1
|
Xu K, Wang Q, Zhang Y, Huang Y, Liu Q, Chen M, Wang C. Benzo(a)pyrene exposure impacts cerebrovascular development in zebrafish embryos and the antagonistic effect of berberine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174980. [PMID: 39053545 DOI: 10.1016/j.scitotenv.2024.174980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) widely present in the environment, but their effect on cerebrovascular development has been rarely reported. In this study, dechorionated zebrafish embryos at 24 hpf were exposed to benzo(a)pyrene (BaP) at 0.5, 5 and 50 nM for 48 h, cerebrovascular density showed a significant reduction in the 5 and 50 nM groups. The expression of aryl hydrocarbon receptor (AhR) was significantly increased. Transcriptomic analysis showed that the pathway of positive regulation of vascular development was down-regulated and the pathway of inflammation response was up-regulated. The transcription of main genes related to vascular development, such as vegf, bmper, cdh5, f3b, itgb1 and prkd1, was down-regulated. Addition of AhR-specific inhibitor CH233191 in the 50 nM BaP group rescued cerebrovascular developmental defects and down-regulation of relative genes, suggesting that BaP-induced cerebrovascular defects was AhR-dependent. The cerebrovascular defects were persistent into adult fish raised in clean water, showing that the relative area of vascular network, the length of vessels per unit area and the number of vascular junctions per unit area were significantly decreased in the 50 nM group. Supplementation of berberine (BBR), a naturally derived medicine from a Chinese medicinal herb, alleviated BaP-induced cerebrovascular defects, accompanied by the restoration of altered expression of AhR and relative genes, which might be due to that BBR promoted BaP elimination via enhancing detoxification enzyme activities, suggesting that BBR could be a potential agent in the prevention of cerebrovascular developmental defects caused by PAHs.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
2
|
Staal YCM, Bil W, Bokkers BGH, Soeteman-Hernández LG, Stephens WE, Talhout R. Challenges in Predicting the Change in the Cumulative Exposure of New Tobacco and Related Products Based on Emissions and Toxicity Dose-Response Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10528. [PMID: 36078242 PMCID: PMC9518537 DOI: 10.3390/ijerph191710528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Many novel tobacco products have been developed in recent years. Although many may emit lower levels of several toxicants, their risk in the long term remains unclear. We previously published a method for the exposure assessment of mixtures that can be used to compare the changes in cumulative exposure to carcinogens among tobacco products. While further developing this method by including more carcinogens or to explore its application to non-cancer endpoints, we encountered a lack of data that are required for better-substantiated conclusions regarding differences in exposure between products. In this special communication, we argue the case for more data on adverse health effects, as well as more data on the composition of the emissions from tobacco products. Such information can be used to identify significant changes in relevance to health using the cumulative exposure method with different products and to substantiate regulatory decisions.
Collapse
Affiliation(s)
- Yvonne C. M. Staal
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Bas G. H. Bokkers
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Lya G. Soeteman-Hernández
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - W. Edryd Stephens
- School of Earth & Environmental Sciences, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Reinskje Talhout
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
3
|
Fu C, Li Y, Xi H, Niu Z, Chen N, Wang R, Yan Y, Gan X, Wang M, Zhang W, Zhang Y, Lv P. Benzo(a)pyrene and cardiovascular diseases: An overview of pre-clinical studies focused on the underlying molecular mechanism. Front Nutr 2022; 9:978475. [PMID: 35990352 PMCID: PMC9386258 DOI: 10.3389/fnut.2022.978475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Benzo(a)pyrene (BaP) is a highly toxic and carcinogenic polycyclic aromatic hydrocarbon (PAH) whose toxicological effects in the vessel-wall cells have been recognized. Many lines of evidence suggest that tobacco smoking and foodborne BaP exposure play a pivotal role in the dysfunctions of vessel-wall cells, such as vascular endothelial cell and vascular smooth muscle cells, which contribute to the formation and worsening of cardiovascular diseases (CVDs). To clarify the underlying molecular mechanism of BaP-evoked CVDs, the present study mainly focused on both cellular and animal reports whose keywords include BaP and atherosclerosis, abdominal aortic aneurysm, hypertension, or myocardial injury. This review demonstrated the aryl hydrocarbon receptor (AhR) and its relative signal transduction pathway exert a dominant role in the oxidative stress, inflammation response, and genetic toxicity of vessel-wall cells. Furthermore, antagonists and synergists of BaP are also discussed to better understand its mechanism of action on toxic pathways.
Collapse
Affiliation(s)
- Chenghao Fu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yuemin Li
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Hao Xi
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zemiao Niu
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Rong Wang
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yonghuan Yan
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mengtian Wang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- Eco-Environmental Monitoring Center of Hebei Province, Shijiazhuang, China
| | - Yan Zhang
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China.,Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Pin Lv
- Department of Cell Biology, Cardiovascular Medical Science Center, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|