1
|
Alami M, Boumezough K, Zerif E, Zoubdane N, Khalil A, Bunt T, Laurent B, Witkowski JM, Ramassamy C, Boulbaroud S, Fulop T, Berrougui H. In Vitro Assessment of the Neuroprotective Effects of Pomegranate ( Punica granatum L.) Polyphenols Against Tau Phosphorylation, Neuroinflammation, and Oxidative Stress. Nutrients 2024; 16:3667. [PMID: 39519499 PMCID: PMC11547808 DOI: 10.3390/nu16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer's disease (AD). PURPOSE To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts). METHODS We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells. The IL-10 protein expression was also quantified in U373-MG human astrocytes. The effect of PPs on human amyloid beta 1-42 (Aβ1-42)-induced oxidative stress was assessed in the microglia by measuring ROS generation and lipid peroxidation, using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substance (TBARS) tests, respectively. Neuronal viability and cell apoptotic response to Aβ1-42 toxicity were assayed using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and the annexin-V-FITC apoptosis detection kit, respectively. Finally, flow cytometry analysis was also performed to evaluate the ability of PPs to modulate Aβ1-42-induced Tau-181 phosphorylation (pTau-181). RESULTS Our data indicate that PPs are significantly (p < 0.05) effective in countering Aβ1-42-induced inflammation through increasing the anti-inflammatory cytokines (IL-10) in U373-MG astrocytes and THP1 macrophages and decreasing proinflammatory marker (IL-1β) expression in THP1 macrophages. The PPs were also significantly (p < 0.05) effective in inducing the phenotypic transition of THP-1 macrophages and microglial cells from M1 to M2 by decreasing CD86 and increasing CD163 surface receptor expression. Moreover, our treatments have a significant (p < 0.05) beneficial impact on oxidative stress, illustrated in the reduction in TBARS and ROS generation. Our treatments have significant (p < 0.05) cell viability improvement capacities and anti-apoptotic effects on human H4 neurons. Furthermore, our results suggest that Aβ1-42 significantly (p < 0.05) increases pTau-181. This effect is significantly (p < 0.05) attenuated by arils, peels, and punicalagin and drastically reduced by the ellagic acid treatment. CONCLUSION Overall, our results attribute to PPs anti-inflammatory, antioxidant, anti-apoptotic, and anti-Tau-pathology potential. Future studies should aim to extend our knowledge of the potential role of PPs in Aβ1-42-induced neurodegeneration, particularly concerning its association with the tauopathy involved in AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Kaoutar Boumezough
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Echarki Zerif
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Nada Zoubdane
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA 02420, USA;
| | - Benoit Laurent
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Jacek M. Witkowski
- Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada;
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| |
Collapse
|
2
|
Abu-Elfotuh K, Abbas AN, Najm MAA, Qasim QA, Hamdan AME, Abdelrehim AB, Gowifel AMH, Al-Najjar AH, Atwa AM, Kozman MR, Khalil AS, Negm AM, Mousa SNM, Hamdan AM, Abd El-Rhman RH, Abdelmohsen SR, Tolba AMA, Aboelsoud HA, Salahuddin A, Darwish A. Neuroprotective effects of punicalagin and/or micronized zeolite clinoptilolite on manganese-induced Parkinson's disease in a rat model: Involvement of multiple pathways. CNS Neurosci Ther 2024; 30:e70008. [PMID: 39374157 PMCID: PMC11457879 DOI: 10.1111/cns.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Manganism, a central nervous system dysfunction correlated with neurological deficits such as Parkinsonism, is caused by the substantial collection of manganese chloride (MnCl2) in the brain. OBJECTIVES To explore the neuroprotective effects of natural compounds, namely, micronized zeolite clinoptilolite (ZC) and punicalagin (PUN), either individually or in combination, against MnCl2-induced Parkinson's disease (PD). METHODS Fifty male albino rats were divided into 5 groups (Gps). Gp I was used as the control group, and the remaining animals received MnCl2 (Gp II-Gp V). Rats in Gps III and IV were treated with ZC and PUN, respectively. Gp V received both ZC and PUN as previously reported for the solo-treated plants. RESULTS ZC and/or PUN reversed the depletion of monoamines in the brain and decreased acetyl choline esterase activity, which primarily adjusted the animals' behavior and motor coordination. ZC and PUN restored the balance between glutamate/γ-amino butyric acid content and markedly improved the brain levels of brain-derived neurotrophic factor and nuclear factor erythroid 2-related factor 2/heme oxygenase-1 and decreased glycogen synthase kinase-3 beta activity. ZC and PUN also inhibited inflammatory and oxidative markers, including nuclear factor kappa-light-chain-enhancer of activated B cells, Toll-like receptor 4, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 and caspase-1. Bcl-2-associated X-protein and B-cell leukemia/lymphoma 2 protein (Bcl-2) can significantly modify caspase-3 expression. ZC and/or PUN ameliorated PD in rats by decreasing the levels of endoplasmic reticulum (ER) stress markers (p-protein kinase-like ER kinase (PERK), glucose-regulated protein 78, and C/EBP homologous protein (CHOP)) and enhancing the levels of an autophagy marker (Beclin-1). DISCUSSION AND CONCLUSION ZC and/or PUN mitigated the progression of PD through their potential neurotrophic, neurogenic, anti-inflammatory, antioxidant, and anti-apoptotic activities and by controlling ER stress through modulation of the PERK/CHOP/Bcl-2 pathway.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Ashwaq N Abbas
- College of Dentistry, University of Sulaimanyia, Kurdistan, Iraq
| | - Mazin A A Najm
- Department of Pharmacy, Mazaya University College, Thi-Qar, Alnasiriya, Iraq
| | - Qutaiba A Qasim
- Department of Clinical Laboratory Sciences, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Ahmed M E Hamdan
- Faculty of Pharmacy, Department of Pharmacy Practice, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany B Abdelrehim
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Atwa
- Al-Ayen Iraqi University, Thi-Qar, Iraq
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Magy R Kozman
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Azza S Khalil
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Amira M Negm
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | | | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rana H Abd El-Rhman
- Department of pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia, Egypt
| | - Shaimaa R Abdelmohsen
- Anatomy and Embryology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Amina M A Tolba
- Anatomy and Embryology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba Abdelnaser Aboelsoud
- Anatomy and Embryology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmad Salahuddin
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Department of Biochemistry, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, Iraq
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Wang Y, Yen S, Ian Shih YY, Lai CW, Chen YL, Chen LT, Chen H, Liao LD. Topiramate suppresses peri-infarct spreading depolarization and improves outcomes in a rat model of photothrombotic stroke. iScience 2024; 27:110033. [PMID: 38947531 PMCID: PMC11214377 DOI: 10.1016/j.isci.2024.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Ischemic stroke can cause depolarized brain waves, termed peri-infarct depolarization (PID). Here, we evaluated whether topiramate, a neuroprotective drug used to treat epilepsy and alleviate migraine, has the potential to reduce PID. We employed a rat model of photothrombotic ischemia that can reliably and reproducibly induce PID and developed a combined electrocorticography-laser speckle contrast imaging (ECoG-LSCI) platform to monitor neuronal activity and cerebral blood flow (CBF) simultaneously. Topiramate administration after photothrombotic ischemia did not rescue CBF but significantly restored somatosensory evoked potentials in the forelimb area of the primary somatosensory cortex. Moreover, infarct volume was investigated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Mechanistically, the levels of inflammatory markers, such as ED1 (CD68), Iba-1, and GFAP, decreased significantly after topiramate administration, as did BDNF expression, while the expression of NeuN and Bcl-2/Bax increased, which is indicative of reduced inflammation and improved neuroprotection.
Collapse
Affiliation(s)
- Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
- Department of Electrical Engineering, National United University, NO.2, Lien Da, Nan Shih Li, Miao-Li 36063, Taiwan
| | - Shaoyu Yen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chien-Wen Lai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yu-Lin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Township, Miaoli County 350, Taiwan
| | - Hsi Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| |
Collapse
|
4
|
Siddiqui N, Saifi A, Chaudhary A, Tripathi PN, Chaudhary A, Sharma A. Multifaceted Neuroprotective Role of Punicalagin: A Review. Neurochem Res 2024; 49:1427-1436. [PMID: 38085406 DOI: 10.1007/s11064-023-04081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 05/21/2024]
Abstract
Millions of people worldwide are currently afflicted with neurologic conditions like a seizure, depression, stress, Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, the precise etiopathology of these diseases is still unknown. Substantial studies are being conducted to discover more treatments against these disorders because many patients do not experience the therapeutic benefits that would be expected from using existing pharmaceutical strategies. Herbal medicines which have been used in traditional medicine for millennia to treat various neurological problems are also being investigated and scientifically assessed. Punicalagin is a known polyphenol that has significant antioxidant, anti-inflammatory, anti-viral, anti-proliferative, and anti-cancer properties. Around the world, traditional use of herbal drugs is gaining wider acceptance as a part of complementary and alternative medicine. The scientific community should pay attention to these many neuroprotective pharmacodynamic activities of Punicalagin to create effective pharmacotherapeutic plans, as evidenced by mounting data in pre-clinical research investigations. The current review describes the recent studies on the pharmacological effects of Punicalagin in a variety of neurological illnesses and paves the way for further study in this field.
Collapse
Affiliation(s)
- Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India.
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, 250005, India
| |
Collapse
|
5
|
Tan X, Long Y, Zhang R, Zhang Y, You Z, Yang L. Punicalagin Ameliorates Diabetic Liver Injury by Inhibiting Pyroptosis and Promoting Autophagy via Modulation of the FoxO1/TXNIP Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300912. [PMID: 38847553 DOI: 10.1002/mnfr.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Indexed: 07/04/2024]
Abstract
Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1β, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.
Collapse
Affiliation(s)
- Xiuying Tan
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yi Long
- Children's Medical Center, People's Hospital, Hunan Province, Changsha, 410005, China
| | - Rou Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yuhan Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Ziyi You
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| |
Collapse
|
6
|
Abu-Elfotuh K, Darwish A, Elsanhory HMA, Alharthi HH, Hamdan AME, Hamdan AM, Masoud RAE, Abd El-Rhman RH, Reda E. In silico and in vivo analysis of the relationship between ADHD and social isolation in pups rat model: Implication of redox mechanisms, and the neuroprotective impact of Punicalagin. Life Sci 2023; 335:122252. [PMID: 37935275 DOI: 10.1016/j.lfs.2023.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) has high incidence rate among children which may be due to excessive monosodium glutamate (MSG) consumption and social isolation (SI). AIM We aimed to explore the relationships between MSG, SI, and ADHD development and to evaluate the neuroprotective potential of Punicalagin (PUN). METHODS Eighty male rat pups randomly distributed into eight groups. Group I is the control, and Group II is socially engaged rats treated with PUN. Groups III to VII were exposed to ADHD-inducing factors: Group III to SI, Group IV to MSG, and Group V to both SI and MSG. Furthermore, Groups VI to VIII were the same Groups III to V but additionally received PUN treatment. KEY FINDINGS Exposure to MSG and/or SI led to pronounced behavioral anomalies, histological changes and indicative of ADHD-like symptoms in rat pups which is accompanied by inhibition of the nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme-oxygenase 1 (HO-1)/Glutathione (GSH) pathway, decline of the brain-derived neurotrophic factor (BDNF) expression and activation of the Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-kB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway. This resulted in elevated inflammatory biomarker levels, neuronal apoptosis, and disrupted neurotransmitter equilibrium. Meanwhile, pretreatment with PUN protected against all the previous alterations. SIGNIFICANCE We established compelling associations between MSG consumption, SI, and ADHD progression. Moreover, we proved that PUN is a promising neuroprotective agent against all risk factors of ADHD.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Al-Ayen University, Thi-Qar, 64001, Iraq.
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag university, Sohag, Egypt.
| | - Heba M A Elsanhory
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| | | | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Rehab Ali Elsayed Masoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine for girls, Al-Azhar University, Cairo, Egypt.
| | - Rana H Abd El-Rhman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| | - Enji Reda
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University - Kantara Branch, Ismailia 41636, Egypt.
| |
Collapse
|
7
|
Salem HA, Abu-Elfotuh K, Alzahrani S, Rizk NI, Ali HS, Elsherbiny N, Aljohani A, Hamdan AME, Chellasamy P, Abdou NS, Gowifel AMH, Darwish A, Ibrahim OM, Abd Elmageed ZY. Punicalagin's Protective Effects on Parkinson's Progression in Socially Isolated and Socialized Rats: Insights into Multifaceted Pathway. Pharmaceutics 2023; 15:2420. [PMID: 37896179 PMCID: PMC10610313 DOI: 10.3390/pharmaceutics15102420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a gradual deterioration of dopaminergic neurons, leading to motor impairments. Social isolation (SI), a recognized stressor, has recently gained attention as a potential influencing factor in the progress of neurodegenerative illnesses. We aimed to investigate the intricate relationship between SI and PD progression, both independently and in the presence of manganese chloride (MnCl2), while evaluating the punicalagin (PUN) therapeutic effects, a natural compound established for its cytoprotective, anti-inflammatory, and anti-apoptotic activities. In this five-week experiment, seven groups of male albino rats were organized: G1 (normal control), G2 (SI), G3 (MnCl2), G4 (SI + MnCl2), G5 (SI + PUN), G6 (MnCl2 + PUN), and G7 (SI + PUN + MnCl2). The results revealed significant changes in behavior, biochemistry, and histopathology in rats exposed to SI and/or MnCl2, with the most pronounced effects detected in the SI rats concurrently exposed to MnCl2. These effects were associated with augmented oxidative stress biomarkers and reduced antioxidant activity of the Nrf2/HO-1 pathway. Additionally, inflammatory pathways (HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1 and JAK-2/STAT-3) were upregulated, while dysregulation of signaling pathways (PI3K/AKT/GSK-3β/CREB), sustained endoplasmic reticulum stress by activation PERK/CHOP/Bcl-2, and impaired autophagy (AMPK/SIRT-1/Beclin-1 axis) were observed. Apoptosis induction and a decrease in monoamine levels were also noted. Remarkably, treatment with PUN effectively alleviated behaviour, histopathological changes, and biochemical alterations induced by SI and/or MnCl2. These findings emphasize the role of SI in PD progress and propose PUN as a potential therapeutic intervention to mitigate PD. PUN's mechanisms of action involve modulation of pathways such as HMGB1/RAGE/TLR4/NF-ᴋB/NLRP3/Caspase-1, JAK-2/STAT-3, PI3K/AKT/GSK-3β/CREB, AMPK/SIRT-1, Nrf2/HO-1, and PERK/CHOP/Bcl-2.
Collapse
Affiliation(s)
- Hoda A. Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Karema Abu-Elfotuh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt;
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
| | - Nermin I. Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menouf 32952, Egypt;
| | - Howaida S. Ali
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.S.A.); (S.A.)
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Alhanouf Aljohani
- Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | | | - Nada S. Abdou
- Faculty of Medicine, Misr University for Science and Technology (MUST), Giza 11556, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Osama Mohamed Ibrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Tanta, Tanta 31527, Egypt;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| |
Collapse
|
8
|
Jin T, Leng B. Cynaropicrin Averts the Oxidative Stress and Neuroinflammation in Ischemic/Reperfusion Injury Through the Modulation of NF-kB. Appl Biochem Biotechnol 2023; 195:5424-5438. [PMID: 35838888 PMCID: PMC10457408 DOI: 10.1007/s12010-022-04060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Cerebral ischemia and successive reperfusion are the prevailing cause of cerebral stroke. Currently cerebral stroke is considered to be one of the prior causes for high mortality, disability, and morbidity. Cynaropicrin, a sesquiterpene lactone, exhibits various pharmacologic properties and also has an anti-inflammatory property associated with the suppression of the key pro-inflammatory NF-κB pathway. The protective effect of cynaropicrin against oxidative stress and neuroinflammation during CIR injury through the modulation of NF-κB pathway was studied in the current investigation. The experimental rats split into 5 groups as sham-operated control group (group 1), middle cerebral artery occlusion (MCAO)-induced rats (group 2), MCAO rats treated with cynaropicrin (diluted in saline) immediately 2 h after MCAO with 5, 10, and 25 mg/kg administration orally were designated as groups 3, 4, and 5, respectively. In MCAO-induced animals, the severity of ischemic was evident by the elevated level nitrate, MDA, MMPs, inflammatory mediators, Bax, caspase-3, and NF-κB. The level of Nrf-2, antioxidant enzymes, Bcl-2, and IL-10 was reduced in the MCAO-induced animals. Treatment with cynaropicrin in dosage-based manner increased the level of antioxidant enzymes, IL-10, Nrf-2, and Bcl-2 in the animals which indicates the antioxidative effect of cynaropicrin. The level of nitrate, MDA, MMPs, proinflammatory cytokines, inflammatory mediators, Bax, caspase-3, and NF-κB was reduced in the rats treated with cynaropicrin in a dosage-based manner. Experimental animals treated with cynaropicrin in a dosage-dependent way showed a defensive mechanism against oxidative stress and neuroinflammation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Tao Jin
- Department of Interventional and Vascular Surgery, Affiliated Tenth People's Hospital of Tongji University, Shanghai, China
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China
| | - Bing Leng
- Department of Neurosurgery, Affiliated Huashan Hospital of Fudan University, No. 12, Wulumuqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
9
|
Alalawi S, Albalawi F, Ramji DP. The Role of Punicalagin and Its Metabolites in Atherosclerosis and Risk Factors Associated with the Disease. Int J Mol Sci 2023; 24:ijms24108476. [PMID: 37239823 DOI: 10.3390/ijms24108476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ACVD) is the leading cause of death worldwide. Although current therapies, such as statins, have led to a marked reduction in morbidity and mortality from ACVD, they are associated with considerable residual risk for the disease together with various adverse side effects. Natural compounds are generally well-tolerated; a major recent goal has been to harness their full potential in the prevention and treatment of ACVD, either alone or together with existing pharmacotherapies. Punicalagin (PC) is the main polyphenol present in pomegranates and pomegranate juice and demonstrates many beneficial actions, including anti-inflammatory, antioxidant, and anti-atherogenic properties. The objective of this review is to inform on our current understanding of the pathogenesis of ACVD and the potential mechanisms underlying the beneficial actions of PC and its metabolites in the disease, including the attenuation of dyslipidemia, oxidative stress, endothelial cell dysfunction, foam cell formation, and inflammation mediated by cytokines and immune cells together with the regulation of proliferation and migration of vascular smooth muscle cells. Some of the anti-inflammatory and antioxidant properties of PC and its metabolites are due to their strong radical-scavenging activities. PC and its metabolites also inhibit the risk factors of atherosclerosis, including hyperlipidemia, diabetes mellitus, inflammation, hypertension, obesity, and non-alcoholic fatty liver disease. Despite the promising findings that have emerged from numerous in vitro, in vivo, and clinical studies, deeper mechanistic insights and large clinical trials are required to harness the full potential of PC and its metabolites in the prevention and treatment of ACVD.
Collapse
Affiliation(s)
- Sulaiman Alalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Faizah Albalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
10
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
11
|
Mowaad NA, El-Shamarka MEA, Khadrawy YA. The Behavioral and Neurochemical Changes Induced by Boldenone and/or Tramadol in Adult Male Rats. Neurochem Res 2022; 48:1320-1333. [PMID: 36449200 PMCID: PMC10066173 DOI: 10.1007/s11064-022-03827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/17/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
AbstractBoldenone and tramadol are abused among large sectors of adolescents. Therefore, the behavioral changes concerned with memory and cognitive functions and neurochemical variations were investigated in the cortex of rats treated with boldenone and/or tramadol. Rats were divided into control and rats treated with boldenone, tramadol, or both drugs. At the end of the treatment period, the memory and cognitive functions were evaluated by the Y-maze test (YMT) and elevated plus maze test (EPMT) and the motor activity was determined by the open field test (OFT). The cortex was dissected to carry out the neurochemical analyses. Rats treated with boldenone and/or tramadol showed impaired memory and cognitive functions and reduced motor activity. A significant increase in lipid peroxidation (MDA), nitric oxide (NO), and a significant decrease in reduced glutathione (GSH) were observed in the cortex of rats treated with boldenone and/or tramadol. The levels of acetylcholinesterase (AChE) and monoamine oxidase (MAO) decreased significantly. Western blot data showed a significant decrease in Bcl2 and a significant increase in caspase-3 and inducible nitric oxide synthase (iNOS) in rats treated with boldenone and/or tramadol. These changes were associated with neuronal death as indicated from the histopathological examination.The present findings indicate that boldenone and/or tramadol induced impairment in memory and cognitive functions. These changes could be mediated by the increase in oxidative stress, neuroinflammation, reduced AChE level, and reduced number of survived neurons in the cortex as indicated from the decreased Bcl2 level and the histological examination.
Collapse
Affiliation(s)
- Noha A Mowaad
- Department of Narcotics, Ergogenic Aids and Poisons,Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marwa E A El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons,Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt.
| |
Collapse
|
12
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
13
|
Rubal S, Abhishek M, Rupa J, Phulen S, Kumar R, Kaur G, AmitRaj S, Jain A, Prakash A, Alka B, Bikash M. Homotaurine ameriolates the core ASD symptomatology in VPA rats through GABAergic signalling: Role of GAD67. Brain Res Bull 2022; 190:122-133. [PMID: 36113682 DOI: 10.1016/j.brainresbull.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
Dysregulated GABAergic signaling is reported in Autism Spectrum disorder (ASD). In the present study, we evaluated a GABA structural mimicker homotaurine (HT) via in-silico docking and investigated the therapeutic efficacy of this drug to ameliorate ASD symptoms in the valproic acid (VPA) rat model of ASD. For the in-vivo study, animals were divided into two groups [Normal control (NC, 0.9% saline; i.p) and disease control (VPA 600mg/kg; i.p)] on gestational day (GD) 12.5. Male pups from VPA-exposed mothers were further divided into five groups (n=6 in each group): disease control (DC, no-further treatment), standard treatment (risperidone (RES) 2.5mg/kg; i.p, consecutively from PND 23-43), HT (10, 25 and 50mg/kg; i.p, consecutively from PND 23-43). In in-silico studies, the binding pattern of homotaurine to GABA-A receptor was found similar to GABA with Tyr205, Glu155, Tyr157, Arg6, and Thr 130 as shared residues. In the in-vivo phase, the early developmental parameters (from PND 7-23) and behavioral parameters (from PND 43-54) were assessed. The offspring of the VPA exposed group exhibited significant (p<0.05) developmental delays, behavioral deficits [decreased sociability and social novelty (three-chamber sociability test), spatial memory (Morris water maze), increased stereotypy (self-grooming)], increased oxidative stress (decreased GSH, SOD, Catalase, and increased MDA), increased pro-inflammatory (IL-1β, 6, TNF-α) and decreased anti-inflammatory (IL-10) cytokines, Purkinje cell loss in the cerebellum and pyknosis in PFC (H/E, Nissil staining) and decreased GAD67 expression in the cerebellum (RT-PCR & immunohistochemistry). Compared to the DC, HT treatment (50mg/kg) was able to ameliorate the aberrant core behavioral deficits, decreased oxidative stress, decreased pro-inflammatory and increased anti-inflammatory cytokine profile with preservation of the Purkinje cell density in the cerebellum, decreased pyknosis in the prefrontal cortex and normalised the expression of GAD67. Thus, HT can be a useful therapeutic agent in ASD and requires further clinical evaluation.
Collapse
Affiliation(s)
- Singla Rubal
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Mishra Abhishek
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Joshi Rupa
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Sarma Phulen
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Rajput Kumar
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Gurjeet Kaur
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Sarma AmitRaj
- Dept. of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Ashish Jain
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Ajay Prakash
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Bhatia Alka
- Dept. of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| | - Medhi Bikash
- Dept. of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India.
| |
Collapse
|
14
|
Kim SW, Kim DB, Kim HS. Neuroprotective effects of tannic acid in the postischemic brain via direct chelation of Zn 2+. Anim Cells Syst (Seoul) 2022; 26:183-191. [PMID: 36046027 PMCID: PMC9423855 DOI: 10.1080/19768354.2022.2113915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Seung Woo Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Korea
| | - Da Bin Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
15
|
Abu-Elfotuh K, Hamdan AME, Abbas AN, Alahmre ATS, Elewa MAF, Masoud RAE, Ali AA, Othman M, Kamal MM, Hassan FAM, Khalil MG, El-Sisi AM, Abdel Hady MMM, Abd-Elhaleim El Azazy MK, Awny MM, Wahid A. Evaluating the neuroprotective activities of vinpocetine, punicalagin, niacin and vitamin E against behavioural and motor disabilities of manganese-induced Parkinson's disease in Sprague Dawley rats. Biomed Pharmacother 2022; 153:113330. [PMID: 35780621 DOI: 10.1016/j.biopha.2022.113330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/22/2023] Open
Abstract
The current study investigated the neuroprotective activity of some drugs and nutriceuticals with antioxidant and anti-inflammatory potential on the pathogenesis of Parkinson's disease (PD). Rats were categorized into seven groups: Rats received tween80 daily for 5 weeks as a control group, MnCl2 (10 mg/kg, i.p) either alone (group II) or in combination with vinpocetine (VIN) (20 mg/kg) (group III), punicalagin (PUN) (30 mg/kg) (group IV), niacin (85 mg/kg) (group V), vitamin E (Vit E) (100 mg/kg) (group VI) or their combination (group VII). Motor activities was examined using open-field and catalepsy. Striatal monamines, acetylcholinesterase, excitatory/inhibitory neurotransmitters, redox status, pro-oxidant content, brain inflammatory, apoptotic and antioxidant biomarkers levels were assessed. Besides, histopathological investigations of different brain regions were determined. Groups (IV -GVII) showed improved motor functions of PD rats. Applied drugs significantly increased the brain levels of monoamines with the strongest effect to PUN. Meanwhile, they significantly decreased levels of acetylcholinesterase with a strongest effect to PUN. Moreover, they exhibited significant neuronal protection and anti-inflammatory abilities through significant reduction of the brain levels of COX2, TNF-α and Il-1β with a strongest effect to the PUN. Interestingly; groups (IV - GVII) showed restored glutamate/GABA balance and exhibited a pronounced decrease in caspase-3 content and GSK-3β protein expression levels. In addition, they significantly increased Bcl2 mRNA expression levels with a strongest effect for PUN. All these findings were further confirmed by the histopathological examinations. As a conclusion, we propose VIN and PUN to mitigate the progression of PD via their antioxidant, anti-inflammatory, anti-apoptotic, neurotrophic and neurogenic activities.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Pharmacology and Toxicology Department (Girls), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | | | - Mohammed A F Elewa
- Biochemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Rehab Ali Elsayed Masoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of medicine for girls, Al-Azhar University, Cairo, Egypt
| | - Azza A Ali
- Pharmacology and Toxicology Department (Girls), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed Othman
- Lecturer, Department of anatomy, Faculty of Medicine, King Salman International University, El-Tur Campus, Saini, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department (Girls), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fatma Alzahraa M Hassan
- Biochemistry and molecular biology Department, Faculty of Pharmacy, Al-Azhar, University, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Modern University for Technology and Information, Cairo, Egypt
| | - Ahmed M El-Sisi
- Biochemistry and Molecular Biology Department (boys), Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Manal M M Abdel Hady
- Department of Pharmacology, Faculty of Pharmacy, Qantra University, Sinai, Egypt
| | | | - Magdy M Awny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Cairo, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Liu F, Yang H, Li D, Wu X, Han Q. Punicalagin attenuates osteoarthritis progression via regulating Foxo1/Prg4/HIF3α axis. Bone 2021; 152:116070. [PMID: 34171516 DOI: 10.1016/j.bone.2021.116070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/18/2021] [Accepted: 06/20/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Punicalagin (PUN) is a common anti-inflammatory polyphenol. However, the function and mechanism of PUN in osteoarthritis remains unknown. METHODS Chondrocytes were isolated from rats, and confirmed by toluidine blue staining and immunofluorescence. Chondrocytes were challenged by lipopolysaccharide (LPS), and rat osteoarthritis model was established by Hulth method. The secretion of inflammatory factors, cell viability and apoptosis were tested via enzyme linked immunosorbent assay (ELISA), MTT and flow cytometry. The levels of forkhead box O1 (Foxo1), proteoglycan 4 (Prg4), hypoxia-inducible factor-3α (HIF3α), autophagy-related genes or extracellular matrix (ECM)-related proteins were examined via quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot or immunohistochemistry. The cartilage tissue damage was assessed via hematoxylin-eosin (HE) staining, toluidine blue staining and terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick and labeling (TUNEL) staining. RESULTS LPS triggered inflammatory injury in chondrocytes. PUN promoted autophagy to mitigate LPS-induced inflammatory injury. Foxo1 silence attenuated the effect of PUN on LPS-mediated autophagy inhibition and inflammatory injury. Promotion of Prg4/HIF3α axis abolished the influence of Foxo1 knockdown on LPS-mediated chondrocytes injury. PUN mitigated the inflammatory injury in rat osteoarthritis model by promoting autophagy and inhibiting inflammation and ECM degradation via Foxo1/Prg4/HIF3α axis. CONCLUSION PUN attenuates LPS-induced chondrocyte injury and osteoarthritis progression by regulating Foxo1/Prg4/HIF3α axis.
Collapse
Affiliation(s)
- FeiFei Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - DongZhe Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - XueJian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - QiCai Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China..
| |
Collapse
|
17
|
Cao Y, Ren G, Zhang Y, Qin H, An X, Long Y, Chen J, Yang L. A new way for punicalagin to alleviate insulin resistance: regulating gut microbiota and autophagy. Food Nutr Res 2021; 65:5689. [PMID: 34262422 PMCID: PMC8254469 DOI: 10.29219/fnr.v65.5689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Background Insulin resistance, defined as a diminished ability to respond to the stimulation of insulin, is the main line for a variety of metabolic-related diseases. Punicalagin (PU), a hydrolyzable tannin of pomegranate juice, exhibits multiple biological properties, including anti-oxidant, anti-cancer and anti-inflammatory activities. Objective This research study aimed at determining the protective effect of PU on insulin resistance and to uncover the underlying mechanism based on the gut microbiota, IKKβ/NF-κB pathway, and autophagy. Design An insulin resistance animal model was established using C57BL/6 mice fed with a high-fat diet (HFD) for 8 weeks. The model included two groups continuing a HFD for 12 weeks with or without administering via gavage with PU 20 mg/kg/day. Changes in fasting plasma glucose levels, fasting serum insulin levels, glucose and insulin tolerance, glycolipid metabolism, gut microbiota composition (16S rRNA gene sequencing), inflammatory responses, and autophagy in the liver were evaluated. Body weight gain, glycolipid metabolic disorder, liver injury, as well as systemic and hepatic insulin sensitivity, were significantly attenuated after supplementing with PU. Results This research study revealed that PU alleviated HFD-induced glucose and lipid disorders, liver injury and insulin resistance; decreased the Firmicutes/Bacteroides ratio, decreased the abundance of Coprococcus and Anaerotruncus, and increased Rikenellaceae; and decreased serum and liver tumor necrosis factor-alpha and interleukin-1β levels, inhibited liver IKKβ and NF-κB phosphorylation; and increased liver autophagy-related proteins LC3-II, P62, and Beclin1, and increased the number of liver autophagosomes. Conclusion PU can improve HFD-induced insulin resistance, improved liver glucose and lipid metabolism disorder and liver injury, and the potential mechanism is that PU inhibited the IKKβ/NF-κB inflammatory pathway by regulating gut microbiota homeostasis and up-regulating liver autophagy activity.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Guofeng Ren
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yahui Zhang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xin An
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yi Long
- Children's Medical Center, People's Hospital, Hunan Province, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lina Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
18
|
Catorce MN, Gevorkian G. Evaluation of Anti-inflammatory Nutraceuticals in LPS-induced Mouse Neuroinflammation Model: An Update. Curr Neuropharmacol 2021; 18:636-654. [PMID: 31934839 PMCID: PMC7457421 DOI: 10.2174/1570159x18666200114125628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 02/08/2023] Open
Abstract
It is known that peripheral infections, accompanied by inflammation, represent significant risk factors for the development of neurological disorders by modifying brain development or affecting normal brain aging. The acute effects of systemic inflammation on progressive and persistent brain damage and cognitive impairment are well documented. Anti-inflammatory therapies may have beneficial effects on the brain, and the protective properties of a wide range of synthetic and natural compounds have been extensively explored in recent years. In our previous review, we provided an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice. We addressed the data reproducibility in published research and summarized basic features and data on the therapeutic potential of various natural products, nutraceuticals, with known anti-inflammatory effects, for reducing neuroinflammation in this model. Here, recent data on the suitability of the LPS-induced murine neuroinflammation model for preclinical assessment of a large number of nutraceuticals belonging to different groups of natural products such as flavonoids, terpenes, non-flavonoid polyphenols, glycosides, heterocyclic compounds, organic acids, organosulfur compounds and xanthophylls, are summarized. Also, the proposed mechanisms of action of these molecules are discussed.
Collapse
Affiliation(s)
- Miryam Nava Catorce
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
19
|
Singla R, Mishra A, Joshi R, Kumar R, Sarma P, Sharma AR, Kaur G, Bhatia A, Medhi B. Inhibition of the ERK1/2 Phosphorylation by Dextromethorphan Protects against Core Autistic Symptoms in VPA Induced Autistic Rats: In Silico and in Vivo Drug Repurposition Study. ACS Chem Neurosci 2021; 12:1749-1767. [PMID: 33913688 DOI: 10.1021/acschemneuro.0c00672] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The imbalance between excitatory and inhibitory neurotransmitters is explicitly related to the pathophysiology of autism spectrum disorder (ASD). The role of an NMDA receptor antagonist, dextromethorphan, was studied in ameliorating the ASD-like symptoms by regulating the excitatory and inhibitory imbalance using the valproic acid (VPA) model of ASD. Female Wistar rats were administered VPA [600 mg/kg on embryonic day ED-12.5] through intraperitoneal (ip) injection to induce ASD in pups. Autistic pups were then given dextromethorphan (10, 15, and 30 mg/kg; ip) and risperidone (2.5 mg/kg; ip) from PND 23 to 43 in different groups. Behavioral tests (three chamber sociability, self-grooming, Morris water maze, elevated plus maze, open field, rotarod, grip strength), oxidative stress and inflammatory markers, histological evaluation (H&E, Nissil staining), and NMDA and ERK1/2 expression by immunohistochemistry and RT-PCR were done. The in silico modeling of dextromethorphan against PPDA, TCN-201, MK-22, EVT-101 on NMDA receptors was also performed. Dextromethorphan (30 mg/kg) rescued the impaired behavioral patterns including social excitability, hyperactivity, repetitive and restricted behaviors as well as mitigation of the memory and motor coordination. The levels of various oxidative stress markers (GSH, SOD, catalase, MDA) and inflammatory markers (IL-1β, IL-6, IL-10, TNF-α) were ameliorated by different doses of dextromethorphan. It also reduced the neuronal injury score and rescued the overly expressed pERK1/2 and NMDA signaling in both the prefrontal cortex and hippocampus of the autistic pups. In silico results showed favorable binding of dextromethorphan against TCN-201 and MK-22 binding sites. The present study provided experimental evidence for the potential therapeutic role of dextromethorphan in attenuating autism symptomatology in the ASD model of rats. Thus, modulation of the glutamatergic signaling can be a potential target for ASD treatment.
Collapse
Affiliation(s)
- Rubal Singla
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Abhishek Mishra
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Rohit Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Amit Raj Sharma
- Department of Neurology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Gurjeet Kaur
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
20
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
21
|
Zhang Q, Zhang L, Liu Y, Tian X, Li X, Han B, Zhang Y, Wu Z, Yu H, Zhao H, Wang S, Ma K, Wang Y. Research progress on the pharmacological effect and clinical application of Tongqiao Huoxue Decoction in the treatment of ischaemic stroke. Biomed Pharmacother 2021; 138:111460. [PMID: 33711554 DOI: 10.1016/j.biopha.2021.111460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 12/27/2022] Open
Abstract
Ischaemic stroke (IS) is a common type of stroke characterised by sudden fainting and communication disorders, alongside a number of other symptoms. It is characterised by high morbidity, disability, and mortality rates. Tongqiao Huoxue Decoction (THD) is effective in the treatment of stroke. As a representative prescription for promoting blood circulation and removing blood stasis, THD has been widely used clinically. This paper systematically introduces clinical and experimental studies of THD in the treatment of IS, summarising its clinical application, pharmacological mechanisms, and active components in the treatment of IS. It also explores its key pathways in the treatment of IS through network pharmacology analyses, thereby speculating on its underlying mechanisms. It is of great significance for the secondary development of this classic prescription as well as for the research and development of new drugs.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Lijuan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yu Liu
- Medical College of China, Three Gorges University, Yichang 443200, PR China
| | - Xu Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiuyang Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhichun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Huayun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
22
|
Elshafie HS, Caputo L, De Martino L, Sakr SH, De Feo V, Camele I. Study of Bio-Pharmaceutical and Antimicrobial Properties of Pomegranate ( Punica granatum L.) Leathery Exocarp Extract. PLANTS 2021; 10:plants10010153. [PMID: 33466616 PMCID: PMC7828685 DOI: 10.3390/plants10010153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Pomegranate (Punica granatum L.) fruits are important sources of vitamins and minerals and widely used in the dietary supplement industry. An aqueous extract of its leathery exocarp (LEP) was obtained by a solid-phase micro-extraction method. The antifungal activity was examined against the phytopathogenic fungi, Fusarium oxysporum, Phytophthora cinnamomi, Penicillium digitatum and Botrytis cinerea, and the antibacterial activity was evaluated against Escherichia coli, Xanthomonas campestris,Bacillus megaterium and Clavibacter michiganensis. The antimicrobial assays showed, in some cases, a promising antimicrobial effect compared to the synthetic drugs. The possible anti-acetylcholinesterase and antioxidant activities of the LEP extract were investigated by the Ellman’s assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) test, respectively, and their results showed that the LEP extract has an effective anti-acetylcholinesterase inhibitory effect and an antioxidant activity. Thus, the LEP extract could be valid as a candidate for further studies on the use of pomegranate in neurodegenerative diseases as a food preservative and a suitable substitute to control several phytopathogens.
Collapse
Affiliation(s)
- Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (H.S.E.); (S.H.S.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (L.C.); (L.D.M.); (V.D.F.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (L.C.); (L.D.M.); (V.D.F.)
| | - Shimaa H. Sakr
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (H.S.E.); (S.H.S.)
- Department of Chemistry, Faculty of Science, Zagazig University, 44511 Zagazig, Egypt
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (L.C.); (L.D.M.); (V.D.F.)
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (H.S.E.); (S.H.S.)
- Correspondence: ; Tel.: +39-0971-205544
| |
Collapse
|
23
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
24
|
Li YQ, Hui ZR, Tao T, Shao KY, Liu Z, Li M, Gu LL. Protective effect of hypoxia inducible factor-1α gene therapy using recombinant adenovirus in cerebral ischaemia-reperfusion injuries in rats. PHARMACEUTICAL BIOLOGY 2020; 58:438-446. [PMID: 32432963 PMCID: PMC7301712 DOI: 10.1080/13880209.2020.1762667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 06/01/2023]
Abstract
Context: Hypoxia-inducible factor-1α (HIF-1α)-induced genes can improve blood circulation.Objective: To investigate brain protective effect of recombinant adenovirus-mediated HIF-1α (AdHIF-1α) expression and its mechanism.Materials and methods: Male SD rats were used to establish focal cerebral ischaemia-reperfusion (CIR) injury models and randomly divided into normal, sham, CIR, Ad and AdHIF-1α groups. Ad or AdHIF-1α (108 pfu/10 µL) were administered into lateral ventricle of rats in Ad and AdHIF-1α groups. Modified neurological severity score (mNSS), brain water content (BWC) and cerebral infarct volumes (CIVs) were analyzed, and HE staining was performed using the brain tissues. Furthermore, the expression of caspase-3 and HSP90 was analyzed using qRT-PCR and Western blotting.Results: Compared to CIR (mNSS, 8.52 ± 0.52; CIV, 0.22 ± 0.01) and Ad groups (mNSS, 8.83 ± 0.41; CIV, 0.22 ± 0.02), mNSS and CIV were significantly decreased in AdHIF-1α group (mNSS, 6.03 ± 0.61; CIV, 0.11 ± 0.01) at 72 h (p < 0.05). With prolonged reperfusion time (6 h to 72 h), BWC of all rats increased gradually, although the increase was markedly less in AdHIF-1α group (78.15 ± 0.16 to 87.01 ± 0.31) compared to that in CIR (78.77 ± 0.60 to 89.74 ± 0.34) and Ad groups (78.77 ± 0.35 to 89.71 ± 0.27) (p < 0.01). There were significantly greater pathological changes in the neurons in AdHIF-1α group at 72 h following CIR. Furthermore, expression of caspase-3 (p < 0.01) down-regulated and HSP90 up-regulated (p < 0.05) at mRNA and protein levels in AdHIF-1α group.Discussion and conclusions: HIF‑1α gene therapy is neuroprotective towards the CIR rat model. HIF-1α may be a candidate gene for the treatment of ischaemic brain injury.
Collapse
Affiliation(s)
- Ya-Qi Li
- Department of Emergency, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Zhi-Rong Hui
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Tao Tao
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Kang-Yu Shao
- Department of Neurology, Chengdu Aerospace Hospital, Chengdu, Sichuan Province, China
| | - Zhi Liu
- Department of Pharmacy, Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Min Li
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Li-Ling Gu
- Department of Rehabilitation Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
25
|
Almowallad S, Huwait E, Al-Massabi R, Saddeek S, Gauthaman K, Prola A. Punicalagin Regulates Key Processes Associated with Atherosclerosis in THP-1 Cellular Model. Pharmaceuticals (Basel) 2020; 13:E372. [PMID: 33171640 PMCID: PMC7695206 DOI: 10.3390/ph13110372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis may lead to cardiovascular diseases (CVD), which are the primary cause of death globally. In addition to conventional therapeutics for CVD, use of nutraceuticals that prevents cholesterol deposition, reduce existing plaques and hence anti-atherosclerotic effects of nutraceuticals appeared to be promising. As such, in the present study we evaluated the beneficial effects of punicalagin, a phytochemical against an atherosclerotic cell model in vitro. Cytotoxicity assays were examined for 10 µM concentration of punicalagin on THP-1 macrophages. Real-time-polymerase chain reaction (RT-PCR) was used to analyze monocyte chemoattractant protein-1 (MCP-1) and Intercellular adhesion molecule (ICAM-1) expressions. Monocyte migration and cholesterol efflux assays were performed to investigate punicalagin's further impact on the key steps of atherosclerosis. Cytotoxicity assays demonstrated no significant toxicity for punicalagin (10 µM) on THP-1 macrophages. Punicalagin inhibited the IFN-γ-induced overexpression of MCP-1 and ICAM-1 in macrophages by 10 fold and 3.49 fold, respectively, compared to the control. Punicalagin also reduced the MCP-1- mediated migration of monocytes by 28% compared to the control. Percentages of cellular cholesterol efflux were enhanced in presence or absence of IFN-γ by 88% and 84% compared to control with 58 %and 62%, respectively. Punicalagin possesses anti-inflammatory and anti-atherosclerotic effects. Punicalagin also did not exhibit any cytotoxicity and therefore can be considered a safe and potential candidate for the treatment and prevention of atherosclerosis.
Collapse
Affiliation(s)
- Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, King Abdul Aziz University, Jeddah 21589, Saudi Arabia; (R.A.-M.); (S.S.)
- Cell Culture Unit, King Fahad Medical Research Centre, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Etimad Huwait
- Department of Biochemistry, Faculty of Sciences, King Abdul Aziz University, Jeddah 21589, Saudi Arabia; (R.A.-M.); (S.S.)
- Cell Culture Unit, King Fahad Medical Research Centre, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
| | - Rehab Al-Massabi
- Department of Biochemistry, Faculty of Sciences, King Abdul Aziz University, Jeddah 21589, Saudi Arabia; (R.A.-M.); (S.S.)
- Cell Culture Unit, King Fahad Medical Research Centre, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Salma Saddeek
- Department of Biochemistry, Faculty of Sciences, King Abdul Aziz University, Jeddah 21589, Saudi Arabia; (R.A.-M.); (S.S.)
- Cell Culture Unit, King Fahad Medical Research Centre, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alexandre Prola
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, CH-1211, 1202 Geneva, Switzerland;
| |
Collapse
|
26
|
Xin D, Quan R, Zeng L, Xu C, Tang Y. Lipoxin A4 protects rat skin flaps against ischemia-reperfusion injury through inhibiting cell apoptosis and inflammatory response induced by endoplasmic reticulum stress. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1086. [PMID: 33145305 PMCID: PMC7575949 DOI: 10.21037/atm-20-5549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The ischemia-reperfusion (I/R) injury of skin flap is a complex pathophysiological process involving many cells and factors. Although endoplasmic reticulum (ER) stress-induced cell apoptosis and inflammatory response are of immense importance in the skin flap ischemia, the treatment for I/R injury induced by ER stress is barely reported. Methods Healthy male Wister rats were randomly divided into three groups: sham-operated group, I/R model group and I/R + LXA4 group. I/R-induced injury in skin flaps with or without pre-treatment of Lipoxin A4 (LXA4, 100 µg/kg) was tested by using HE and TUNEL staining. Related factors associated with oxidative stress, apoptosis, inflammatory response, and ER stress were tested by ELISA, biochemical assay, and western blotting, respectively. Results Our results showed that LXA4 treatment significantly promotes skin flap survival and attenuates I/R injury by inhibiting oxidative stress, apoptosis, and inflammatory factor release, evidenced by the decreased expression of malondialdehyde (MDA), lactate dehydrogenase (LDH), NF-κBp65, tumor necrosis factor α (TNF-α), ET, active Caspase-3 and Bax and up-regulated superoxide dismutase (SOD), glutathione (GSH) level and Bcl-2 expression. Moreover, LXA4 treatment also reverses the increased expression of GRP78, p-PERK, p-eIF2α, ATF4, and CHOP induced by I/R injury. Conclusions In conclusion, we showed that ER stress causes cell apoptosis and inflammatory response, resulting in the skin flaps injury. LXA4 exhibits a protective effect on skin flaps against I/R injury through the inhibition of ER stress.
Collapse
Affiliation(s)
- Dawei Xin
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Renfu Quan
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Linru Zeng
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Canda Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Yanghua Tang
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| |
Collapse
|
27
|
Xiao Y, Fan M, Jin W, Li WA, Jia Y, Dong Y, Jiang X, Xu J, Meng N, Lv P. Lithium chloride ameliorated spatial cognitive impairment through activating mTOR phosphorylation and inhibiting excessive autophagy in the repeated cerebral ischemia-reperfusion mouse model. Exp Ther Med 2020; 20:109. [PMID: 32989388 PMCID: PMC7517419 DOI: 10.3892/etm.2020.9237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/18/2020] [Indexed: 12/19/2022] Open
Abstract
Lithium has been previously demonstrated to alleviate cognitive impairment caused by neurodegenerative diseases and acute brain injuries; however, the specific mechanism remains elusive. In the present study, the C57BL/6 mouse model of spatial cognitive impairment induced by repeated cerebral ischemia-reperfusion was established. Morris water maze test was performed to evaluate the levels of spatial cognitive impairment. Nissl staining was used to observe any morphological alterations, whilst western blotting was performed to measure the expression levels of microtubule-associated protein light chain 3 (LC3) and Beclin1 in addition to mTOR phosphorylation. LiCl was found to significantly improve spatial learning and memory impairments according to data from the Morris water maze test. Nissl staining indicated that LiCl inhibited neuronal damage in the CA1 region of the hippocampus. Additionally, LiCl increased mTOR phosphorylation, reduced beclin1 expression and reduced the LC3 II/I expression ratio. Taken together, these findings suggest that LiCl may alleviate the spatial cognitive impairment induced by repeated cerebral ischemia-reperfusion. This observation may be attributed to the inhibition of excessive autophagy by LiCl through mTOR signaling activation.
Collapse
Affiliation(s)
- Yining Xiao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Mingyue Fan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - William A Li
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yanqiu Jia
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xin Jiang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Nan Meng
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China.,Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
28
|
Ganesan T, Sinniah A, Chik Z, Alshawsh MA. Punicalagin Regulates Apoptosis-Autophagy Switch via Modulation of Annexin A1 in Colorectal Cancer. Nutrients 2020; 12:nu12082430. [PMID: 32823596 PMCID: PMC7468705 DOI: 10.3390/nu12082430] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Punicalagin (PU), a polyphenol extracted from pomegranate (Punica granatum) husk is proven to have anti-cancer effects on different types of cancer including colorectal cancer (CRC). Its role in modulating endogenous protein as a means of eliciting its anti-cancer effects, however, has not been explored to date. Hence, this study aimed to investigate the role of PU in modulating the interplay between apoptosis and autophagy by regulating Annexin A1 (Anx-A1) expression in HCT 116 colorectal adenocarcinoma cells. In the study, selective cytotoxicity, pro-apoptotic, autophagic and Anx-A1 downregulating properties of PU were shown which indicate therapeutic potential that this polyphenol has against CRC. Autophagy flux analysis via flow cytometry showed significant autophagosomes degradation in treated cells, proving the involvement of autophagy. Proteome profiling of 35 different proteins in the presence and absence of Anx-A1 antagonists in PU-treated cells demonstrated a complex interplay that happens between apoptosis and autophagy that suggests the possible simultaneous induction and inhibition of these two cell death mechanisms by PU. Overall, this study suggests that PU induces autophagy while maintaining basal level of apoptosis as the main mechanisms of cytotoxicity via the modulation of Anx-A1 expression in HCT 116 cells, and thus has a promising translational potential.
Collapse
|
29
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
30
|
Foroutanfar A, Mehri S, Kamyar M, Tandisehpanah Z, Hosseinzadeh H. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide‐induced neurotoxicity and hepatotoxicity in rats. Phytother Res 2020; 34:3262-3272. [DOI: 10.1002/ptr.6774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Amir Foroutanfar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Marzyeh Kamyar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
31
|
El-Missiry MA, Amer MA, Hemieda FA, Othman AI, Sakr DA, Abdulhadi HL. Cardioameliorative effect of punicalagin against streptozotocin-induced apoptosis, redox imbalance, metabolic changes and inflammation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2015.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Maher A. Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Faried A.E. Hemieda
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I. Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Doaa A. Sakr
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Haitham L. Abdulhadi
- Biology department, Pure Science Education Collage, Al-Anbar University, Al-Anbar, Iraq
| |
Collapse
|
32
|
Mastrogiovanni F, Mukhopadhya A, Lacetera N, Ryan MT, Romani A, Bernini R, Sweeney T. Anti-Inflammatory Effects of Pomegranate Peel Extracts on In Vitro Human Intestinal Caco-2 Cells and Ex Vivo Porcine Colonic Tissue Explants. Nutrients 2019; 11:E548. [PMID: 30841512 PMCID: PMC6471410 DOI: 10.3390/nu11030548] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to determine the anti-inflammatory potential of pomegranate peel extracts (PPE) prepared from waste material of pomegranate juice production both in vitro on Caco-2 cells and ex vivo using porcine colonic tissue explants. Caco-2 cells were stimulated in vitro by TNF and colonic tissue explants were stimulated ex vivo with lipopolysaccharide (LPS). Both tissues were co-treated with PPE at 0, 1.0, 2.5, 5.0, 10 and 25 μg/mL. The secretion of CXCL8 in the supernatant of both experiments was determined by enzyme linked immunosorbent assay (ELISA) and the relative expression of inflammatory cytokines were evaluated in the colonic tissue by quantitative polymerase chain reaction (QPCR). The 2.5 to 25 μg/mL of PPE suppressed CXCL8 (p < 0.001) in the Caco-2 cells, whereas CXCL8 production was suppressed by only 5 and 25 μg/mL (p < 0.01) of PPE in the colonic explants. The 5 μg/mL of PPE also suppressed the expression of IL1A (p < 0.05), IL6 (p < 0.01) and CXCL8 (p < 0.05) in LPS challenged colonic tissues compared to controls. In conclusion, the 5 μg/mL of PPE consistently elicits strong anti-inflammatory activity. These results support the potential of bioactive compounds from the waste peel of pomegranate in terms of their anti-inflammatory activity in cells and tissues of the gastrointestinal tract.
Collapse
Affiliation(s)
- Fabio Mastrogiovanni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy.
- School of Veterinary Medicine, University College Dublin 4, D04 V1W8 Dublin, Ireland.
| | - Anindya Mukhopadhya
- School of Veterinary Medicine, University College Dublin 4, D04 V1W8 Dublin, Ireland.
| | - Nicola Lacetera
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy.
| | - Marion T Ryan
- School of Veterinary Medicine, University College Dublin 4, D04 V1W8 Dublin, Ireland.
| | - Annalisa Romani
- Department of Statistics, Computing, Applications "G. Parenti" (DISIA), PHYTOLAB, University of Florence, 50019 Florence, Italy.
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy.
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin 4, D04 V1W8 Dublin, Ireland.
| |
Collapse
|
33
|
Leukemia Inhibitory Factor Receptor Is Involved in Apoptosis in Rat Astrocytes Exposed to Oxygen-Glucose Deprivation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1613820. [PMID: 30937308 PMCID: PMC6415309 DOI: 10.1155/2019/1613820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
Leukemia inhibitory factor (LIF) and leukemia inhibitory factor receptor (Lifr) protect CNS cells, specifically neurons and myelin-sheath oligodendrocytes, in conditions of oxygen-glucose deprivation (OGD). In the case of astrocyte apoptosis resulting from reperfusion injury following hypoxia, the function of the Lifr remains to be fully elucidated. This study established models of in vivo ischemia/reperfusion (I/R) using an in vitro model of OGD to investigate the direct impact of silencing the Lifr on astrocyte apoptosis. Astrocytes harvested from newborn Wistar rats were exposed to OGD. Cell viability and apoptosis levels were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and annexin V/propidium iodide (PI) staining assays, respectively. Apoptosis was further investigated by the TdT-mediated dUTP nick-end labelling (TUNEL) assay. A standard western blotting protocol was applied to determine levels of the protein markers Bcl2, Bax, p-Akt/Akt, p-Stat3/Stat3, and p-Erk/Erk. The cell viability assay (MTT) showed that astrocyte viability decreased in response to OGD. Furthermore, blocking RNA to silence the Lifr further reduces astrocyte viability and increases levels of apoptosis as detected by annexin V/PI double staining. Likewise, western blotting after Lifr silencing demonstrated increased levels of the apoptosis-related proteins Bax and p-Erk/Erk and correspondingly lower levels of Bcl2, p-Akt/Akt, and p-Stat/Stat3. The data gathered in these analyses indicate that the Lifr plays a pivotal role in the astrocyte apoptosis induced by hypoxic/low-glucose environments. Further investigation of the relationship between apoptosis and the Lifr may provide a potential therapeutic target for the treatment of neurological injuries.
Collapse
|
34
|
Das S, Pukala TL, Smid SD. Exploring the Structural Diversity in Inhibitors of α-Synuclein Amyloidogenic Folding, Aggregation, and Neurotoxicity. Front Chem 2018; 6:181. [PMID: 29888220 PMCID: PMC5983024 DOI: 10.3389/fchem.2018.00181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022] Open
Abstract
Aggregation of α-Synuclein (αS) protein to amyloid fibrils is a neuropathological hallmark of Parkinson's disease (PD). Growing evidence suggests that extracellular αS aggregation plays a pivotal role in neurodegeneration found in PD in addition to the intracellular αS aggregates in Lewy bodies (LB). Here, we identified and compared a diverse set of molecules capable of mitigating protein aggregation and exogenous toxicity of αSA53T, a more aggregation-prone αS mutant found in familial PD. For the first time, we investigated the αS anti-amyloid activity of semi-synthetic flavonoid 2', 3', 4' trihydroxyflavone or 2-D08, which was compared with natural flavones myricetin and transilitin, as well as such structurally diverse polyphenols as honokiol and punicalagin. Additionally, two novel synthetic compounds with a dibenzyl imidazolidine scaffold, Compound 1 and Compound 2, were also investigated as they exhibited favorable binding with αSA53T. All seven compounds inhibited αSA53T aggregation as demonstrated by Thioflavin T fluorescence assays, with modified fibril morphology observed by transmission electron microscopy. Ion mobility-mass spectrometry (IM-MS) was used to monitor the structural conversion of native αSA53T into amyloidogenic conformations and all seven compounds preserved the native unfolded conformations of αSA53T following 48 h incubation. The presence of each test compound in a 1:2 molar ratio was also shown to inhibit the neurotoxicity of preincubated αSA53T using phaeochromocytoma (PC12) cell viability assays. Among the seven tested compounds 2-D08, honokiol, and the synthetic Compound 2 demonstrated the highest inhibition of aggregation, coupled with neuroprotection from preincubated αSA53T in vitro. Molecular docking predicted that all compounds bound near the lysine-rich region of the N-terminus of αSA53T, where the flavonoids and honokiol predominantly interacted with Lys 23. Overall, these findings highlight that (i) restricted vicinal trihydroxylation in the flavone B-ring is more effective in stabilizing the native αS conformations, thus blocking amyloidogenic aggregation, than dihydroxylation aggregation in both A and B-ring, and (ii) honokiol, punicalagin, and the synthetic imidazolidine Compound 2 also inhibit αS amyloidogenic aggregation by stabilizing its native conformations. This diverse set of molecules acting on a singular pathological target with predicted binding to αSA53T in the folding-prone N-terminal region may contribute toward novel drug-design for PD.
Collapse
Affiliation(s)
- Sukanya Das
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health Sciences and Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Tara L. Pukala
- Discipline of Chemistry, School of Physical Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Scott D. Smid
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health Sciences and Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
35
|
El-Missiry MA, ElKomy MA, Othman AI, AbouEl-Ezz AM. Punicalagin ameliorates the elevation of plasma homocysteine, amyloid-β, TNF-α and apoptosis by advocating antioxidants and modulating apoptotic mediator proteins in brain. Biomed Pharmacother 2018; 102:472-480. [PMID: 29579708 DOI: 10.1016/j.biopha.2018.03.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the neuroprotective role of punicalagin, a major polyphenolic compound of pomegranate on methionine-induced brain injury. Hyperhomocysteinemia (HHcy) was induced in two months old male BALB c mice by methionine supplementation in drinking water (1 g/kg body weight) for 30 days. Punicalagin (1 mg/kg) was injected i.p every other day concurrently with methionine. Punicalagin significantly prevented the rise in the levels of homocysteine, amyloid-β and TNF-α. HHcy is associated with a decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (PGx) and glutathione reductase (GR) and glutathione (GSH) levels in the brains of methionine-treated mice while these antioxidants are increased by punicalagin supplementation. The treatment with punicalagin significantly decreased oxidative stress as indicated by decreased malondialdehyde and protein carbonyl formation in the brain. Compared with methionine-treated animals, mice that treated with methionine and punicalagin remarkably displayed less apoptosis, indicated by the lower level of proapoptotic protein (Bax, caspases- 3, 9 and p53) and higher levels of antiapoptotic Bcl-2 protein than those in hyperhomocysteinemic mice. The potent bioactivity of punicalagin extends to protect neuronal DNA as evidenced by the inhibition of the increase of comet parameters compared to the methionine-treated mice. In conclusion, punicalagin protected from methionine-induced HHcy and brain damage with an ability to repress apoptosis by modulating apoptotic mediators and maintaining DNA integrity in the brain of mice.
Collapse
Affiliation(s)
- Mohammed A El-Missiry
- Zoology Department, Faculty of Science, Mansoura University, Egypt; Prince Sultan Military Collage of Health Science, Dhahran, Saudi Arabia.
| | - Magda A ElKomy
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Egypt
| | - Ali M AbouEl-Ezz
- Zoology Department, Faculty of Science, Mansoura University, Egypt.
| |
Collapse
|
36
|
Lyu A, Chen JJ, Wang HC, Yu XH, Zhang ZC, Gong P, Jiang LS, Liu FH. Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury. J Zhejiang Univ Sci B 2018; 18:481-491. [PMID: 28585424 DOI: 10.1631/jzus.b1600224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Bovine endometritis is one of the most common reproductive disorders in cattle. The aim of this study was to investigate the anti-inflammation potential of punicalagin in lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and to uncover the underlying mechanisms. METHODS bEECs were stimulated with different concentrations (1, 10, 30, 50, and 100 μg/ml) of LPS for 3, 6, 9, 12, and 18 h. MTT assay was used to assess cell viability and to identify the conditions for inflammatory injury and effective concentrations of punicalagin. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression of pro-inflammatory cytokines. Western blotting was used to assess levels of inflammation-related proteins. RESULTS Treatment of bEECs with 30 µg/ml LPS for 12 h induced cell injury and reduced cell viability. Punicalagin (5, 10, or 20 µg/ml) pretreatment significantly decreased LPS-induced productions of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α) in bEECs. Molecular research showed that punicalagin inhibited the activation of the upstream mediator nuclear factor-κB (NF-κB) by suppressing the production of inhibitor κBα (IκBα) and phosphorylation of p65. Results also indicated that punicalagin can suppress the phosphorylation of mitogen-activated protein kinases (MAPKs) including p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). CONCLUSIONS Punicalagin may attenuate LPS-induced inflammatory injury and provide a potential option for the treatment of dairy cows with Escherichia coli endometritis.
Collapse
Affiliation(s)
- An Lyu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jia-Jia Chen
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Hui-Chuan Wang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiao-Hong Yu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhi-Cong Zhang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ping Gong
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Lin-Shu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Feng-Hua Liu
- Beijing Key Laboratory for Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
37
|
Wu CX, Feng YH, Yang L, Zhan ZL, Xu XH, Hu XY, Zhu ZH, Zhou GP. Electroacupuncture exerts neuroprotective effects on ischemia/reperfusion injury in JNK knockout mice: the underlying mechanism. Neural Regen Res 2018; 13:1594-1601. [PMID: 30127120 PMCID: PMC6126120 DOI: 10.4103/1673-5374.235294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Simple regulation of c-Jun N-terminal kinase (JNK) or p38 mitogen-activated protein kinase (MAPK) pathways is not enough to trigger cell apoptosis. However, activation of the stress activated pathway (JNK/p38 MAPK) together with inhibition of the growth factor activated extracellular signal-regulated kinase (ERK) pathway can promote cell apoptosis. We hypothesized that inhibition of the JNK or p38 pro-apoptotic pathway and activating the ERK pathway could be the mechanism of anti-apoptosis following cerebral ischemia/reperfusion injury. To investigate the mechanism of the protective effect of electroacupuncture on cerebral ischemia/reperfusion injury in JNK knockout mice, mouse models of cerebral ischemia/reperfusion injury were established by Longa’s method. Electroacupuncture was conducted at acupoints Chize (LU5), Hegu (LI4), Sanyinjiao (SP6) and Zusanli (ST36) 1.5 hours after ischemia/reperfusion injury for 20 minutes, once a day. The neurological function was evaluated using neurological deficit scores. The expression of phospho-extracellular signal-regulated kinase (p-ERK) and phospho-p38 (p-p38) in JNK knockout mice was detected using double-labeling immunofluorescence and western blot assay. The mRNA expression of ERK and p38 was measured by quantitative real-time polymerase chain reaction. Electroacupuncture improved neurological function, increased the immunoreactivity and relative expression of p-ERK and reduced that of p-p38 in the cerebral cortex and hippocampus on the injured side. Electroacupuncture increased mRNA expression of ERK, but decreased that of p38 in the cerebral cortex and hippocampus on the injured side. In conclusion, electroacupuncture upregulated the protective ERK pathway and inhibited the pro-apoptotic p38 pathway, thereby exerting a neuroprotective effect and improving the neurological function in JNK knockout mice.
Collapse
Affiliation(s)
- Chun-Xiao Wu
- School of Traditional Chinese Medicine, Southern Medical University; Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yi-Hui Feng
- Central Hospital of Qingdao, Qingdao, Shandong Province, China
| | - Lu Yang
- School of Traditional Chinese Medicine, Southern Medical University; Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhu-Lian Zhan
- Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiu-Hong Xu
- Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiao-Ying Hu
- Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi-Hua Zhu
- Ruikang Hospital Affiliated to Guangxi College of Traditional Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guo-Ping Zhou
- School of Traditional Chinese Medicine, Southern Medical University; Traditional Chinese Medicine-Integrated Hospital, the Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
38
|
Mun SH, Kang OH, Kong R, Zhou T, Kim SA, Shin DW, Kwon DY. Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J Pharmacol Sci 2017; 137:317-323. [PMID: 30150143 DOI: 10.1016/j.jphs.2017.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that is cross-resistant to most β-lactam antibiotics. We investigated whether oxacillin, which is a β-lactam antibiotic, alone or in combination with punicalagin can affect the penicillin binding protein 2a (PBP2a)-mediated resistance of MRSA. Susceptibility testing of punicalagin with oxacillin was performed using the microdilution and checkerboard assay and the growth curve assay. Binding affinity of punicalagin for cell wall peptidoglycan (PGN) was confirmed by an increased concentration of PGN in bacterial cultures containing punicalagin. The level of PBP2a was analyzed by western blotting. Punicalagin exhibited antimicrobial activity in the viability assay and increased the susceptibility of MRSA to oxacillin. PGN interfered with the antimicrobial activity of punicalagin and prevented the synergistic activity of punicalagin and oxacillin. Increasing the concentration of punicalagin and maintaining a constant concentration of oxacillin resulted in synergistic suppression of the expression of the mec operon (mecA, mecI, and mecR1). The production of PBP2a was suppressed by the addition of punicalagin to oxacillin. Our findings demonstrate that punicalagin potentiates the effect of oxacillin on MRSA by reducing the transcription of mecA (a gene marker for methicillin resistance), which resulted in a reduced level of PBP2a.
Collapse
Affiliation(s)
- Su-Hyun Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Ryong Kong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Sang-A Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Dong-Won Shin
- Department of Oriental Medicine Resources, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, Korea.
| |
Collapse
|
39
|
Cao L, Miao M, Qiao J, Bai M, Li R. The protective role of verbenalin in rat model of focal cerebral ischemia reperfusion. Saudi J Biol Sci 2017; 25:1170-1177. [PMID: 30174518 PMCID: PMC6117236 DOI: 10.1016/j.sjbs.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate the protective mechanism of verbenalin on cerebral ischemia-reperfusion injury. Middle cerebral artery occlusion in the left hemisphere was induced in rats by filament insertion, and rat model of focal cerebral ischemia-reperfusion was established. The high, medium and low dose of verbenalin groups were injected in the tail vein of corresponding drugs 10 min before reperfusion, and submitted for 22 h of reperfusion after the operation. Mortality rate was then calculated, and neurological deficits of rats were scored. The serum of rats was got to determine the S-100β protein level, and the brain tissue was removed to determine the levels of Bax, Bcl-2, Caspase-3 and ATPase. TTC staining was performed on the brain tissue to calculate the percentage of cerebral infarct size. Changes in brain tissue morphology were observed. Rat model of focal cerebral ischemia-reperfusion was successfully replicated. In groups that have taken different doses of verbenalin, the mortality rate, neurological deficit score and the percentage of cerebral infarction size were significantly reduced, and the levels of Bax, Caspase-3, S-100β level of the serum in the brain tissue were also significantly reduced. Increases in the levels of Bcl-2 and ATPase in brain tissue and improvement of pathological damage of hippocampus and cortex were observed. Verbenalin can inhibit the expression of apoptosis genes, promote the expression of anti-apoptosis genes, improve brain microcirculation and energy metabolism, hence reducing cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lihua Cao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Mingsan Miao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Jingyi Qiao
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Ming Bai
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| | - Ruiqi Li
- Department of Pharmacology, Henan University of TCM, Zhengzhou 450046, China
| |
Collapse
|
40
|
Adaramoye O, Erguen B, Nitzsche B, Höpfner M, Jung K, Rabien A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chem Biol Interact 2017; 274:100-106. [PMID: 28709945 DOI: 10.1016/j.cbi.2017.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is an international health problem and search for its effective treatment is in progress. Punicalagin (PN), polyphenol from pomegranate fruit, is known to exhibit potent anticancer activity in lung, breast and cervical cells. However, there is paucity of information on its effect in PCa. This study evaluated anti-proliferative effects of PN and its effects on extrinsic pathway of apoptosis in PCa cells, and angiogenesis in chicken chorioallantoic membrane (CAM). Antioxidant activities of PN were determined by 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging and inhibition of lipid peroxidation (LPO) methods. PCa (PC-3 and LNCaP) and normal prostate (BPH-1) cells were cultured and treated with PN (10, 50 and 100 μM). Cytotoxicity and viability effects of PN were determined by lactate dehydrogenase (LDH) and XTT assays, respectively. Antiangiogenic effects were measured using CAM assay, while apoptosis was assessed by DNA fragmentation, enrichment factor by Cell Death Detection ELISA kit and expressions of caspases-3 and -8. Results showed that PN (10-200 μM) significantly scavenged DPPH and inhibited LPO in a concentration-dependent manner. Furthermore, PN (10-100 μM) concentration-dependently inhibited viability in PC-3 and LNCaP, while viability in BPH-1 was insignificantly affected. PN had low toxicity on cells in vitro at concentrations tested. Also, PN (100 μM) increased enrichment factor in PC-3 (2.34 ± 0.05) and LNCaP (2.31 ± 0.26) relative to control (1.00 ± 0.00). In addition, PN (50 μM) decreased the network of vessels in CAM, suggesting its anti-angiogenic effect. Moreso, PN increased the expressions of caspases-3 and -8 in PC-3. Overall, PN exerts anti-proliferative activity in PCa cells via induction of apoptosis and anti-angiogenic effect.
Collapse
Affiliation(s)
- Oluwatosin Adaramoye
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Drug Metabolism and Toxicology Section, Department of Biochemistry, University of Ibadan, Nigeria.
| | - Bettina Erguen
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany
| | - Anja Rabien
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute for Urologic Research, Berlin, Germany
| |
Collapse
|
41
|
Biliverdin administration ameliorates cerebral ischemia reperfusion injury in rats and is associated with proinflammatory factor downregulation. Exp Ther Med 2017; 14:671-679. [PMID: 28672984 PMCID: PMC5488602 DOI: 10.3892/etm.2017.4549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/17/2017] [Indexed: 02/05/2023] Open
Abstract
Biliverdin (BV), one of the heme oxygenase-1 (HO-1) catalytic products, has been demonstrated to have protective effects in liver ischemia reperfusion injury (IRI). The present study aimed to explore the effects of BV on cerebral IRI, and to investigate the potential mechanisms thereof. Adult male SD rats, weighing 200-240 g, were randomly divided into sham (group S), cerebral ischemia reperfusion control (group C) and BV (group BV) groups. Rats in group C underwent transient middle cerebral artery occlusion (tMCAO) and received 2 ml normal saline; rats in group BV received BV (35 mg/kg) intraperitoneally 15 min prior to reperfusion and 4 h after reperfusion, then twice a day thereafter for 5 days. Group S served as the control. Neurological Severity Scores (NSS) were evaluated at days 1-5 following reperfusion. Staining with 2, 3, 5-triphenyltetrazolium chloride was performed to determine the cerebral infarction at 48 h post reperfusion. mRNA expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and HO-1 in the ischemic cerebral cortex were detected via reverse transcription-quantitative polymerase chain reaction at 3, 6, 12 and 24 h after reperfusion. Western blotting was used to detect the protein expression levels at 3 h after reperfusion. Compared with group S, the NSS, cerebral infarct volume, and the mRNA and protein expression levels of TNF-α, IL-6, IL-1β, iNOS and HO-1 of Group C were significantly increased (P<0.05). However, BV administration significantly improved and reduced these expression levels (P<0.01). The present study indicates that BV is able to ameliorate cerebral IRI in rats and that the mechanism may be associated with the downregulation of proinflammatory factors.
Collapse
|
42
|
Ding M, Wang Y, Sun D, Liu Z, Wang J, Li X, Huo C, Jia X, Chen W, Fu F, Wang X. Punicalagin Pretreatment Attenuates Myocardial Ischemia-Reperfusion Injury via Activation of AMPK. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:53-66. [PMID: 28081629 DOI: 10.1142/s0192415x17500057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Punicalagin (PUN), a major bioactive component in pomegranate juice, has been proven to exert neuroprotective effects against cerebral ischemia/reperfusion (I/R) insult via anti-oxidant properties. This study aims to investigate whether PUN provides cardioprotection against myocardial I/R (MI/R) injury and the underlying mechanisms. PUN (30[Formula: see text]mg/kg/d) or vehicle was intragastrically administered to Sprague-Dawley rats for one week before the operation. MI/R was induced by ligating the left anterior descending coronary artery for 30[Formula: see text]min and subsequent reperfusion for 3[Formula: see text]h. PUN pretreatment conferred cardioprotective effects against MI/R injury by improving cardiac function, limiting infarct size, reducing serum creatine kinase-MB and lactate dehydrogenase activities, and suppressing cardiomyocyte apoptosis. Moreover, PUN pretreatment inhibited I/R-induced myocardial oxidative stress as evidenced by decreased generation of superoxide content and malonaldialdehyde formation and increased antioxidant capability. Furthermore, PUN pretreatment increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation in I/R hearts. AMPK inhibitor compound c inhibited PUN-enhanced AMPK phosphorylation, and blunted PUN-mediated anti-oxidative effects and cardioprotection. These results indicate for the first time that PUN pretreatment protect against I/R-induced oxidative stress and myocardial injury via activation of AMPK.
Collapse
Affiliation(s)
- Mingge Ding
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
- Department of Geriatrics, Xi’an Central Hospital, Xi’an, P.R. China
| | - Yin Wang
- Department of Cardiology, Traditional Chinese Medicine Hospital of Baoji City, Baoji, P.R. China
| | - Di Sun
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Zhenhua Liu
- Department of Physiology, Fourth Military Medical University, Xi’an, P.R. China
| | - Jie Wang
- Department of Physiology, Fourth Military Medical University, Xi’an, P.R. China
| | - Xing Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Cong Huo
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Xin Jia
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| | - Wei Chen
- Department of Cardiology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, Xi’an, P.R. China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, P.R. China
| |
Collapse
|
43
|
Shi X, Yu W, Liu L, Liu W, Zhang X, Yang T, Chai L, Lou L, Gao Y, Zhu L. Panax notoginseng saponins administration modulates pro- /anti-inflammatory factor expression and improves neurologic outcome following permanent MCAO in rats. Metab Brain Dis 2017; 32:221-233. [PMID: 27585466 DOI: 10.1007/s11011-016-9901-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 08/22/2016] [Indexed: 12/21/2022]
Abstract
Ischemic stroke, particularly permanent occlusion, accounts for the overwhelming majority of all strokes. In addition to the occlusion of arteries, the inflammatory response plays a pivotal role in the severity of the cerebral injury and its clinical prognosis. Here, panax notoginseng saponins (PNS) extracted from a traditional Chinese herbal medicine was administered following permanent middle cerebral artery occlusion (MCAO) in rats to explore the neuroprotective mechanisms against ischemic injury. The results showed that MCAO surgery was successful in producing an infarct and that PNS and nimodipine could ameliorate the neurological deficits. The expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) were increased, while the level of interleukin-10 (IL-10) was reduced in the infarct cortex 7 days after MCAO, as assessed by immunohistochemistry, western blotting and quantitative real-time PCR (qRT-PCR). PNS was able to markedly reduce the overexpression of IL-1β and TNF-α while significantly promoting the expression of IL-10, but did not affect the elevated expression of TGF-β1. Meanwhile, nimodipine was able to significantly reduce the expression of IL-1β and TNF-α, but had no obvious effect on IL-10 or TGF-β1. In addition, the serum levels of TNF-α, IL-10 and TGF-β1 were basically consistent with cerebral tissue results; however, the IL-1β levels did not differ. We conclude that PNS can directly down-regulate the overexpression of proinflammatory factors IL-1β and TNF-α while up-regulating the expression of anti-inflammatory factor IL-10 in the core region of the cerebral infarct, thereby preventing neurological damage in rats after permanent MCAO.
Collapse
Affiliation(s)
- Xiaowei Shi
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Yu
- Department of pediatrics, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lixing Liu
- Department of Integrated Traditional and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaomeng Zhang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Yang
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
44
|
Pinela J, Prieto MA, Antonio AL, Carvalho AM, Oliveira MBPP, Barros L, Ferreira ICFR. Ellagitannin-rich bioactive extracts of Tuberaria lignosa: insights into the radiation-induced effects in the recovery of high added-value compounds. Food Funct 2017. [DOI: 10.1039/c7fo00500h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional extracts with the highest concentration of ellagitannins were obtained from samples irradiated at 5 kGy, extracted for 10 min.
Collapse
Affiliation(s)
- José Pinela
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5300-253 Bragança
- Portugal
| | - M. A. Prieto
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5300-253 Bragança
- Portugal
| | - Amilcar L. Antonio
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5300-253 Bragança
- Portugal
| | - Ana Maria Carvalho
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5300-253 Bragança
- Portugal
| | | | - Lillian Barros
- Mountain Research Centre (CIMO)
- ESA
- Polytechnic Institute of Bragança
- 5300-253 Bragança
- Portugal
| | | |
Collapse
|
45
|
Lu H, Wang B. SIRT1 exerts neuroprotective effects by attenuating cerebral ischemia/reperfusion-induced injury via targeting p53/microRNA-22. Int J Mol Med 2016; 39:208-216. [PMID: 27878231 DOI: 10.3892/ijmm.2016.2806] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate whether the SIRT1 exerts neuroprotective effects by attenuating cerebral ischemia/reperfusion-induced injury (CIRI) via targeting p53/microRNA-22. We found that the overexpression of sirtuin 1 (SIRT1) decreased the infarct volume, suppressed p53 protein expression and activated microRNA-22 expression following CIRI. An injection of lipopolysaccharide (LPS, 1 mg/ml; Sigma, St. Louis, MO USA) into the corpus callosum was used to induce CIRI in rats. The infarct volume and neurological deficit score were used to examine the effects of SIRT1 on CIRI. Furthermore, the overexpression of SIRT1 was found to suppress caspase-3 activity, inhibit the activation of the Bax signaling pathway, reduce tumor necrosis factor-α (TNF-α) and interleukin (IL)-6) activity, decrease cyclooxygenase (COX)‑2 and inducible nitric oxide synthase (iNOS) protein expression, and increase IL-10 activity following CIRI. Following the downregulation of SIRT1, p53 protein expression was significantly increased, microRNA-22 expression was inhibited, caspase-3 activity was increased and the Bax signaling pathway was activated. In addition, the activity of TNF-α and IL-6 was was enhanced, COX-2 and iNOS protein expression was increased, and IL-10 activity was reduced following CIRI. Thus, the data from our study suggest that SIRT1 attenuates CIRI by targeting the p53/microRNA-22 axix, while suppressing apoptosis, inflammation, COX-2 and iNOS expression.
Collapse
Affiliation(s)
- Hui Lu
- Department of Neurology, Cangzhou Central Hospital, Hebei 060000, P.R. China
| | - Bincheng Wang
- Department of Neurology, Xuan Wu Hospital, Beijing 100010, P.R. China
| |
Collapse
|
46
|
Lénárt N, Brough D, Dénes Á. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J Cereb Blood Flow Metab 2016; 36:1668-1685. [PMID: 27486046 PMCID: PMC5076791 DOI: 10.1177/0271678x16662043] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
The role of inflammation in neurological disorders is increasingly recognised. Inflammatory processes are associated with the aetiology and clinical progression of migraine, psychiatric conditions, epilepsy, cerebrovascular diseases, dementia and neurodegeneration, such as seen in Alzheimer's or Parkinson's disease. Both central and systemic inflammatory actions have been linked with the development of brain diseases, suggesting that complex neuro-immune interactions could contribute to pathological changes in the brain across multiple temporal and spatial scales. However, the mechanisms through which inflammation impacts on neurological disease are improperly defined. To develop effective therapeutic approaches, it is imperative to understand how detrimental inflammatory processes could be blocked selectively, or controlled for prolonged periods, without compromising essential immune defence mechanisms. Increasing evidence indicates that common risk factors for brain disorders, such as atherosclerosis, diabetes, hypertension, obesity or infection involve the activation of NLRP3, NLRP1, NLRC4 or AIM2 inflammasomes, which are also associated with various neurological diseases. This review focuses on the mechanisms whereby inflammasomes, which integrate diverse inflammatory signals in response to pathogen-driven stimuli, tissue injury or metabolic alterations in multiple cell types and different organs of the body, could functionally link vascular- and neurological diseases and hence represent a promising therapeutic target.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - David Brough
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
47
|
Su D, Ma J, Zhang Z, Tian Y, Shen B. Protective Effects of UCF-101 on Cerebral Ischemia-Reperfusion (CIR) is Depended on the MAPK/p38/ERK Signaling Pathway. Cell Mol Neurobiol 2016; 36:907-914. [PMID: 26429193 DOI: 10.1007/s10571-015-0275-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
This study was aimed to investigate the treatment mechanisms of 5-[5-(2-nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid (UCF-101) in cerebral ischemia-reperfusion (CIR) model rats. Total of 54 healthy male Wistar rats were randomly assigned into three groups, namely sham group, vehicle group, and UCF-101 group. The CIR-injured model was established by right middle cerebral artery occlusion and reperfusion. Neurological function was assessed by an investigator according to the Longa neurologic deficit scores. Meanwhile, the cerebral tissue morphology and apoptotic neurons were evaluated by H&E and TUNEL staining, respectively. Additionally, the expressions of caspase 3, p-p38, and p-ERK were detected by immunohistochemistry or/and Western blotting assays. As results, neurologic deficit and pathological damage were obviously enhanced and TUNEL positive neurons were significantly increased in CIR-injured rats, as compared with those in sham group. Furthermore, the expressions of caspase 3, p-p38, and p-ERK were also significantly increased in vehicle group than those in sham group (P < 0.05). However, UCF-101 treatment could markedly weaken the neurologic deficit with lower scores and improve pathological condition. After UCF-101 treatment, TUNEL positive neurons as well as the expression of caspase 3 were significantly decreased than those in vehicle group (P < 0.05). Besides, p-p38 was decreased while p-ERK was increased in UCF-101 group than those in vehicle group (P < 0.05). Therefore, we concluded that the protective effects of UCF-101 might be associated with apoptosis process and MAPK signaling pathway in the CIR-injured model.
Collapse
Affiliation(s)
- Danying Su
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, 150000, Harbin, People's Republic of China
| | - Jing Ma
- Department of Anatomy, Harbin Medical University, 150000, Harbin, People's Republic of China.
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, 150000, Harbin, People's Republic of China
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, People's Republic of China
| | - Baozhong Shen
- Department of Imaging, The Fourth Affiliated Hospital Harbin Medical University, No. 37 Yiyuan Str, Nangang District, 150001, Harbin, People's Republic of China.
| |
Collapse
|
48
|
Fouad AA, Qutub HO, Al-Melhim WN. Nephroprotection of punicalagin in rat model of endotoxemic acute kidney injury. Toxicol Mech Methods 2016; 26:538-543. [PMID: 27464552 DOI: 10.1080/15376516.2016.1211207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The potential nephroprotection of punicalagin (PNG) against lipopolysaccharide (LPS)-induced acute kidney injury in rats was investigated. Rats received a single i.v. dose of LPS (5 mg/kg), and treated with PNG (50 mg/kg, i.p.), 1 h before, and 1 h following LPS administration. LPS caused significant increases of serum creatinine and neutrophil gelatinase-associated lipocalin. LPS also resulted in significant increases in interleukin-18, tumor necrosis factor-α, interleukin-6, malondialdehyde, nitric oxide, Bax/Bcl-2 ratio and myeloperoxidase, inducible nitric oxide synthase, caspases 3, 8 and 9 activities, and a significant decrease in total antioxidant capacity in kidney tissues. PNG significantly ameliorated the alterations in the measured parameters. Additionally, PNG attenuated the histopathological injury and reduced kidney injury molecule-1 expression in kidneys of rats that received LPS. It was concluded that PNG ameliorated endotoxemic acute kidney injury in rats by counteracting inflammation, oxidative/nitrative stress and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- a Department of Biomedical Sciences, Pharmacology Division, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| | - Hatem O Qutub
- b Department of Internal Medicine, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| | - Walid N Al-Melhim
- c Department of Biomedical Sciences, Histopathology Division, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| |
Collapse
|
49
|
Fouad AA, Qutub HO, Al-Melhim WN. Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:158-162. [PMID: 27310207 DOI: 10.1016/j.etap.2016.05.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the possible hepatoprotection of punicalagin in rats received cyclophosphamide (20mg/kg/day, i.p., for 7 days). Punicalagin given at two doses, 15 and 30mg/kg/day, p.o., for 7 days, starting the same day of cyclophosphamide administration. Punicalagin significantly and dose-dependently reduced the elevations of serum alanine aminotransferase, and liver nuclear factor-κB p65, tumor necrosis factor-α, interleukin-1β, malondialdehyde, nitric oxide, Bax/Bcl-2 ratio, inducible nitric oxide synthase, caspases 3 and 9 activities, and prevented the decrease of hepatic total antioxidant capacity. Punicalagin also attenuated the histopathological liver tissue damage, and decreased cyclooxygenase-2 expression in liver of rats received cyclophosphamide in a dose-dependent manner. It was concluded that punicalagin protected rat liver against cyclophosphamide toxicity by inhibiting oxidative/nitrosative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Hatem O Qutub
- Department of Internal Medicine, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Walid N Al-Melhim
- Department of Biomedical Sciences, Histopathology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
50
|
Shao J, Wang P, Liu A, Du X, Bai J, Chen M. Punicalagin Prevents Hypoxic Pulmonary Hypertension via Anti-Oxidant Effects in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:785-801. [PMID: 27222062 DOI: 10.1142/s0192415x16500439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Punicalagin (PG), a major bioactive ingredient in pomegranate juice, has been proven to have anti-oxidative stress properties and to exert protective effects on acute lung injuries induced by lipopolysaccharides. This study aimed to investigate the effects of PG treatment on hypoxic pulmonary hypertension (HPH) and the underlying mechanisms responsible for the effects. Rats were exposed to 10% oxygen for 2 wk (8 h/day) to induce the HPH model. PG (5, 15, 45[Formula: see text]mg/kg) was orally administered 10[Formula: see text]min before hypoxia each day. PG treatments at the doses of 15 and 45[Formula: see text]mg/kg/d decreased the mean pulmonary arterial pressure (mPAP) and alleviated right ventricular hypertrophy and vascular remodeling in HPH rats. Meanwhile, PG treatment attenuated the hypoxia-induced endothelial dysfunction of pulmonary artery rings. The beneficial effects of PG treatment were associated with improved nitric oxide (NO)-cGMP signaling and reduced oxidative stress, as evidenced by decreased superoxide generation, gp91[Formula: see text] expression and nitrotyrosine content in the pulmonary arteries. Furthermore, tempol’s scavenging of oxidative stress also increased NO production and attenuated endothelial dysfunction and pulmonary hypertension in HPH rats. Combining tempol and PG did not exert additional beneficial effects compared to tempol alone. Our study indicated for the first time that PG treatment can protect against hypoxia-induced endothelial dysfunction and pulmonary hypertension in rats, which may be induced via its anti-oxidant actions.
Collapse
Affiliation(s)
- Jingyun Shao
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
- Department of Respiratory Medicine, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Wang
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - An Liu
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - Xusheng Du
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - Jie Bai
- Department of Respiratory Medicine, Xi’an Central Hospital Xi’an 710003, China
| | - Mingwei Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|