1
|
Aljohani MA, Sasaki H, Sun XL. Cellular translocation and secretion of sialidases. J Biol Chem 2024; 300:107671. [PMID: 39128726 PMCID: PMC11416241 DOI: 10.1016/j.jbc.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.
Collapse
Affiliation(s)
- Majdi A Aljohani
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hiroaki Sasaki
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Subramanian SP, Gundry RL. Integration of Web-Based Tools to Visualize, Integrate, and Interpret Glycogene Expression and Glycomics Data. Methods Mol Biol 2024; 2836:97-109. [PMID: 38995538 PMCID: PMC11633445 DOI: 10.1007/978-1-0716-4007-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glycosylation is the most abundant and diverse post-translational modification occurring on proteins. Glycans play important roles in modulating cell adhesion, growth, development, and differentiation. Changes in glycosylation affect protein structure and function and contribute to disease processes. Therefore, understanding glycosylation patterns is key for the identification of targets for the diagnosis of diseases, cellular states, and therapy. Glycosylation is a non template-driven process governed by the action of numerous enzymes and substrate availability that varies among cell types and species. Therefore, qualitative and quantitative assessment of global glycosylation and individual glycans remains challenging because it requires integration of multiple complex data types. Glycan structure and quantity data are often integrated with assessments of gene expression to aid contextualization of observed glycosylation changes within biological processes. However, correlating glycogene expression to the glycan structure is challenging because transcriptional changes may not always concur with the final gene product; there is often a lack of information on nucleotide sugar pools, and the final glycan structure is the result of many different glycogenes acting in concert. To overcome these challenges, interactive online tools are emerging as key resources for facilitating the analysis and integration of glycomics and glycogene expression data. Importantly, these tools work in concurrence with glycan biosynthetic schemes and therefore provide a clear indication of the molecular pathways where the glycan and glycogene are involved. In this chapter, we describe the applications of four freely available online tools that can be used for integrated visualization, interpretation, and presentation of RNAseq and glycomics results.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
3
|
Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:molecules28030969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
|
4
|
Abstract
Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.
Collapse
|
5
|
The Association of Lipoprotein(a) and Circulating Monocyte Subsets with Severe Coronary Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8060063. [PMID: 34206012 PMCID: PMC8228191 DOI: 10.3390/jcdd8060063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/02/2023] Open
Abstract
Background and aims: Chronic inflammation associated with the uncontrolled activation of innate and acquired immunity plays a fundamental role in all stages of atherogenesis. Monocytes are a heterogeneous population and each subset contributes differently to the inflammatory process. A high level of lipoprotein(a) (Lp(a)) is a proven cardiovascular risk factor. The aim of the study was to investigate the association between the increased concentration of Lp(a) and monocyte subpopulations in patients with a different severity of coronary atherosclerosis. Methods: 150 patients (124 males) with a median age of 60 years undergoing a coronary angiography were enrolled. Lipids, Lp(a), autoantibodies, blood cell counts and monocyte subpopulations (classical, intermediate, non-classical) were analyzed. Results: The patients were divided into two groups depending on the Lp(a) concentration: normal Lp(a) < 30 mg/dL (n = 82) and hyperLp(a) ≥ 30 mg/dL (n = 68). Patients of both groups were comparable by risk factors, autoantibody levels and blood cell counts. In patients with hyperlipoproteinemia(a) the content (absolute and relative) of non-classical monocytes was higher (71.0 (56.6; 105.7) vs. 62.2 (45.7; 82.4) 103/mL and 17.7 (13.0; 23.3) vs. 15.1 (11.4; 19.4) %, respectively, p < 0.05). The association of the relative content of non-classical monocytes with the Lp(a) concentration retained a statistical significance when adjusted for gender and age (r = 0.18, p = 0.03). The severity of coronary atherosclerosis was associated with the Lp(a) concentration as well as the relative and absolute (p < 0.05) content of classical monocytes. The high content of non-classical monocytes (OR = 3.5, 95% CI 1.2–10.8) as well as intermediate monocytes (OR = 8.7, 2.5–30.6) in patients with hyperlipoproteinemia(a) were associated with triple-vessel coronary disease compared with patients with a normal Lp(a) level and a low content of monocytes. Conclusion: Hyperlipoproteinemia(a) and a decreased quantity of classical monocytes were associated with the severity of coronary atherosclerosis. The expansion of CD16+ monocytes (intermediate and non-classical) in the presence of hyperlipoproteinemia(a) significantly increased the risk of triple-vessel coronary disease.
Collapse
|
6
|
Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN. Trans-sialidase Associated with Atherosclerosis: Defining the Identity of a Key Enzyme Involved in the Pathology. Curr Drug Targets 2020; 20:938-941. [PMID: 30848200 DOI: 10.2174/1389450120666190308111619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Atherosclerosis is associated with the increased trans-sialidase activity, which can be detected in the blood plasma of atherosclerosis patients. The likely involvement in the disease pathogenesis made this activity an interesting research subject and the enzyme that may perform such activity was isolated and characterized in terms of substrate specificity and enzymatic properties. It was found that the enzyme has distinct optimum pH values, and its activity was enhanced by the presence of Ca2+ ions. Most importantly, the enzyme was able to cause atherogenic modification of lowdensity lipoprotein (LDL) particles in vitro. However, the identity of the discovered enzyme remained to be defined. Currently, sialyltransferases, mainly ST6Gal I, are regarded as major contributors to sialic acid metabolism in human blood. In this mini-review, we discuss the possibility that atherosclerosis- associated trans-sialidase does, in fact, belong to the sialyltransferases family.
Collapse
Affiliation(s)
- Victor Y Glanz
- Department of Genetics, Cytology and Bioengineering, Faculty of Biology and Medicine, Voronezh State University, Voronezh, Russian Federation
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 109240 Moscow, Russian Federation
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation.,Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russian Federation.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
7
|
Apolipoprotein(a), an enigmatic anti-angiogenic glycoprotein in human plasma: A curse or cure? Pharmacol Res 2020; 158:104858. [PMID: 32430285 DOI: 10.1016/j.phrs.2020.104858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is a finely co-ordinated, multi-step developmental process of the new vascular structure. Even though angiogenesis is regularly occurring in physiological events such as embryogenesis, in adults, it is restricted to specific tissue sites where rapid cell-turnover and membrane synthesis occurs. Both excessive and insufficient angiogenesis lead to vascular disorders such as cancer, ocular diseases, diabetic retinopathy, atherosclerosis, intra-uterine growth restriction, ischemic heart disease, stroke etc. Occurrence of altered lipid profile and vascular lipid deposition along with vascular disorders is a hallmark of impaired angiogenesis. Among lipoproteins, lipoprotein(a) needs special attention due to the presence of a multi-kringle protein subunit, apolipoprotein(a) [apo(a)], which is structurally homologous to many naturally occurring anti-angiogenic proteins such as plasminogen and angiostatin. Researchers have constructed different recombinant forms of apo(a) (rhLK68, rhLK8, RHACK2, KV-11, and AU-6) and successfully exploited its potential to inhibit unwanted angiogenesis during tumor metastasis and retinal neovascularization. Similar to naturally occurring anti-angiogenic proteins, apo(a) can directly interfere with angiogenic signaling pathways. Besides this, apo(a) can also exert its anti-angiogenic effect indirectly by inducing endothelial cell apoptosis, by inhibiting endothelial progenitor cell functions or by upregulating nuclear factors in endothelial cells via apo(a)-bound oxPLs. However, the impact of the anti-angiogenic potential of native apo(a) during physiological angiogenesis in embryos and wounded tissues is not yet explored. In this context, we review the studies so far done to demonstrate the anti-angiogenic activity of apo(a) and the recent developments in using apo(a) as a therapeutic agent to treat impaired angiogenesis during vascular disorders, with emphasis on the gaps in the literature.
Collapse
|
8
|
Afanas'eva OI, Vikhrova EB, Razova OA, Utkina EA, Afanas'eva MI, Klesareva EA, Radyukhina NV, Aref'eva TI, Pokrovsky SN. A Low-Molecular-Weight Phenotype of Apolipoprotein(a) as a Factor Provoking Accumulation of Cholesterol by THP-1 Monocyte-Like Cells. Bull Exp Biol Med 2019; 167:24-29. [PMID: 31177468 DOI: 10.1007/s10517-019-04452-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 10/26/2022]
Abstract
Increased concentration of lipoprotein(a) is a risk factor of coronary heart disease. lipoprotein(a) consists of LDL-like and highly polymorphic apolipoprotein(a). Here we studied the effect of lipoprotein(a)-containing sera with different apolipoprotein(a) phenotypes on lipid accumulation by THP-1 monocyte-like cells. Cholesterol concentration in lysates of THP-1 cells was significantly higher after their incubation with lipoprotein(a)-containing serum samples with low-molecular-weight phenotype of apolipoprotein(a) in comparison with samples with a high-molecular-weight apolipoprotein(a) phenotype irrespective of initial cholesterol level as well as serum concentrations of apoB-100, oxidized LDL, and circulating immune complexes. The presence of the most atherogenic small dense LDL subfractions in examined sera in addition to a low-molecular-weight apolipoprotein(a) phenotype resulted in significant elevation of cholesterol accumulation by THP-1 cells. The data obtained explain greater atherogenicity of lipoprotein(a) with low-molecular-weight apolipoprotein(a) phenotype.
Collapse
Affiliation(s)
- O I Afanas'eva
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia.
| | - E B Vikhrova
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| | - O A Razova
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| | - E A Utkina
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| | - M I Afanas'eva
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| | - E A Klesareva
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| | - N V Radyukhina
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| | - T I Aref'eva
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| | - S N Pokrovsky
- National Medical Research Center of Cardiology, Ministry of Health of the Russia, Moscow, Russia
| |
Collapse
|