hypertensive DS rats also manifested a reduction in glucose infusion rate, impaired insulin-induced Akt phosphorylation and Glut-4 translocation in the soleus muscle, which were prevented with treatment of either ARB, tempol, or PDTC. Data from the rat diabetes signaling pathway PCR array showed that 8 genes among 84 target genes were altered in the muscle of hypertensive rats with the increase in gene expression of ACE1 and 5 proinflammatory genes, and decrease of 2 glucose metabolic genes. Incubation of the muscle with NFκB SN50 (a specific peptide inhibitor of NFκB) ex vivo reversed changes in hypertension-induced gene expression. Conclusion The current findings strongly suggest that the activation of NFκB inflammatory pathway by Ang II play a critical role in skeletal muscle insulin resistance in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Department of Physiology, Liaoning Medical University, Jinzhou, China. .,Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA.
| | - Chang Liu
- Department of Endocrinology, Liaoning Medical University, Jinzhou, China.
| | - Runxia Tian
- Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA.
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University School of Medicine, Kagawa, Japan.
| | - Leopoldo Raij
- Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA. .,Hypertension/Nephrology section, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|