1
|
Dai Y, Huang G, Zhong X, Yang Y, Ye J. N6-(2-hydroxyethyl)-adenosine (HEA) exhibits antitumor activity for osteosarcoma progression by regulating IGF1 signaling. Fitoterapia 2025; 180:106319. [PMID: 39608466 DOI: 10.1016/j.fitote.2024.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Osteosarcoma is a highly malignant bone tumor with poor prognosis and limited treatment options due to resistance and side effects. OBJECTIVES This study investigates the effects of N6-(2-hydroxyethyl)-adenosine (HEA) on osteosarcoma cells and its impact on the IGF1 signaling pathway. METHODS Saos2 and MG63 cell lines were treated with HEA. Cell viability, apoptosis, migration, invasion, and EMT markers were assessed. IGF1 expression was analyzed using Western blot, qPCR, and ELISA. IGF1 silencing and recombinant IGF1 treatments were used to explore HEA's mechanisms. RESULTS HEA significantly decreased osteosarcoma cell viability and induced apoptosis in a dose- and time-dependent manner. It also inhibited cell migration and invasion, and modulated EMT markers by upregulating E-cadherin and downregulating N-cadherin and vimentin. HEA downregulated IGF1 at both the mRNA and protein levels, and reduced IGF1 secretion. Furthermore, HEA inhibited the PI3K-AKT signaling pathway, which is activated by IGF1. IGF1 silencing mimicked HEA's effects, whereas recombinant IGF1 pre-treatment partially reversed HEA's effects on cell viability, apoptosis, and EMT markers. CONCLUSIONS HEA exerts potent anti-cancer effects on osteosarcoma cells both in vitro and in vivo by targeting the IGF1 pathway and inhibiting downstream PI3K-AKT signaling. These results suggest that HEA holds promise as a novel therapeutic agent for osteosarcoma.
Collapse
Affiliation(s)
- Yu Dai
- Department of Orthopedics, Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Xiao Zhong
- Department of Medical Quality Control, Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Yihua Yang
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China.
| | - Junqiang Ye
- Department of Orthopedics, Longgang District Central Hospital of Shenzhen, Shenzhen, China.
| |
Collapse
|
2
|
Bryant CJ, McCool MA, Rosado González G, Abriola L, Surovtseva Y, Baserga S. Discovery of novel microRNA mimic repressors of ribosome biogenesis. Nucleic Acids Res 2024; 52:1988-2011. [PMID: 38197221 PMCID: PMC10899765 DOI: 10.1093/nar/gkad1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
Affiliation(s)
- Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mason A McCool
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Laura Abriola
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, West Haven, CT, 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
3
|
Bryant CJ, McCool MA, Rosado-González GT, Abriola L, Surovtseva YV, Baserga SJ. Discovery of novel microRNA mimic repressors of ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.526327. [PMID: 36824951 PMCID: PMC9949135 DOI: 10.1101/2023.02.17.526327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.
Collapse
|
4
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Razi Soofiyani S, Minaei Beirami S, Hosseini K, Mohammadi Nasr M, Ranjbar M, Forouhandeh H, Tarhriz V, Sadeghi M. Revisiting Inhibition Effects of miR-28 as a Metastasis Suppressor in Gastrointestinal Cancers. Microrna 2023; 12:131-142. [PMID: 37073155 DOI: 10.2174/2211536612666230413125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/09/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023]
Abstract
MicroRNAs are critical epigenetic regulators that can be used as diagnostic, prognostic, and therapeutic biomarkers for the treatment of various diseases, including gastrointestinal cancers, among a variety of cellular and molecular biomarkers. MiRNAs have also shown oncogenic or tumor suppressor roles in tumor tissue and other cell types. Studies showed that the dysregulation of miR-28 is involved in cell growth and metastasis of gastrointestinal cancers. MiR-28 plays a key role in controlling the physiological processes of cancer cells including growth and proliferation, migration, invasion, apoptosis, and metastasis. Therefore, miR-28 expression patterns can be used to distinguish patient subgroups. Based on the previous studies, miR-28 expression can be a suitable biomarker to detect tumor size and predict histological grade metastasis. In this review, we summarize the inhibitory effects of miR-28 as a metastasis suppressor in gastrointestinal cancers. miR-28 plays a role as a tumor suppressor in gastrointestinal cancers by regulating cancer cell growth, cell differentiation, angiogenesis, and metastasis. As a result, using it as a prognostic, diagnostic, and therapeutic biomarker in the treatment of gastrointestinal cancers can be a way to solve the problems in this field.
Collapse
Affiliation(s)
- Saiedeh Razi Soofiyani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Mohammadi Nasr
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences. Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences. Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Ishaq Y, Ikram A, Alzahrani B, Khurshid S. The Role of miRNAs, circRNAs and Their Interactions in Development and Progression of Hepatocellular Carcinoma: An Insilico Approach. Genes (Basel) 2022; 14:genes14010013. [PMID: 36672755 PMCID: PMC9858589 DOI: 10.3390/genes14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of malignant tumor. miRNAs are noncoding RNAs and their differential expression patterns are observed in HCC-induced by alcoholism, HBV and HCV infections. By acting as a competing endogenous RNA (ceRNA), circRNA regulates the miRNA function, indirectly controlling the gene expression and leading to HCC progression. In the present study, data mining was performed to screen out all miRNAs and circRNA involved in alcohol, HBV or HCV-induced HCC with statistically significant (≤0.05%) expression levels reported in various studies. Further, the interaction of miRNAs and circRNA was also investigated to explore their role in HCC due to various causative agents. Together, these study data provide a deeper understanding of the circRNA-miRNA regulatory mechanisms in HCC. These screened circRNA, miRNA and their interactions can be used as prognostic biomarkers or therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
- Correspondence:
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Sana Khurshid
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Long non-coding RNA OGFRP1 regulates cell proliferation and ferroptosis by miR-299-3p/SLC38A1 axis in lung cancer. Anticancer Drugs 2022; 33:826-839. [PMID: 36066402 DOI: 10.1097/cad.0000000000001328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung cancer is devastating cancer that ranks as the leading cause of cancer-related death. Long noncoding RNA (lncRNA) opioid growth factor receptor pseudogene 1 (OGFRP1) was recognized as an oncogene in many cancers. However, the molecular mechanism of OGFRP1 in lung cancer is still poorly understood. The expression of target RNAs and genes was detected by quantitative real-time PCR and western blot. The interaction between miR-299-3p and OGFRP1 or solute carrier family 38 member 1 (SLC38A1) was predicted by StarbaseV3.0 and verified by dual-luciferase reporter assay and Pearson's correlation coefficient. Besides, a transplantation model of human lung cancer in nude mice was established to evaluate the role of OGFRP1 in lung cancer. OGFRP1 and SLC38A1 were overexpressed, whereas miR-299-3p was lowly expressed in lung cancer tumors and cells. OGFRP1 knockdown suppressed cell proliferation and facilitated ferroptosis by promoting lipid peroxidation and iron accumulation in lung cancer. Besides, Furthermore, miR-299-3p inhibitor or SLC38A1 overexpression attenuated OGFRP1 depletion-induced suppression on cell proliferation and ferroptosis in lung cancer. Animal experiments indicated that OGFRP1 deficiency restrained tumor growth in vivo by regulating the miR-299-3p/SLC38A1 axis. OGFRP1 regulated cell proliferation and ferroptosis in lung cancer by inhibiting miR-299-3p to enhance SLC38A1 expression, providing a novel therapeutic strategy for lung cancer.
Collapse
|
8
|
miR-28-5p's Targeting of GAGE12I Inhibits Proliferation, Migration, and Invasion of Gastric Cancer in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6946051. [PMID: 36212971 PMCID: PMC9546678 DOI: 10.1155/2022/6946051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
GAGE12I is a tumor metastasis-promoting factor, which can induce gastric cancer cells to invade and migrate. We investigated the effect of miR-28-5p targeting GAGE12I on proliferation, invasion, and migration of human gastric cancer cell lines SGC-7901, AGS, and MGC-803. The expression levels of miR-28-5p and GAGE12I were detected by real-time PCR and western blot, respectively. Cell proliferation, migration, and invasion were measured by MTT and Transwell chamber. The interaction between miR-28-5p and GAGE12I was investigated by bioinformatics analysis and luciferase assay. Results showed that the expression of miR-28-5p in human gastric cancer cell lines was lower than that in normal gastric epithelial cells (P < 0.05). Overexpression of miR-28-5p suppressed cell proliferation, invasion, and migration (P < 0.05). GAGE12I was confirmed as a target of miR-28-5p. Cell proliferation, invasion, and migration were decreased in cells transfected with shGAGE12I compared with those of the scrambled group (P < 0.05). Collectively, miR-28-5p negatively regulated GAGE12I and reduced the proliferation, invasion, and migration of gastric cancer cells.
Collapse
|
9
|
Mao W, Wang S, Chen R, He Y, Lu R, Zheng M. lncRNA NORAD promotes lung cancer progression by competitively binding to miR-28-3p with E2F2. Open Med (Wars) 2022; 17:1538-1549. [PMID: 36245705 PMCID: PMC9520332 DOI: 10.1515/med-2022-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023] Open
Abstract
Lung cancer (LC) is a prevailing primary tumor in the lung. lncRNA non-coding RNA activated by DNA damage (NORAD) is a popular target in human cancers. This experiment is designed to probe the mechanism of lncRNA in LC progression. NORAD expression in normal lung epithelial cells and LC cells was examined and then silenced to assess its effect on LC cell proliferation, invasion, and migration. Subcellular localization of NORAD was analyzed through online databases and then corroborated by fractionation of nuclear and cytoplasmic RNA assay. The target binding relations between NORAD and miR-28-3p and between miR-28-3p and E2F2 were verified. Eventually, LC cells with NORAD silencing were transfected with miR-28-3p inhibitor or pcDNA3.1-E2F2 to measure LC cell proliferation, invasion, and migration. NORAD was overexpressed in LC cells and NORAD knockout led to suppressed LC cell proliferation, invasion, and migration. Besides, NORAD targeted miR-28-3p and miR-28-3p targeted E2F2 transcription. Inhibiting miR-28-3p or overexpressing E2F2 could both annul the inhibitory role of si-NORAD in LC cell proliferation, invasion, and migration. Generally, our findings demonstrated that NORAD competitively bound to miR-28-3p with E2F2, to promote LC cell progression.
Collapse
Affiliation(s)
- Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Shengfei Wang
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Ruo Chen
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yijun He
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Rongguo Lu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi, 214023, Jiangsu, China
| |
Collapse
|
10
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
11
|
Serum MicroRNAs: -28-3p, -31-5p, -378a-3p, and -382-5p as novel potential biomarkers in acute lymphoblastic leukemia. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Microrna-1224-5p Is a Potential Prognostic and Therapeutic Biomarker in Glioblastoma: Integrating Bioinformatics and Clinical Analyses. Curr Med Sci 2022; 42:584-596. [PMID: 35678909 DOI: 10.1007/s11596-022-2593-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
|
13
|
Baker BC, Lui S, Lorne I, Heazell AEP, Forbes K, Jones RL. Sexually dimorphic patterns in maternal circulating microRNAs in pregnancies complicated by fetal growth restriction. Biol Sex Differ 2021; 12:61. [PMID: 34789323 PMCID: PMC8597318 DOI: 10.1186/s13293-021-00405-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background Current methods fail to accurately predict women at greatest risk of developing fetal growth restriction (FGR) or related adverse outcomes, including stillbirth. Sexual dimorphism in these adverse pregnancy outcomes is well documented as are sex-specific differences in gene and protein expression in the placenta. Circulating maternal serum microRNAs (miRNAs) offer potential as biomarkers that may also be informative of underlying pathology. We hypothesised that FGR would be associated with an altered miRNA profile and would differ depending on fetal sex. Methods miRNA expression profiles were assessed in maternal serum (> 36 weeks’ gestation) from women delivering a severely FGR infant (defined as an individualised birthweight centile (IBC) < 3rd) and matched control participants (AGA; IBC = 20–80th), using miRNA arrays. qPCR was performed using specific miRNA primers in an expanded cohort of patients with IBC < 5th (n = 15 males, n = 16 females/group). Maternal serum human placental lactogen (hPL) was used as a proxy to determine if serum miRNAs were related to placental dysfunction. In silico analyses were performed to predict the potential functions of altered miRNAs. Results Initial analyses revealed 11 miRNAs were altered in maternal serum from FGR pregnancies. In silico analyses revealed all 11 altered miRNAs were located in a network of genes that regulate placental function. Subsequent analysis demonstrated four miRNAs showed sexually dimorphic patterns. miR-28-5p was reduced in FGR pregnancies (p < 0.01) only when there was a female offspring and miR-301a-3p was only reduced in FGR pregnancies with a male fetus (p < 0.05). miR-454-3p was decreased in FGR pregnancies (p < 0.05) regardless of fetal sex but was only positively correlated to hPL when the fetus was female. Conversely, miR-29c-3p was correlated to maternal hPL only when the fetus was male. Target genes for sexually dimorphic miRNAs reveal potential functional roles in the placenta including angiogenesis, placental growth, nutrient transport and apoptosis. Conclusions These studies have identified sexually dimorphic patterns for miRNAs in maternal serum in FGR. These miRNAs may have potential as non-invasive biomarkers for FGR and associated placental dysfunction. Further studies to determine if these miRNAs have potential functional roles in the placenta may provide greater understanding of the pathogenesis of placental dysfunction and the differing susceptibility of male and female fetuses to adverse in utero conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-021-00405-z. Detection and treatment of pregnancies at high risk of fetal growth restriction (FGR) and stillbirth remains a major obstetric challenge; circulating maternal serum microRNAs (miRNAs) offer potential as novel biomarkers. Unbiased analysis of serum miRNAs in women in late pregnancy identified a specific profile of circulating miRNAs in women with a growth-restricted infant. Some altered miRNAs (miR-28-5p, miR-301a-3p) showed sexually dimorphic expression in FGR pregnancies and others a fetal-sex dependent association to a hormonal marker of placental dysfunction (miR-454-3p, miR-29c-3p). miR-301a-3p and miR-28-5p could potentially be used to predict FGR specifically in pregnancies with a male or female baby, respectively, however larger cohort studies are required. Further investigations of these miRNAs and their relationship to placental dysfunction will lead to a better understanding of the pathophysiology of FGR and why there is differing susceptibility of male and female fetuses to FGR and stillbirth.
Collapse
Affiliation(s)
- Bernadette C Baker
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.
| | - Sylvia Lui
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,Division of Inflammation and Repair, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Isabel Lorne
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Alexander E P Heazell
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.,St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Rebecca L Jones
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Zhang F, Yuan X, Sun H, Yin X, Gao Y, Zhang M, Jia Z, Yu M, Ying S, Xia H, Ju L, Xiao Y, Tao H, Lou J, Zhu L. A nontoxic dose of chrysotile can malignantly transform Met-5A cells, in which microRNA-28 has inhibitory effects. J Appl Toxicol 2021; 41:1879-1892. [PMID: 33890321 DOI: 10.1002/jat.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Chrysotile, which is classified as a class I carcinogen by the International Agency for Research on Cancer (IARC), has extensive application in the industry and can lead to lung or other cancers. However, whether chrysotile causes malignant mesothelioma and its molecular mechanism remain debatable. Thus, this study aimed to demonstrate the mesothelioma-inducing potential of chrysotile at the mesothelial cellular level and the function of microRNA-28 in malignantly transformed mesothelial MeT-5A cells. MeT-5A cells malignantly transformed by a nontoxic dose of chrysotile were named Asb-T, and miR-28 expression was downregulated in Asb-T cells. Restoration of miR-28 expression inhibited the proliferation, migration and invasion of Asb-T cells. We verified that IMPDH is a putative target of miR-28. The expression of IMPDH was significantly higher in Asb-T MeT-5A cells than in control cells, whereas the opposite trend was observed with miR-28 overexpression. Additionally, inhibition of IMPDH had similar effects as miR-28 overexpression. After miR-28 was elevated or IMPDH was inhibited, Ras activation was reduced, and its downstream pathways (the Erk and Akt signalling pathways) were inhibited. Surprisingly, the content of miR-28 in the blood of mesothelioma patients was higher than that in control subjects. Overall, nontoxic doses of chrysotile can cause malignant transformation of MeT-5A cells. Moreover, miR-28 inhibits the proliferation, migration and invasion of Asb-T MeT-5A cells, negatively regulates the expression of IMPDH through the Ras signalling pathway and may be an important therapeutic target.
Collapse
Affiliation(s)
- Fangfang Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Xiuyuan Yuan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hongjing Sun
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianhong Yin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Gao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Zhang
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Min Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Li Ju
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yun Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - He Tao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lijin Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
15
|
Chinigò G, Castel H, Chever O, Gkika D. TRP Channels in Brain Tumors. Front Cell Dev Biol 2021; 9:617801. [PMID: 33928077 PMCID: PMC8076903 DOI: 10.3389/fcell.2021.617801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments. The resistance to treatment is associated with angiogenesis, hypoxic and necrotic tumor areas while heterogeneity would accumulate during glioma cell invasion, supporting recurrence. These complex mechanisms require a focus on potential new molecular actors to consider new treatment options for gliomas. Among emerging and underexplored targets, transient receptor potential (TRP) channels belonging to a superfamily of non-selective cation channels which play critical roles in the responses to a number of external stimuli from the external environment were found to be related to cancer development, including glioma. Here, we discuss the potential as biological markers of diagnosis and prognosis of TRPC6, TRPM8, TRPV4, or TRPV1/V2 being associated with glioma patient overall survival. TRPs-inducing common or distinct mechanisms associated with their Ca2+-channel permeability and/or kinase function were detailed as involving miRNA or secondary effector signaling cascades in turn controlling proliferation, cell cycle, apoptotic pathways, DNA repair, resistance to treatment as well as migration/invasion. These recent observations of the key role played by TRPs such as TRPC6 in GBM growth and invasiveness, TRPV2 in proliferation and glioma-stem cell differentiation and TRPM2 as channel carriers of cytotoxic chemotherapy within glioma cells, should offer new directions for innovation in treatment strategies of high-grade glioma as GBM to overcome high resistance and recurrence.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cell Physiology, Department of Life Sciences, Univ. Lille, Inserm, U1003 - PHYCEL, University of Lille, Lille, France.,Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Hélène Castel
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Oana Chever
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dimitra Gkika
- CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
16
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Sun R, Zheng Z, Wang L, Cheng S, Shi Q, Qu B, Fu D, Leboeuf C, Zhao Y, Ye J, Janin A, Zhao WL. A novel prognostic model based on four circulating miRNA in diffuse large B-cell lymphoma: implications for the roles of MDSC and Th17 cells in lymphoma progression. Mol Oncol 2020; 15:246-261. [PMID: 33107145 PMCID: PMC7782091 DOI: 10.1002/1878-0261.12834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) have been emerged as prognostic biomarkers in diffuse large B-cell lymphoma (DLBCL). To understand the potential underlying mechanisms and translate these findings into clinical prediction on lymphoma progression, large patient cohorts should be evaluated. Here, using miRNA PCR array, we analyzed the miRNA expression profiles in serum samples of 20 DLBCL patients at diagnosis, remission and relapse. Four candidate miRNA were identified and subsequently evaluated for their ability to predict relapse and survival. A prognostic model based on four circulating miRNA (miR21, miR130b, miR155 and miR28) was established and tested in a training cohort of 279 patients and in a validation cohort of 225 patients (NCT01852435). The prognostic value of the 4-circulating miRNA model was assessed by univariate and multivariate analyses. The novel 4-circulating miRNA prognostic model significantly predicted clinical outcome of DLBCL, independent of International Prognostic Index in the training cohort [hazard ratio (HR) = 2.83, 95% CI 2.14-3.51, P < 0.001] and in the validation cohort (HR = 2.71, 95% CI 1.91-3.50, P < 0.001). Moreover, DNA- and RNA-sequencing was performed on tumor samples to detect genetic mutations and signaling pathway dysregulation. DNA-sequencing data showed no significant difference of tumor mutation burden between the low-risk and the high-risk groups of the 4-circulating miRNA model. RNA-sequencing revealed a correlation between the 4-circulating miRNA model and aberrant Ras protein signaling transduction. The impact of the miRNA signature on oncogenic signaling and tumor microenvironment was analyzed in vitro and in vivo. In B-lymphoma cells, modulation of the miRNA regulated IGF1 and JUN expression, thereby altering MDSC and Th17 cells. In DLBCL patients, the high-risk group presented Ras signaling activation, increased MDSC and Th17 cells, and immunosuppressive status compared with the low-risk group. In conclusion, the easy-to-use 4-circulating miRNA prognostic model effectively predicted relapse and survival in DLBCL. Moreover, the tumor microenvironment contributes to the role of the 4-circulating miRNA model in DLBCL progression.
Collapse
Affiliation(s)
- Rui Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Zhong Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Bin Qu
- Department of Laboratory Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | | | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jing Ye
- Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| | - Anne Janin
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China.,Laboratory of Molecular Pathology, Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Shanghai, China
| |
Collapse
|
18
|
Cannavicci A, Zhang Q, Kutryk MJB. Non-Coding RNAs and Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9103333. [PMID: 33080889 PMCID: PMC7603193 DOI: 10.3390/jcm9103333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are functional ribonucleic acid (RNA) species that include microRNAs (miRs), a class of short non-coding RNAs (∼21–25 nucleotides), and long non-coding RNAs (lncRNAs) consisting of more than 200 nucleotides. They regulate gene expression post-transcriptionally and are involved in a wide range of pathophysiological processes. Hereditary hemorrhagic telangiectasia (HHT) is a rare disorder inherited in an autosomal dominant fashion characterized by vascular dysplasia. Patients can develop life-threatening vascular malformations and experience severe hemorrhaging. Effective pharmacological therapies are limited. The study of ncRNAs in HHT is an emerging field with great promise. This review will explore the current literature on the involvement of ncRNAs in HHT as diagnostic and pathogenic factors.
Collapse
Affiliation(s)
- Anthony Cannavicci
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
| | - Michael J. B. Kutryk
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada;
- Correspondence: ; Tel.: +1-(416)-360-4000 (ext. 6155)
| |
Collapse
|
19
|
Ferreira Mendes JM, de Faro Valverde L, Torres Andion Vidal M, Paredes BD, Coelho P, Allahdadi KJ, Coletta RD, Souza BSDF, Rocha CAG. Effects of IGF-1 on Proliferation, Angiogenesis, Tumor Stem Cell Populations and Activation of AKT and Hedgehog Pathways in Oral Squamous Cell Carcinoma. Int J Mol Sci 2020; 21:E6487. [PMID: 32899449 PMCID: PMC7555130 DOI: 10.3390/ijms21186487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Activation of the PI3K-AKT pathway controls most hallmarks of cancer, and the hedgehog (HH) pathway has been associated with oral squamous cell carcinoma (OSCC) development and progression. We hypothesized that fibroblast-derived insulin-like growth factor-1 (IGF-1) acts in oral squamous cell carcinoma (OSCC) cells, leading to the non-canonical activation of the HH pathway, maintaining AKT activity and promoting tumor aggressiveness. (2) Methods: Primary fibroblasts (MF1) were genetically engineered for IGF-1 overexpression (MF1-IGF1) and CRISPR/Cas9-mediated IGF1R silencing was performed in SCC-4 cells. SCC-4 cells were co-cultured with fibroblasts or incubated with fibroblast conditioned medium (CM) or rIGF-1 for functional assays and the evaluation of AKT and HH pathways. (3) Results: Gene expression analysis confirmed IGF-1 overexpression in MF1-IGF1 and the absence of IGF-1 expression in SCC-4, while elevated IGF1R expression was detected. IGF1R silencing was associated with decreased survival of SCC-4 cells. Ihh was expressed in both MF1 and MF1-IGF1, and increased levels of GLI1 mRNA were observed in SCC-4 after stimulation with CM-MF1. Activation of both PI3K-AKT and the HH pathway (GLI1, Ihh and SMO) were identified in SCC-4 cells cultured in the presence of MF1-IGF1-CM. rIGF-1 promoted tumor cell proliferation, migration, invasion and tumorsphere formation, whereas CM-MF1 significantly stimulated angiogenesis. (4) Conclusions: IGF-1 exerts pro-tumorigenic effects by stimulating SCC-4 cell proliferation, migration, invasion and stemness. AKT and HH pathways were activated by IGF-1 in SCC-4, reinforcing its influence on the regulation of these signaling pathways.
Collapse
Affiliation(s)
- Jéssica Mariane Ferreira Mendes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710, Brazil; (J.M.F.M.); (L.d.F.V.); (M.T.A.V.); (P.C.)
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Bahia 41253-190, Brazil; (B.D.P.); (K.J.A.)
| | - Ludmila de Faro Valverde
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710, Brazil; (J.M.F.M.); (L.d.F.V.); (M.T.A.V.); (P.C.)
| | - Manuela Torres Andion Vidal
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710, Brazil; (J.M.F.M.); (L.d.F.V.); (M.T.A.V.); (P.C.)
| | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Bahia 41253-190, Brazil; (B.D.P.); (K.J.A.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Paulo Coelho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710, Brazil; (J.M.F.M.); (L.d.F.V.); (M.T.A.V.); (P.C.)
| | - Kyan James Allahdadi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Bahia 41253-190, Brazil; (B.D.P.); (K.J.A.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, Campinas State University (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil;
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710, Brazil; (J.M.F.M.); (L.d.F.V.); (M.T.A.V.); (P.C.)
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Bahia 41253-190, Brazil; (B.D.P.); (K.J.A.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia 40296-710, Brazil; (J.M.F.M.); (L.d.F.V.); (M.T.A.V.); (P.C.)
- Department of Pathology, School of Medicine and School of Dentistry, Federal University of Bahia (UFBA), Salvador, Bahia 40110-909, Brazil
| |
Collapse
|
20
|
Zhang L, Wang X, Liu X, Lv M, Shen E, Zhu G, Sun Z. miR-28-5p targets MTSS1 to regulate cell proliferation and apoptosis in esophageal cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:842-852. [PMID: 32645138 DOI: 10.1093/abbs/gmaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 01/10/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common aggressive malignant diseases worldwide. miR-28-5p plays important regulatory roles in many cancers including human EC. However, the molecular mechanism and potential role of miR-28-5p in EC remain uncertain. In this study, qRT-PCR and western blot analysis revealed that miR-28-5p expression was up-regulated and metastasis suppressor-1 (MTSS1) was down-regulated in EC tissues relative to matched para-cancer tissues. Cell counting kit-8 (CCK-8) assay demonstrated that miR-28-5p mimics increased cell viability, and miR-28-5p inhibitor decreased it. Flow cytometry (FCM) assay indicated that miR-28-5p mimics promoted cell cycle entry, while miR-28-5p inhibitor reduced it and induced cell apoptosis. Moreover, miR-28-5p mimics up-regulated the expressions of cyclin A, cyclin dependent kinase 2 (CDK2), cyclin D1, and cyclin E but down-regulated the expressions of cleaved caspase-3 and cleaved caspase-9, which was abolished by miR-28-5p inhibitor. Furthermore, luciferase reporter assay verified that miR-28-5p directly targeted MTSS1 3'UTR and down-regulated its expression. MTSS1 overexpression in TE-1 cells inhibited cell proliferation and promoted apoptosis induced by miR-28-5p mimics, whereas silencing of MTSS1 reversed cell progression induced by miR-28-5p inhibitor. We also demonstrated that miR-28-5p could promote esophageal tumor formation in vivo. Hematoxylin-eosin staining, immunohistochemistry, and TUNEL assays confirmed that miR-28-5p antagomir inhibited cell growth and accelerated apoptosis. Our results suggest that miR-28-5p may induce cell proliferation and suppress apoptosis to promote EC tumor formation via decreasing MTSS1 expression. Thus, miR-28-5p may be a potential target for human EC therapy.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xin Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xin Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Mingyue Lv
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Erdong Shen
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Guolian Zhu
- Department of Oncology, Shenyang Fifth People’s Hospital, Shenyang 110001, China
| | - Zhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
21
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
22
|
Clinical Significance and Prognostic Value of miR-28-5p in Colon Cancer. DISEASE MARKERS 2020; 2020:3159831. [PMID: 32566038 PMCID: PMC7256711 DOI: 10.1155/2020/3159831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Background The association of miR-28-5p with colon cancer remains to be elucidated. This study aimed to determine the clinical significance and prognostic value of miR-28-5p in colon cancer. Methods We retrospectively analyzed the data of miR-28-5p in colon adenocarcinoma data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the data was divided into cancer group and normal group, respectively. Forty colon cancer tissues and adjacent normal tissues were collected and tested by qRT-PCR methods. The difference of the miR-28-5p expression between colon cancer and normal tissues was compared. The clinical significance of miR-28-5p in colon cancer and the association with the survival were determined. The predictive value of miR-28-5p in clinical features was determined using receiver operating characteristic curve. The target genes of miR-28-5p were identified, and the functional of target genes was performed using bioinformatics analysis. Results : The expression of miR-28-5p was increased in colon cancer tissues compared with normal controls (p = 0.037). The expression of miR-28-5p was significantly increased in tissues with distant metastases compared with that without distant metastases (p = 0.026). Patients with high expression of miR-28-5p have a shorter survival time than those with low expression (p = 0.004). Cox analysis showed that miR-28-5p was an independent predictor for the survival of patients (p = 0.014). Combination of miR-28-5p with TNM stage and clinical stage can improve the prognostic value for the patients (p < 0.05). miR-28-5p has a moderate predictive value in predicting the TNM stage and clinical stage (T stage: AUC = 0.515; N stage: AUC = 0.523, M stage: AUC = 0.572; clinical stage: AUC = 0.539). 711 potential target genes of miR-28-5p were screened; their function and pathways were identified. Conclusions : This study demonstrated that miR-28-5p was increased in colon cancer and can be an independent indicator for the overall survival in patients with colon cancer.
Collapse
|
23
|
Zhang S, Zhou Y, Wang Y, Wang Z, Xiao Q, Zhang Y, Lou Y, Qiu Y, Zhu F. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020; 22:1860-1883. [PMID: 32249290 DOI: 10.1093/bib/bbaa023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yanan Wang
- School of Life Sciences in Nanchang University, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Qitao Xiao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
24
|
Hu JC, Zhu TP, Gui YC, Tan ZB, Wei RQ, Hu BL, Xu JW. miR-28-5p inhibits carcinogenesis in colon cancer cells and is necessary for erastin-induced ferroptosis. Transl Cancer Res 2020; 9:2931-2940. [PMID: 35117649 PMCID: PMC8798659 DOI: 10.21037/tcr-20-1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ferroptosis is a newly discovered type of regulated cell death, the underlying mechanisms of which need to be further illuminated. The regulatory activity of miR-28-5p in ferroptosis in colon cancer cells is currently unclear. This study set out to investigate the effect of miR-28-5p on ferroptosis in colon cancer cells and determine its underlying mechanism. METHODS Biochemical Kits were used to measure iron concentration, malondialdehyde (MDA) concentration, glutathione (GSH) concentration and glutathione peroxidase (GPX) vitality. Cell counting kit 8 (CCK8) assays were conducted to evaluate cell viability. Flow cytometry was conducted to assess apoptosis. Transwell™ assays were used to measure the migratory and invasive abilities of HCT116 cells. Western blotting was used to measure the protein relative expression of NEDD4 binding protein 1 (N4BP1). Quantitative real-time polymerase chain reaction (RT-PCR) was used to measure the RNA relative expression of N4BP1 and miR-28-5p. RESULTS Ferroptosis was induced in HCT116 cells by erastin in a dose- and time-dependent manner, which caused significant inhibition of proliferation, migration, and invasion in HCT116 cells; however, there was no obvious effect on apoptosis. miR-28-5p expression was decreased in colon cancer cells compared with the normal colon cells but was upregulated in erastin-treated HTC116 cells. Additionally, when overexpressed via the transfection of miR-28-5p mimics, miR-28-5p had an inhibitive effect on proliferation, migration, and invasion, while promoting apoptosis, in HCT116 cells. erastin-induced ferroptosis was also increased by miR-28-5p overexpression. Compared with normal colon cells, following erastin treatment, NEDD4 binding protein 1 (N4BP1) expression was increased in colon cancer cells and further decreased in HTC116 cells. miR-28-5p overexpression also inhibited N4BP1 mRNA and protein expression in HTC116 cells. CONCLUSIONS miR-28-5p plays an important role in ferroptosis by targeting N4BP1 and could serve as a potential therapeutic approach for colon cancer.
Collapse
Affiliation(s)
- Jin-Cui Hu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ting-Pei Zhu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yu-Chang Gui
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhi-Biao Tan
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ru-Qiong Wei
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Jian-Wen Xu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
25
|
Fazio S, Berti G, Russo F, Evangelista M, D’Aurizio R, Mercatanti A, Pellegrini M, Rizzo M. The miR-28-5p Targetome Discovery Identified SREBF2 as One of the Mediators of the miR-28-5p Tumor Suppressor Activity in Prostate Cancer Cells. Cells 2020; 9:cells9020354. [PMID: 32028704 PMCID: PMC7072282 DOI: 10.3390/cells9020354] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
miR-28-5p is downregulated in some tumor tissues in which it has been demonstrated to have tumor suppressor (TS) activity. Here, we demonstrate that miR-28-5p acts as a TS in prostate cancer (PCa) cells affecting cell proliferation/survival, as well as migration and invasion. Using the miRNA pull out assay and next generation sequencing, we collected the complete repertoire of miR-28-5p targets, obtaining a data set (miR-28-5p targetome) of 191 mRNAs. Filtering the targetome with TargetScan 7, PITA and RNA22, we found that 61% of the transcripts had miR-28-5p binding sites. To assign a functional value to the captured transcripts, we grouped the miR-28-5p targets into gene families with annotated function and showed that six transcripts belong to the transcription factor category. Among them we selected SREBF2, a gene with an important role in PCa. We validated miR-28-5p/SREBF2 interaction, demonstrating that SREBF2 inhibition affects almost all the tumor processes altered by miR-28-5p re-expression, suggesting that SREBF2 is an important mediator of miR-28-5p TS activity. Our findings support the identification of the targetome of cancer-related miRNAs as a tool to discover genes and pathways fundamental for tumor development, and potential new targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Sofia Fazio
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
- Centre Méditerranéen de Médecin Moléculaire INSERM U1065, Université Côte d’Azur, 06204 Nice, France
| | - Gabriele Berti
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Francesco Russo
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Monica Evangelista
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Romina D’Aurizio
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
| | - Alberto Mercatanti
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Marco Pellegrini
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
| | - Milena Rizzo
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
- Tuscan Tumor Institute (ITT), 50139 Firenze, Italy
- Correspondence: ; Tel.: +39-050-315-3107; Fax: +39-050-315-3327
| |
Collapse
|
26
|
Kim K, Ko Y, Oh H, Ha M, Kang J, Kwon EJ, Kang JW, Kim Y, Heo HJ, Kim G, Kim JW, Kim YH. MicroRNA-98 is a prognostic factor for asbestos-induced mesothelioma. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:126-134. [PMID: 32114955 DOI: 10.1080/15287394.2020.1734891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a type of cancer characterized by a short survival time and poor prognosis. Malignant pleural mesothelioma is most frequently associated with exposure to asbestos and other elongated mineral fibers. The aim of this study was to examine molecular differences between asbestos-exposed and non-exposed MPM patients and assess prognostic significances of molecular factors. Clinical and genetic data were downloaded from Cancer Genome Atlas. To identify the molecular differences, Significant Analysis of Microarray method was used. Prognostic significances of differentially expressed genes were confirmed by using Kaplan-Meier curve with the Log-Rank test. Although mRNAs did not exhibit any significant differences between the two patient groups, nine miRNAs were found to be down-regulated in the asbestos-exposed group. The top five pathways most relevant to the selected miRNAs were extracted through pathway enrichment analysis. Survival analysis revealed that high expression of only hsa-miR-98 was significantly associated with poor prognosis in patients with asbestos-exposed MPM. Evidence suggests that management of the aggressiveness and progression of asbestos-induced MPM may require high levels of hsa-miR-98 due to its tumor-suppressive role. This study might be helpful in enhancing our understanding of the biological mechanisms underlying asbestos-induced MPM and for acquiring greater insights into targeted therapy.Abbreviations: FDR: false discovery rate; MM: malignant mesothelioma; MPM: malignant pleural mesothelioma; mRNA: messenger RNA; miRNA: microRNA; SAM: significance analysis of microarrays; TCGA: the cancer genome atlas.
Collapse
Affiliation(s)
- Kihun Kim
- Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Yeji Ko
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Hyeoncheol Oh
- Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Mihyang Ha
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Junho Kang
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eun Jung Kwon
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji Wan Kang
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Youngjoo Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Guanghwi Kim
- Department of Occupational and Environmental Medicine, Gwanghwamun Center, Korea Medical Institute, Seoul, Republic of Korea
| | - Jung Won Kim
- Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
- Department of Occupational and Environmental Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
27
|
Wan J, Guo AA, Chowdhury I, Guo S, Hibbert J, Wang G, Liu M. TRPM7 Induces Mechanistic Target of Rap1b Through the Downregulation of miR-28-5p in Glioma Proliferation and Invasion. Front Oncol 2019; 9:1413. [PMID: 31921670 PMCID: PMC6928690 DOI: 10.3389/fonc.2019.01413] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/28/2019] [Indexed: 01/29/2023] Open
Abstract
Objectives: Our previous findings demonstrate that channel-kinase transient receptor potential (TRP) ion channel subfamily M, member 7 (TRPM7) is critical in regulating human glioma cell migration and invasion. Since microRNAs (miRNAs) participate in complex regulatory networks that may affect almost every cellular and molecular process during glioma formation and progression, we explored the role of miRNAs in human glioma progression by comparing miRNA expression profiles due to differentially expressed TRPM7. Methods: First, we performed miRNA microarray analysis to determine TRPM7's miRNA targets upon TRPM7 silencing in A172 cells and validated the miRNA microarray data using A172, U87MG, U373MG, and SNB19 cell lines by stem-loop RT-qPCRs. We next determined whether TRPM7 regulates glioma cell proliferation and migration/invasion through different functional domains by overexpressing wild-type human TRPM7 (wtTRPM7), two mutants with TRPM7's α-kinase domain deleted (Δkinase-DK), or a point mutation in the ATP binding site of the α-kinase domain (K1648R-KR). In addition, we determined the roles of miR-28-5p in glioma cell proliferation and invasion by overexpressing or under expressing miR-28-5p in vitro. Lastly, we determined whether a Ras-related small GTP-binding protein (Rap1b) is a target of miR-28-5p in glioma tumorigenesis. Results: The miRNA microarray data revealed a list of 16 downregulated and 10 upregulated miRNAs whose transcripts are significantly changed by TRPM7 knock-down. Cell invasion was significantly reduced in two TRPM7 mutants with inactive kinase domain, Δkinase, and K1648R transfected glioma cells. miR-28-5p overexpression suppressed glioma cells' proliferation and invasion, and miR-28-5p under expression led to a significant increase in glioma cell proliferation and migration/invasion compared to that of the controls. miR-28-5p suppressed glioma cell proliferation and migration by targeting Rap1b. Co-transfection of siRap1b with miR28-5p inhibitor reduced the glioma cell proliferation and invasion, caused by the latter. Conclusions: These results indicate that TRPM7's channel activity is required for glioma cell growth while the kinase domain is required for cell migration/invasion. TRPM7 regulates miR-28-5p expression, which suppresses cell proliferation and invasion in glioma cells by targeting Rap1b signaling.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States,University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Jacqueline Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu
| |
Collapse
|
28
|
MicroRNA-28-5p Regulates Liver Cancer Stem Cell Expansion via IGF-1 Pathway. Stem Cells Int 2019; 2019:8734362. [PMID: 31885628 PMCID: PMC6915025 DOI: 10.1155/2019/8734362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) play a critical role in the regulation of cancer stem cells (CSCs). However, the role of miRNAs in liver CSCs has not been fully elucidated. Methods Real-time PCR was used to detect the expression of miR-miR-28-5p in liver cancer stem cells (CSCs). The impact of miR-28-5p on liver CSC expansion was investigated both in vivo and in vitro. The correlation between miR-28-5p expression and sorafenib benefits in HCC was further evaluated in patient-derived xenografts (PDXs). Results Our data showed that miR-28-5p was downregulated in sorted EpCAM- and CD24-positive liver CSCs. Biofunctional investigations revealed that knockdown miR-28-5p promoted liver CSC self-renewal and tumorigenesis. Consistently, miR-28-5p overexpression inhibited liver CSC's self-renewal and tumorigenesis. Mechanistically, we found that insulin-like growth factor-1 (IGF-1) was a direct target of miR-28-5p in liver CSCs, and the effects of miR-28-5p on liver CSC's self-renewal and tumorigenesis were dependent on IGF-1. The correlation between miR-28-5p and IGF-1 was confirmed in human HCC tissues. Furthermore, the miR-28-5p knockdown HCC cells were more sensitive to sorafenib treatment. Analysis of patient-derived xenografts (PDXs) further demonstrated that the miR-28-5p may predict sorafenib benefits in HCC patients. Conclusion Our findings revealed the crucial role of the miR-28-5p in liver CSC expansion and sorafenib response, rendering miR-28-5p an optimal therapeutic target for HCC.
Collapse
|
29
|
Lv Y, Yang H, Ma X, Wu G. Strand-specific miR-28-3p and miR-28-5p have differential effects on nasopharyngeal cancer cells proliferation, apoptosis, migration and invasion. Cancer Cell Int 2019; 19:187. [PMID: 31360121 PMCID: PMC6642532 DOI: 10.1186/s12935-019-0915-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in varieties of cancers, particularly in tumorigenesis, progression, and migration. Dysregulation of miR-28 was reported to occur in various types of human malignancies. In humans, two different mature miRNA sequences are excised from opposite arms of the stem-loop pre-miR-28, hsa-miR-28-3p and hsamiR-28-5p. However, the expression and distinct role of miR-28-3p and miR-28-5p in nasopharyngeal carcinoma (NPC) remain undetermined. Methods The expressions of miR-28-3p/-5p in human NPC tissues were tested by quantitative real-time PCR. miR-28-3p/-5p were overexpressed by mimics and silenced by inhibitors. The roles of miR-28-3p/-5p in NPC development were studied using cultured HONE-1 cells. Results The mRNA expression levels of miR-28-3p and -5p were significantly decreased in NPC tissues in comparison with adjacent normal tissues. Overexpression of miR-28-5p suppressed NPC cell proliferation and induced cell cycle arrest and apoptosis, while miR-28-3p promoted NPC cell migration and invasion. The miRNAs effected on different signal pathways: miR-28-5p altered expression of cyclin D1 and influenced the PI3K/AKT signaling pathway. In contrast, miR-28-3p downregulated Nm23-H1 and accelerated the process of EMT. Conclusion miR-28-3p and -5p were both downregulated in NPC tissues but had distinct biological effects in NPC cells. They may serve as potential prognostic markers and therapeutic targets for NPC.
Collapse
Affiliation(s)
- Yan Lv
- 1Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Huijun Yang
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Xingkai Ma
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Geping Wu
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| |
Collapse
|
30
|
Meng L, Yang H, Jin C, Quan S. miR‑28‑5p suppresses cell proliferation and weakens the progression of polycystic ovary syndrome by targeting prokineticin‑1. Mol Med Rep 2019; 20:2468-2475. [PMID: 31322191 DOI: 10.3892/mmr.2019.10446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/30/2019] [Indexed: 11/05/2022] Open
Abstract
Prokineticin‑1 (PROK1) serves important roles in the pathogenesis of polycystic ovary syndrome (PCOS); however, the association between microRNA (miR)‑28‑5p and PROK1 remains unclear. In the present study, the roles of miR‑28‑5p and PROK1, and their interaction in PCOS were investigated. Rat ovary granule cells were transfected with miR‑28‑5p mimics, and PROK1 expression levels were measured by reverse transcription‑quantitative PCR and western blotting. A dual‑luciferase reporter assay was performed to determine the association between miR‑28‑5p and PROK1. Additionally, pcDNA‑PROK1 was co‑transfected into rat ovary granule cells with miR‑28‑5p mimics. Cell proliferation, apoptosis, cell cycle and the expression of signaling proteins were investigated using Cell Counting Kit‑8 assays, 5‑ethynyl‑2'‑deoxyuridine staining, flow cytometry and western blotting, respectively. PROK1 expression was suppressed in rat ovary granule cells by miR‑28‑5p mimics, but upregulated following transfection with miR‑28‑5p inhibitors. The dual‑luciferase reporter assay revealed that miR‑28‑5p binds to the 3'‑untranslated region of PROK1. Proliferation activity was increased in PROK1‑overexpressing cells; this effect was eliminated by co‑transfection with miR‑28‑5p mimics. PROK1‑overexpressing rat ovary granule cells exhibited significantly suppressed cell apoptosis and a decreased number of cells in G1; miR‑28‑5p mimics reversed these effects. Western blotting revealed that the PI3K/AKT/mTOR signaling pathway was activated by PROK1. The present results suggested that miR‑28‑5p attenuated the progression of PCOS by targeting PROK1, which may promote the pathogenesis of PCOS via the PI3K/AKT/mTOR pathway, indicating that the miR‑28‑5p/PROK1 axis may be a potential therapeutic target for patients with PCOS.
Collapse
Affiliation(s)
- Lyuhe Meng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Congcong Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Song Quan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
31
|
Wu W, He K, Guo Q, Chen J, Zhang M, Huang K, Yang D, Wu L, Deng Y, Luo X, Yu H, Ding Q, Xiang G. SSRP1 promotes colorectal cancer progression and is negatively regulated by miR-28-5p. J Cell Mol Med 2019; 23:3118-3129. [PMID: 30762286 PMCID: PMC6484412 DOI: 10.1111/jcmm.14134] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/13/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, microarray data analysis, real-time quantitative PCR and immunohistochemistry were used to detect the expression levels of SSRP1 in colorectal cancer (CRC) tissue and in corresponding normal tissue. The association between structure-specific recognition protein 1 (SSRP1) expression and patient prognosis was examined by Kaplan-Meier analysis. SSRP1 was knocked down and overexpressed in CRC cell lines, and its effects on proliferation, cell cycling, migration, invasion, cellular energy metabolism, apoptosis, chemotherapeutic drug sensitivity and cell phenotype-related molecules were assessed. The growth of xenograft tumours in nude mice was also assessed. MiRNAs that potentially targeted SSRP1 were determined by bioinformatic analysis, Western blotting and luciferase reporter assays. We showed that SSRP1 mRNA levels were significantly increased in CRC tissue. We also confirmed that this upregulation was related to the terminal tumour stage in CRC patients, and high expression levels of SSRP1 predicted shorter disease-free survival and faster relapse. We also found that SSRP1 modulated proliferation, metastasis, cellular energy metabolism and the epithelial-mesenchymal transition in CRC. Furthermore, SSRP1 induced apoptosis and SSRP1 knockdown augmented the sensitivity of CRC cells to 5-fluorouracil and cisplatin. Moreover, we explored the molecular mechanisms accounting for the dysregulation of SSRP1 in CRC and identified microRNA-28-5p (miR-28-5p) as a direct upstream regulator of SSRP1. We concluded that SSRP1 promotes CRC progression and is negatively regulated by miR-28-5p.
Collapse
Affiliation(s)
- Wei Wu
- Department of Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Ke He
- Department of General SurgeryThe Second People's Hospital of Guangdong Province, Southern Medical UniversityGuangzhouGuangdongP.R.China
| | - Qian Guo
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese MedicineWuhanHubeiP.R. China
| | - Jingdi Chen
- Department of orthopedicsThe Airborne Military HospitalWuhanHubeiP.R. China
| | - Mengjiao Zhang
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Kai Huang
- Eppley Institute for Research in Cancer and Allied DiseasesFred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraska
| | - Dongmei Yang
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Lu Wu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yunchao Deng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied DiseasesFred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraska
| | - Honggang Yu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qianshan Ding
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore
| | - Guoan Xiang
- Department of General SurgeryThe Second People's Hospital of Guangdong Province, Southern Medical UniversityGuangzhouGuangdongP.R.China
| |
Collapse
|
32
|
Tsiakanikas P, Kontos CK, Kerimis D, Papadopoulos IN, Scorilas A. High microRNA-28-5p expression in colorectal adenocarcinoma predicts short-term relapse of node-negative patients and poor overall survival of patients with non-metastatic disease. Clin Chem Lab Med 2019; 56:990-1000. [PMID: 29688883 DOI: 10.1515/cclm-2017-0430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/17/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) may function either as oncogenes or tumor suppressors and are heavily involved in the initiation and progression of cancer, and in metastasis of tumor cells. MicroRNA-28-5p (miR-28-5p) targets several cancer-related genes and is hence involved in cell proliferation, migration, invasion and epithelial-mesenchymal transition. In this study, we investigated the potential diagnostic and prognostic significance of miR-28-5p expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer (CRC). METHODS Therefore, we isolated total RNA from 182 colorectal adenocarcinoma specimens and 86 paired non-cancerous colorectal mucosae. After polyadenylation of 2 μg total RNA and its reverse transcription using an oligo-dT-adapter primer, we quantified miR-28-5p levels using an in-house-developed reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR) method, based on the SYBR Green chemistry. RESULTS Comparison of miR-28-5p levels among 86 pairs of colorectal tumors and their adjacent non-cancerous mucosae uncovered the downregulation of miR-28-5p expression in the majority of malignant colorectal tumors. More importantly, high miR-28-5p expression predicts poor disease-free survival (DFS) and overall survival (OS) of colorectal adenocarcinoma patients. Multivariate Cox regression analysis revealed that miR-28-5p overexpression is a significant predictor of poor prognosis in colorectal adenocarcinoma, independent of tumor size, histological grade, TNM staging, radiotherapy and chemotherapy. Interestingly, strong miR-28-5p expression retains its predictive potential regarding relapse among patients with negative regional lymph nodes, and predicts poor OS in patients diagnosed with non-metastatic colorectal adenocarcinoma. CONCLUSIONS High miR-28-5p expression predicts poor DFS and OS of colorectal adenocarcinoma patients, independently of clinicopathological prognosticators and standard patient treatment, including radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kerimis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece, Phone: +30 2107274306, Fax: +30 2107274158
| |
Collapse
|
33
|
Huang JT, Chen JN, Gong LP, Bi YH, Liang J, Zhou L, He D, Shao CK. Identification of virus-encoded circular RNA. Virology 2019; 529:144-151. [PMID: 30710798 DOI: 10.1016/j.virol.2019.01.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNA molecules in eukaryotic organisms that have potentially important roles in gene regulation. Nevertheless, whether viruses can encode circRNA is still uncertain. To examine whether large genome DNA viruses can generate circRNA during the infection of human cells, we performed RNA sequencing of ribosomal RNA-depleted total RNA from Epstein-Barr virus (EBV)-infected cell lines, including SNU-719, AGS-EBV, C666-1 and Akata. We identified an EBV-encoded circRNA, ebv_circ_RPMS1, that consists of the head-to-tail splicing of exons 2-4 from the RPMS1 gene. Furthermore, we demonstrated that ebv_circ_RPMS1 was localized in both cytoplasm and nuclei. Given that circRNAs shape gene expression by titrating microRNAs, regulating transcription and/or interfering with splicing, we identified a novel viral regulator of host and/or viral gene expression.
Collapse
Affiliation(s)
- Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Hua Bi
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Zhou
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
34
|
Cannavicci A, Zhang Q, Dai SC, Faughnan ME, Kutryk MJB. Decreased levels of miR-28-5p and miR-361-3p and increased levels of insulin-like growth factor 1 mRNA in mononuclear cells from patients with hereditary hemorrhagic telangiectasia 1. Can J Physiol Pharmacol 2018; 97:562-569. [PMID: 30512964 DOI: 10.1139/cjpp-2018-0508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a rare vascular disorder inherited in an autosomal dominant manner. Patients with HHT can develop vascular dysplasias called telangiectasias and arteriovenous malformations (AVMs). Our objective was to profile and characterize micro-RNAs (miRNAs), short noncoding RNAs that regulate gene expression posttranscriptionally, in HHT patient-derived peripheral blood mononuclear cells (PBMCs). PBMCs, comprised mostly of lymphocytes and monocytes, have been reported to be dysfunctional in HHT. A total of 40 clinically confirmed HHT patients and 22 controls were enrolled in this study. PBMCs were isolated from 16 mL of peripheral blood and purified for total RNA. MiRNA expression profiling was conducted with a human miRNA array analysis. Select dysregulated miRNAs and miRNA targets were validated with reverse transcription-quantitative polymerase chain reaction. Of the 377 miRNAs screened, 41 dysregulated miRNAs were identified. Both miR-28-5p and miR-361-3p, known to target insulin-like growth factor 1 (IGF1), a potent angiogenic growth factor, were found to be significantly downregulated in HHT patients. Consequently, IGF1 mRNA levels were found to be significantly elevated. Our research successfully identified miRNA dysregulation and elevated IGF1 mRNA levels in PBMCs from HHT patients. This novel discovery represents a potential pathogenic mechanism that could be targeted to alleviate clinical manifestations of HHT.
Collapse
Affiliation(s)
- Anthony Cannavicci
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Qiuwang Zhang
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Si-Cheng Dai
- b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Marie E Faughnan
- c Division of Respirology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael J B Kutryk
- a Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,b Division of Cardiology, Keenan Research Center for Biomedical Sciences, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
35
|
Ushakov DS, Dorozhkova AS, Babayants EV, Ovchinnikov VY, Kushlinskii DN, Adamyan LV, Gulyaeva LF, Kushlinskii NE. Expression of microRNA Potentially Regulated by AhR and CAR in Malignant Tumors of the Endometrium. Bull Exp Biol Med 2018; 165:688-691. [PMID: 30225717 DOI: 10.1007/s10517-018-4242-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Indexed: 12/13/2022]
Abstract
We studied microRNA whose expression can be regulated by carcinogenic compounds. Bioinformatic analysis has detected microRNA potentially regulated by xenosensor receptors AhR (miR-28, miR-30c, miR-30e, miR-139, and miR-153) and CAR (miR-29c, miR-31, miR-185, miR-625, and miR-652). Published data indicate that these microRNAs are oncosuppressors, except miR-31 that can act as an oncogene. The expression of these microRNAs in malignant tumors of the endometrium was studied. The expression of the majority of the studied microRNAs, except miR-652, was 2-3-fold below the normal, which confirms their oncosuppressor function and indicates their involvement in the endometrial carcinogenesis and hence, allows considering them as potential markers of the disease.
Collapse
Affiliation(s)
- D S Ushakov
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.
| | - A S Dorozhkova
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - E V Babayants
- Research Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - V Yu Ovchinnikov
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D N Kushlinskii
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L V Adamyan
- V. I. Kulakov National Research Medical Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - L F Gulyaeva
- Federal Research Centre Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N E Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
36
|
Bao Y, Wang S, Xie Y, Jin K, Bai Y, Shan S. MiR-28-5p relieves neuropathic pain by targeting Zeb1 in CCI rat models. J Cell Biochem 2018; 119:8555-8563. [PMID: 30058089 DOI: 10.1002/jcb.27096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/26/2018] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs) are recognized as significant regulators of neuropathic pain. Moreover, neuroinflammation can contribute a lot to the progression of neuropathic pain. MiR-28-5p has been reported to be involved in many pathological diseases. However, little is known about the function of miR-28-5p in neuropathic pain development. Our current study was designed to investigate the biological roles of miR-28-5p in neuropathic pain in a rat model established by chronic sciatic nerve injury (CCI). Here, we observed that miR-28-5p was decreased in CCI rats. MiR-28-5p overexpression was able to alleviate neuropathic pain behaviors including mechanical and thermal hyperalgesia. Meanwhile, inflammation-correlated biomarkers such as Cyclooxygenase 2 (Cox-2), interleukin-6 (IL-6), and IL-1β were greatly promoted in CCI rats and they were inhibited by miR-28-5p upregulation. In addition, zinc finger E-box-binding homeobox 1 (Zeb1) is a kind of transcription factor that is involved in various diseases. Here, in our study, Zeb1 was predicted as a downstream target of miR-28-5p. miR-28-5p can bind with the 3'-untranslated region of Zeb1, which was validated by carrying out dual-luciferase reporter assay. Moreover, we found that Zeb1 was significantly increased in CCI rats and miR-28-5p can modulate Zeb1 expression negatively. Theoverexpression of Zeb1 can disturb neuropathic pain development, which was repressed by the increase of miR-28-5p by upregulating Cox-2, IL-6, and IL-1β levels. By taking all of these together, it was indicated in our study that miR-28-5p can reduce neuropathic pain progression by targeting Zeb1 in vivo. Our data implied that miR-28-5p/Zeb1 axis can be a novel therapeutic target for neuropathic pain treatment.
Collapse
Affiliation(s)
- Yongfen Bao
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Suhan Wang
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yushuang Xie
- College of Pharmaceutical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Kehua Jin
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Yuting Bai
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Shigang Shan
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
37
|
Xiao F, Cheng Z, Wang P, Gong B, Huang H, Xing Y, Liu F. MicroRNA-28-5p inhibits the migration and invasion of gastric cancer cells by suppressing AKT phosphorylation. Oncol Lett 2018; 15:9777-9785. [PMID: 29928352 PMCID: PMC6004724 DOI: 10.3892/ol.2018.8603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer is a polygenic disease with a high mortality rate worldwide. Although a number of dysregulated genes have been confirmed to be involved in development and progression of gastric cancer, the molecular mechanisms by which this occurs remain unclear. The present study identified that microRNA (miR-28-5p) was involved in the migration and invasion of gastric cancer cells, and was able to affect the prognosis of patients with gastric cancer. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression of miR-28-5p was significantly downregulated in gastric cancer tissues, and that patients with higher expression had a good prognosis. miR-28-5p expression was significantly associated with depth of invasion, lymph node metastasis and pathological stage. Gastric cancer cells overexpressing miR-28-5p exhibited a marked reduction of migration and invasion by Transwell and wound scratch assay. The phosphorylation of RAC serine/threonine-protein kinase (AKT), which affected cellular invasion and metastasis, was significantly inhibited by overexpression of miR-28-5p. In conclusion, miR-28-5p is a tumor suppressor that inhibits gastric cancer cell migration and invasion through repressing AKT phosphorylation. miR-28-5p may therefore represent a potential biomarker for the prognosis of gastric cancer and a novel therapeutic target in advanced gastric cancer.
Collapse
Affiliation(s)
- Fangtao Xiao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenguo Cheng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengliang Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Baoheng Gong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway. Mol Med Rep 2017; 17:4003-4010. [PMID: 29257342 DOI: 10.3892/mmr.2017.8299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/09/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is the fourth most common malignant disease and second leading cause of cancer‑associated mortalities worldwide. Previous studies revealed aberrantly expressed microRNAs (miRNAs) in various types of human cancer; these miRNAs play important roles in tumourigenesis and tumour development. miRNAs present a considerable potential for novel therapeutic approaches for treating human cancer. Therefore, the investigation of novel miRNAs involved in gastric cancer progression provides an opportunity to improve the prognosis of patients with gastric cancer. miRNA‑28 (miR‑28) has been investigated with regards to its expression and biological functions in many types of human cancer. However, previous studies have not discussed the expression patterns, roles and associated molecular mechanisms of miR‑28 in gastric cancer. In the present study, miR‑28 expression was identified to be upregulated in gastric cancer tissues and cell lines. miR‑28 inhibition functionally inhibited cell proliferation and invasion in gastric cancer in vitro. Using bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis, phosphatase and tensin homolog (PTEN) was mechanically identified as a direct target of miR‑28 in gastric cancer. PTEN was downregulated in gastric cancer and negatively correlated with miR‑28 levels. Inhibition of PTEN restored the biological effects of miR‑28 downregulation on the proliferation and invasion of gastric cancer cells. Notably, the downregulation of miR‑28 results in the regulation of the phosphatidylinositol 3‑kinase/protein kinase B signaling pathway in gastric cancer. These results suggested that miR‑28 may be targeted for the development of novel treatments for gastric cancer in the future.
Collapse
|
39
|
Zhao H, Yuan H, Hu J, Xu C, Liao G, Yin W, Xu L, Wang L, Zhang X, Shi A, Li J, Xiao Y. Optimizing prognosis-related key miRNA-target interactions responsible for cancer metastasis. Oncotarget 2017; 8:109522-109535. [PMID: 29312626 PMCID: PMC5752539 DOI: 10.18632/oncotarget.22724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as ‘cell adhesion’ and ‘cell migration’. Furthermore, they are most significantly correlated with ‘tissue invasion and metastasis’, a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.
Collapse
Affiliation(s)
- Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Huating Yuan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wenkang Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Aiai Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Li
- Department of Ultrasonic Medicine, The 1st Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
40
|
Yasui T, Yanagida T, Ito S, Konakade Y, Takeshita D, Naganawa T, Nagashima K, Shimada T, Kaji N, Nakamura Y, Thiodorus IA, He Y, Rahong S, Kanai M, Yukawa H, Ochiya T, Kawai T, Baba Y. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. SCIENCE ADVANCES 2017; 3:e1701133. [PMID: 29291244 PMCID: PMC5744465 DOI: 10.1126/sciadv.1701133] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/16/2017] [Indexed: 05/06/2023]
Abstract
Analyzing microRNAs (miRNAs) within urine extracellular vesicles (EVs) is important for realizing miRNA-based, simple, and noninvasive early disease diagnoses and timely medical checkups. However, the inherent difficulty in collecting dilute concentrations of EVs (<0.01 volume %) from urine has hindered the development of these diagnoses and medical checkups. We propose a device composed of nanowires anchored into a microfluidic substrate. This device enables EV collections at high efficiency and in situ extractions of various miRNAs of different sequences (around 1000 types) that significantly exceed the number of species being extracted by the conventional ultracentrifugation method. The mechanical stability of nanowires anchored into substrates during buffer flow and the electrostatic collection of EVs onto the nanowires are the two key mechanisms that ensure the success of the proposed device. In addition, we use our methodology to identify urinary miRNAs that could potentially serve as biomarkers for cancer not only for urologic malignancies (bladder and prostate) but also for nonurologic ones (lung, pancreas, and liver). The present device concept will provide a foundation for work toward the long-term goal of urine-based early diagnoses and medical checkups for cancer.
Collapse
Affiliation(s)
- Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| | - Takeshi Yanagida
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka 567-0047, Japan
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| | - Satoru Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuki Konakade
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daiki Takeshita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tsuyoshi Naganawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuki Nagashima
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Noritada Kaji
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuta Nakamura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ivan Adiyasa Thiodorus
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yong He
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Sakon Rahong
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Masaki Kanai
- Institute of Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomoji Kawai
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka 567-0047, Japan
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu 761-0395, Japan
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
- Corresponding author. (T. Yasui); (T. Yanagida); (T.K.); (Y.B.)
| |
Collapse
|
41
|
The miRNA Pull Out Assay as a Method to Validate the miR-28-5p Targets Identified in Other Tumor Contexts in Prostate Cancer. Int J Genomics 2017; 2017:5214806. [PMID: 29085832 PMCID: PMC5632462 DOI: 10.1155/2017/5214806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
miR-28-5p is an intragenic miRNA which is underexpressed in several tumor types showing a tumor suppressor (TS) activity. Routinely, the known miR-28-5p targets are validated in specific tumor contexts but it is unclear whether these targets are also being regulated in other tumor types. To this end, we adopted the miRNA pull out assay to capture the miR-28-5p targets in DU-145 prostate cancer (PCa) cells. Firstly, we demonstrated that miR-28-5p acts as a TS-miRNA in PCa, affecting cell proliferation, survival, and apoptosis. Secondly, we evaluated the enrichment of the 10 validated miR-28-5p targets in the pull out sample. We showed that E2F6, TEX-261, MAPK1, MPL, N4BP1, and RAP1B but not BAG1, OTUB1, MAD2L1, and p21 were significantly enriched, suggesting that not all the miR-28-5p targets are regulated by this miRNA in PCa. We then verified whether the miR-28-5p-interacting targets were regulated by this miRNA. We selected E2F6, the most enriched target in the pull out sample, and demonstrated that miR-28-5p downregulated E2F6 at the protein level suggesting that our approach was effective. In general terms, these findings support the miRNA pull out assay as a useful method to identify context-specific miRNA targets.
Collapse
|
42
|
Li Z, Wong KY, Chan GCF, Chim CS. Epigenetic silencing of LPP/miR-28 in multiple myeloma. J Clin Pathol 2017; 71:253-258. [PMID: 28775176 PMCID: PMC5868533 DOI: 10.1136/jclinpath-2017-204501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Aims miR-28-5- is a tumour suppressor microRNA implicated in cancers. As a CpG island is absent in miR-28-5- but present in its host gene, LPP (LIM domain containing preferred translocation partner in lipoma), we hypothesized that miR-28-5p is epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Methods Methylation-specific PCR, verified by quantitative bisulfite pyrosequencing, was employed to study methylation of LPP/miR-28 in healthy controls (n=10), human myeloma cell lines (HMCLs) (n=15), and primary myeloma marrow samples at diagnosis (n=49) and at relapse (n=18). Quantitative reverse transcription PCR was used to investigate expression of miR-28-5p, LPP and CCND1. Results LPP/miR-28 was completely unmethylated in all healthy controls and 12 (80%) HMCLs, but partially methylated in three (20%) HMCLs. Methylation of LPP/miR-28 correlated with low expression of miR-285p (p=0.012) and LPP (p=0.037) in HMCLs. In RPMI-8226R cells, in which LPP/miR-28 was partially methylated, 5-AzadC treatment led to demethylation of LPP/miR-28 and re-expression of both miR-28-5p (p=0.0007) and LPP (p=0.0007), whereas continuous culture without 5-AzadC restored LPP/miR-28 methylation and reduced expression of both miR-28-5p (p=0.0013) and LPP (p=0.0025). Moreover, a known miR-28-5p target, CCND1, was expressed at higher levels in HMCLs with LPP/miR-28 methylation than those without, consistent with a tumour suppressor role of miR-28-5p in myeloma. However, in primary samples, LPP/miR-28 was methylated in two (4.1%) at diagnosis, whereas none at relapse. Conclusions This is the first report of epigenetic regulation of the intronic miR-28-5p expression by promoter DNA methylation of its host gene, hence warrants further study in different cancers.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Wang K, Nie X, Rong Z, Fan T, Li J, Wang X, Li H, Dong J, Chen J, Wang F, Wang J, Wang A. B lymphocytes repress hepatic tumorigenesis but not development in Hras12V transgenic mice. Int J Cancer 2017; 141:1201-1214. [PMID: 28580661 DOI: 10.1002/ijc.30823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 01/10/2023]
Abstract
Increasing reports show noninflammation underlying HCC, challenging our understanding of the roles of the immune system in hepatocarcinogenesis. By exploring a mouse model of hepatic tumor induced by hepatocyte-specific expression of the Hras12V oncogene without obvious inflammation, we found that the proportion of B cells, but not T cells, progressively and significantly decreased in 3, 5-month-old transgenic mice (Tg) compared with non-transgenic mice. Notably, the proportions of total and activated B and T cells all significantly decreased in 9-month-old Tg with multiple massive hepatic tumors. Together with the decreased B cell proportion, serum IgG1/2 also significantly decreased in 5, 9-month-old Tg. Interestingly, homozygous Tg showed significantly higher B cell proportion and IgG2 levels, accompanied by significantly lower incidences of liver nodules but not adenomas and carcinomas compared with heterozygous Tg. Treatment of Tg with PCI-32765, a potent Bruton's tyrosine kinase (BTK) inhibitor for suppressing B cell proliferation and activation, significantly decreased the B cell proportion and IgG2 levels, accompanied by a significantly higher incidence of liver nodules, but had no effects on adenoma and carcinoma. Treatment of Tg with insulin-like growth factor 1 (IGF-1) significantly increased the B cell proportion and IgG2 levels, accompanied by a significantly lower incidence of liver nodules and carcinoma, but had no effects on adenoma. Conclusively, B cells and IgG2 may play important roles in suppressing hepatic tumorigenesis, but not development. In addition, hepatocyte-specific expression of the ras oncogene may play roles in suppressing B cells, while developed hepatic tumors suppress both B and T cells.
Collapse
Affiliation(s)
- Kangwei Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xin Nie
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Zhuona Rong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Tingting Fan
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Juan Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xinxin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jianyi Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Fujin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
44
|
Xu J, Jiang N, Shi H, Zhao S, Yao S, Shen H. miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol 2017; 50:1383-1391. [DOI: 10.3892/ijo.2017.3915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
|
45
|
Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM. Synovium-Derived MicroRNAs Regulate Bone Pathways in Rheumatoid Arthritis. J Bone Miner Res 2017; 32:461-472. [PMID: 27676131 PMCID: PMC5340607 DOI: 10.1002/jbmr.3005] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 12/11/2022]
Abstract
Articular bone erosion in rheumatoid arthritis (RA) is mediated by the interaction between inflammation and pathways regulating bone metabolism. Inflammation promotes osteoclastogenesis and also inhibits osteoblast function, further contributing to the persistence of erosions. MicroRNAs (miRNAs) are important regulators of skeletal remodeling and play a role in RA pathogenesis. We therefore determined the expression of miRNAs in inflamed synovial tissue and the role they play in pathways regulating osteoblast and osteoclast function. Using the serum transfer mouse model of RA in C57BL/6 mice, we performed Fluidigm high-throughput qPCR-based screening of miRNAs from nonarthritic and arthritic mice. Global gene expression profiling was also performed on Affymetrix microarrays from these same synovial samples. miRNA and mRNA expression profiles were subjected to comparative bioinformatics. A total of 536 upregulated genes and 417 downregulated genes were identified that are predicted targets of miRNAs with reciprocal expression changes. Gene ontology analysis of these genes revealed significant enrichment in skeletal pathways. Of the 22 miRNAs whose expression was most significantly changed (p < 0.01) between nonarthritic and arthritic mice, we identified their targets that both inhibit and promote bone formation. These miRNAs are predicted to target Wnt and BMP signaling pathway components. We validated miRNA array findings and demonstrated that secretion of miR-221-3p in exosomes was upregulated by synovial fibroblasts treated with the proinflammatory cytokine TNF. Overexpression of miR-221-3p suppressed calvarial osteoblast differentiation and mineralization in vitro. These results suggest that miRNAs derived from inflamed synovial tissues may regulate signaling pathways at erosion sites that affect bone loss and potentially also compensatory bone formation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yukiko Maeda
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nicholas H Farina
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Melissa M Matzelle
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paul J Fanning
- Department of Orthopedic Surgery and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont, Burlington, VT, USA.,Department of Orthopedic Surgery and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ellen M Gravallese
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
46
|
Youness RA, Rahmoon MA, Assal RA, Gomaa AI, Hamza MT, Waked I, El Tayebi HM, Abdelaziz AI. Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors 2016; 34:128-40. [PMID: 27388576 DOI: 10.1080/08977194.2016.1200571] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, an impaired natural killer (NK) cell cytolytic activity in 135 hepatocellular carcinoma (HCC) patients parallel to a reduced expression level of insulin-like growth factor (IGF)-1 in NK cells of HCC patients has been revealed. Ectopic expression of miR-486-5p, a direct upstream regulator of IGF-1, restored the endogenous level of IGF-1 in NK cells of HCC patients, thus augmenting its cytolytic activity against Huh7 cells in an opposite manner to the IGF-1 siRNAs. Unorthodoxly, over-expression of miR-486-5p in target hepatocytes resulted in the repression of IGF-1, suppression of Huh7 cells proliferation and viability in a similar pattern to the IGF-1 siRNAs. Therefore, this study highlights a potential role of IGF-1 in modulating cytolytic potential of NK cells of HCC patients. miR-486-5p acts in a cell-specific manner, differentially modulating IGF-1 expression in NK cells and their target hepatocytes with a contemporary inhibitory impact on HCC progression.
Collapse
Affiliation(s)
- Rana Ahmed Youness
- a Department of Pharmaceutical Biology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Mai Atef Rahmoon
- a Department of Pharmaceutical Biology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Reem Amr Assal
- b Department of Pharmacology and Toxicology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | - Asmaa Ibrahim Gomaa
- c Department of Hepatology , National Liver Institute, Menoufiya University , Shebin El-Kom , Egypt
| | - Mohamed Tarif Hamza
- d Department of Clinical Pathology , Ain Shams University , Cairo , Egypt , and
| | - Imam Waked
- c Department of Hepatology , National Liver Institute, Menoufiya University , Shebin El-Kom , Egypt
| | - Hend Mohamed El Tayebi
- b Department of Pharmacology and Toxicology , Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo , Egypt
| | | |
Collapse
|
47
|
MiR-28 inhibits cardiomyocyte survival through suppressing PDK1/Akt/mTOR signaling. In Vitro Cell Dev Biol Anim 2016; 52:1020-1025. [DOI: 10.1007/s11626-016-0065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/03/2016] [Indexed: 02/01/2023]
|
48
|
Zhou SL, Hu ZQ, Zhou ZJ, Dai Z, Wang Z, Cao Y, Fan J, Huang XW, Zhou J. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology 2016; 63:1560-75. [PMID: 26754294 DOI: 10.1002/hep.28445] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) play a critical role in regulation of tumor metastasis. However, the role of these molecules in hepatocellular carcinoma (HCC) has not been fully elucidated. In this study, we employed miRNA-sequencing and identified 22 miRNAs involved in HCC metastasis. One of these, miR-28-5p, was down-regulated in HCCs. This down-regulation correlated with tumor metastasis, recurrence, and poor survival. Biofunctional investigations revealed that miR-28-5p deficiency promoted tumor growth and metastasis in nude mice without altering the in vitro biological characteristics of HCC cells. Through gene expression profiles and bioinformatics analysis, we identified interleukin-34 (IL-34) as a direct target of miR-28-5p, and the effects of miR-28-5p deficiency on HCC growth and metastasis was dependent on IL-34-mediated tumor-associated macrophage (TAM) infiltration. Moreover, we found that TAMs induced by miR-28-5p-IL-34 signaling inhibit miR-28-5p expression on HCC cells by transforming growth factor beta 1, resulting in an miR-28-5p-IL-34-macrophage-positive feedback loop. In clinical HCC samples, miR-28-5p levels were inversely correlated with IL-34 expression and the number of TAMs. Patients with low miR-28-5p expression, high IL-34 levels, and high numbers of TAMs had a poor prognosis with shorter overall survival and time to recurrence. CONCLUSION A miR-28-5p-IL-34-macrophage feedback loop modulates HCC metastasis and serves as a novel prognostic factor as well as a therapeutic target for HCC.
Collapse
Affiliation(s)
- Shao-Lai Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhi-Qiang Hu
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zheng-Jun Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zhi Dai
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Zheng Wang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ya Cao
- Cancer Research Institute, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| | - Jia Fan
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Wu Huang
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Liver Surgery Department, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Gao S, Cheng C, Chen H, Li M, Liu K, Wang G. IGF1 3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma. J Mol Histol 2016; 47:135-43. [PMID: 26759259 DOI: 10.1007/s10735-016-9659-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors in human worldwide. Angiogenesis is a pivotal process during osteosarcoma development. Insulin-like growth factor 1 (IGF1) has been reported to promote angiogenesis. However, the role of 3' untranslational region (3'UTR) of IGF1 mRNA in angiogenic activity in osteosarcomas is still unknown. In the present study, we performed gain-of-function assays to investigate the role of IGF1-3'UTR in angiogenesis. For the first time, we demonstrated that IGF1 3'UTR increased VEGF expression and promotes angiogenesis in osteosarcoma cells. In addition, RNA-immunoprecipitation and luciferase reporter assays showed that IGF1 3'UTR was a direct target of miR-29s. Our data also demonstrated that there existed a competition of miR-29s between IGF1-3'UTR and VEGF mRNA, and IGF1-3'UTR promoted angiogenesis at least in part via sponging miR-29s. Taken together, our study suggests that IGF1-3'UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29s in osteosarcoma.
Collapse
Affiliation(s)
- Shuming Gao
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Cai Cheng
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Hanwen Chen
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Min Li
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Kehun Liu
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
| | - Guangya Wang
- Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China.
| |
Collapse
|
50
|
Zhou J, Zhao M, Tang Y, Wang J, Wei C, Gu F, Lei T, Chen Z, Qin Y. The milk-derived fusion peptide, ACFP, suppresses the growth of primary human ovarian cancer cells by regulating apoptotic gene expression and signaling pathways. BMC Cancer 2016; 16:246. [PMID: 27012847 PMCID: PMC4806491 DOI: 10.1186/s12885-016-2281-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Background ACFP is an anti-cancer fusion peptide derived from bovine milk protein. This study was to investigate the anti-cancer function and underlying mechanisms of ACFP in ovarian cancer. Methods Fresh ovarian tumor tissues were collected from 53 patients who underwent initial debulking surgery, and primary cancer cells were cultured. Normal ovarian surface epithelium cells (NOSECs), isolated from 7 patients who underwent surgery for uterine fibromas, were used as normal control tissue. Anti-viabilities of ACFP were assessed by WST-1 (water-soluble tetrazolium 1), and apoptosis was measured using a flow cytometry-based assay. Gene expression profiles of ovarian cancer cells treated with ACFP were generated by cDNA microarray, and the expression of apoptotic-specific genes, such as bcl-xl, bax, akt, caspase-3, CDC25C and cyclinB1, was assessed by real time PCR and western blot analysis. Results Treatment with ACFP inhibited the viability and promoted apoptosis of primary ovarian cancer cells but exhibited little or no cytotoxicity toward normal primary ovarian cells. Mechanistically, the anti-cancer effects of ACFP in ovarian cells were shown to occur partially via changes in gene expression and related signal pathways. Gene expression profiling highlighted that ACFP treatment in ovarian cancer cells repressed the expression of bcl-xl, akt, CDC25C and cyclinB1 and promoted the expression of bax and caspase-3 in a time- and dose-dependent manner. Conclusions Our results suggest that ACFP may represent a potential therapeutic agent for ovarian cancer that functions by altering the expression and signaling of cancer-related pathways in ovarian cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2281-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Mengjing Zhao
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yigui Tang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Cai Wei
- Department of Pharmacy, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Fang Gu
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Ting Lei
- Department of Pharmacy, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhiwu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yide Qin
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|