1
|
Wei S, Xia W, Feng J, Lu J, Zhang L, Wang W, Hu W, Geng Y. TRIM23 promotes 5-Fluorouracil resistance in colorectal cancer by upregulating GALNT4 expression. Apoptosis 2024:10.1007/s10495-024-02060-2. [PMID: 39720975 DOI: 10.1007/s10495-024-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
5-Fluorouracil (5-FU) is one of the most common chemotherapeutic agents for colorectal cancer (CRC), but its application is often limited by resistance. Tripartite motif containing 23 (TRIM23) has been reported to be dysregulated in various tumors and involved in tumor progression and chemotherapy resistance. However, its relationship with CRC 5-FU resistance and the underlying mechanism are still unclear. In this study, we found that TRIM23 was upregulated in CRC. Patients treated with 5-FU and with high TRIM23 expression had a lower disease control rate (DCR) and a poorer median progression-free survival (mPFS). In vitro, the expression of TRIM23 in CRC cells was elevated after 5-FU treatment. Compared to parental cells, TRIM23 was significantly overexpressed in 5-FU-resistant CRC cells. Mechanistically, TRIM23 mediated 5-FU resistance of CRC by upregulating the expression of N-acetylgalactosaminyltransferase-4 (GALNT4). Knocking down TRIM23 in 5-FU-resistant colon cancer cells restored the sensitivity to 5-FU, while overexpression of GALNT4 in TRIM23 knockdown cells counteracted the chemosensitization caused by TRIM23 downregulation. The TRIM23/GALNT4 axis may play a crucial role in 5-FU resistance in CRC, and targeted inhibition of this axis is expected to reverse resistance. As a potential biomarker for screening 5-FU-sensitive patients and predicting prognosis in clinical practice, TRIM23 deserves further investigation.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jianwen Lu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Luo Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
2
|
Yu S, Sun L, Peng L, Wu Z, Yu X, Li B, Yang H, Yin X. BarH-Like Homeobox 2 Suppresses Cell Proliferation, Invasion, and Angiogenesis in Hepatocellular Carcinoma by Activating N-Acetylgalactosaminyltransferase 4. Mol Biotechnol 2024; 66:3226-3237. [PMID: 37955776 DOI: 10.1007/s12033-023-00930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023]
Abstract
BarH-like homeobox 2 (BARX2) has been identified to play a key role in the development of multiple cancers. Meanwhile, BARX2 may be an independent prognostic biomarker for patients suffering from hepatocellular carcinoma (HCC). Nevertheless, the regulatory role of BARX2 in HCC is still unclear and needs to be unveiled. In this study, the expressions of BARX2 and N-acetylgalactosaminyltransferase 4 (GALNT4) were evaluated by quantitative real-time PCR (qRT-PCR) as well as western blot. Besides, the abilities of cells to proliferate, migrate, invade, and angiogenesis were assessed with CCK-8, colony formation, wound-healing, Transwell, and tube formation assays, separately. Cell apoptosis was determined by flow cytometry analysis. The binding relationship between BARX2 and GALNT4 was predicted by JASPAR website and verified using Chromatin immunoprecipitation (ChIP) and luciferase report assay. It was discovered that BARX2 was reduced in HCC cell lines, while its overexpression greatly repressed cell proliferation, migration, invasion, and angiogenesis and promoted cell apoptosis in HuH7 and MHCC97-H cells. BARX2 could bind to GALNT4 promoter and positively regulate GALNT4 expression. In addition, GALNT4 deficiency partly abolished the inhibitory effects of BARX2 on the progression of HCC. In summary, this study highlights that BARX2 may hold promise for serving as a potential therapeutic target, facilitating the development of a novel therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Shi'an Yu
- Department of General Surgery, The Ninth Hospital of Nanchang, Nanchang, 330029, Jiangxi, China
| | - Liang Sun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Long Peng
- Department of Neurosurgery, Ganzhou Municipal Hospital, Ganzhou, 341000, Jiangxi, China
| | - Zhengyi Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Xuzhe Yu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Bowen Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Hanqing Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Xiangbao Yin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Khorami-Sarvestani S, Hanash SM, Fahrmann JF, León-Letelier RA, Katayama H. Glycosylation in cancer as a source of biomarkers. Expert Rev Proteomics 2024; 21:345-365. [PMID: 39376081 DOI: 10.1080/14789450.2024.2409224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Cipolletti M, Acconcia F. PMM2 controls ERα levels and cell proliferation in ESR1 Y537S variant expressing breast cancer cells. Mol Cell Endocrinol 2024; 584:112160. [PMID: 38266771 DOI: 10.1016/j.mce.2024.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE Metabolic reprogramming in breast cancer (BC) subtypes offers potential personalized treatment targets. Estrogen receptor α (ERα)-positive BC patients undergoing endocrine therapy (ET) can develop ET-resistant metastatic disease. Specific mutations, like Y537S in ERα, drive uncontrolled cell proliferation. Targeting mutant receptor levels shows promise for inhibiting growth in metastatic BC expressing ERα variants. Additionally, metabolic reprogramming occurs in ERα Y537S mutant cells. Consequently, we conducted a screen to identify metabolic proteins reducing intracellular levels of ERα Y537S and inhibiting cell proliferation. METHODS Nine metabolic proteins were identified in a siRNA-based screen, with phosphomannose mutase 2 (PMM2) showing the most promise. We measured the impact of PMM2 depletion on ERα stability and cell proliferation in ERα Y537S mutant cells. Additionally, we tested the effect of PMM2 reduction on the hyperactive phenotype of the mutant and its proliferation when combined with metastatic BC treatment drugs. RESULTS PMM2 emerged as a significant target due to its correlation with better relapse-free survival, overexpression in ERα-positive tumors, and its elevation in ERα Y537S-expressing cells. Depletion of PMM2 induces degradation of ERα Y537S, inhibits cell proliferation, and reduces ERα signaling. Notably, reducing PMM2 levels re-sensitizes ERα Y537S-expressing cells to certain ET drugs and CDK4/CDK6 inhibitors. Mechanistically, depletion of PMM2 leads to a reduction in ESR1 mRNA levels, resulting in decreased ERα receptor protein expression. Furthermore, the reduction of PMM2 decreases FOXA1 levels, which plays a crucial role in ERα regulation. CONCLUSIONS Our findings establish PMM2 as an innovative therapeutic target for metastatic BC expressing the ERα Y537S variant, offering alternative strategies for managing and treating this disease.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy
| | - Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences and Technology, University Roma Tre, Rome, Italy.
| |
Collapse
|
5
|
Berkel C, Cacan E. The expression of O-linked glycosyltransferase GALNT7 in breast cancer is dependent on estrogen-, progesterone-, and HER2-receptor status, with prognostic implications. Glycoconj J 2023; 40:631-644. [PMID: 37947928 DOI: 10.1007/s10719-023-10137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
GALNT7 is a glycosyltransferase enzyme transferring N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus. Breast cancer is the most common cancer in women globally. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2; ERBB2) are important biomarkers in the prognosis and molecular subtyping of breast cancer. Here, we showed that ER-positive, PR-positive or HER2-positive breast tumors have higher expression of GALNT7 compared to ER-negative, PR-negative or HER2-negative breast tumors, respectively. We found that CpG-aggregated methylation of GALNT7 gene is decreased, and in parallel, its transcript levels are increased in breast cancer compared to healthy breast tissue. We observed that the difference in the expression of GALNT7 between negative and positive status of the receptors is the highest for HER2, followed by ER and PR, pointing that HER2 might be relatively more influential than ER and PR on the expression of GALNT7 in breast cancer. We reported that basal-like breast tumors have decreased expression of GALNT7 compared to non-basal-like tumors, and that high GALNT7 expression is associated with favorable relapse-free and distant metastasis-free survival in HER2 status-dependent manner in breast cancer patients. Moreover, we showed that GALNT7 expression in breast cancer is cell type- (epithelial vs stromal cells), tumor grade- and ethnicity-dependent. Combined, we propose that GALNT7 might contribute to different clinical outcomes depending on the receptor status in breast cancer, and that a better understanding of GALNT7 and its function in the context of breast cancer is needed.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
6
|
Liu J, Wang Q, Kang Y, Xu S, Pang D. Unconventional protein post-translational modifications: the helmsmen in breast cancer. Cell Biosci 2022; 12:22. [PMID: 35216622 PMCID: PMC8881842 DOI: 10.1186/s13578-022-00756-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
AbstractBreast cancer is the most prevalent malignant tumor and a leading cause of mortality among females worldwide. The tumorigenesis and progression of breast cancer involve complex pathophysiological processes, which may be mediated by post-translational modifications (PTMs) of proteins, stimulated by various genes and signaling pathways. Studies into PTMs have long been dominated by the investigation of protein phosphorylation and histone epigenetic modifications. However, with great advances in proteomic techniques, several other PTMs, such as acetylation, glycosylation, sumoylation, methylation, ubiquitination, citrullination, and palmitoylation have been confirmed in breast cancer. Nevertheless, the mechanisms, effects, and inhibitors of these unconventional PTMs (particularly, the non-histone modifications other than phosphorylation) received comparatively little attention. Therefore, in this review, we illustrate the functions of these PTMs and highlight their impact on the oncogenesis and progression of breast cancer. Identification of novel potential therapeutic drugs targeting PTMs and development of biological markers for the detection of breast cancer would be significantly valuable for the efficient selection of therapeutic regimens and prediction of disease prognosis in patients with breast cancer.
Collapse
|
7
|
Zhou J, Guo L, Ma T, Qiu T, Wang S, Tian S, Zhang L, Hu F, Li W, Liu Z, Hu Y, Wang T, Kong C, Yang J, Zhou J, Li H. N-acetylgalactosaminyltransferase-4 protects against hepatic ischemia/reperfusion injury by blocking apoptosis signal-regulating kinase 1 N-terminal dimerization. Hepatology 2022; 75:1446-1460. [PMID: 34662438 DOI: 10.1002/hep.32202] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion (I/R) injury is an inevitable complication of liver transplantation (LT) and compromises its prognosis. Glycosyltransferases have been recognized as promising targets for disease therapy, but their roles remain open for study in hepatic I/R (HIR) injury. Here, we aim to demonstrate the exact function and molecular mechanism of a glycosyltransferase, N-acetylgalactosaminyltransferase-4 (GALNT4), in HIR injury. APPROACH AND RESULTS By an RNA-sequencing data-based correlation analysis, we found a close correlation between GALNT4 expression and HIR-related molecular events in a murine model. mRNA and protein expression of GALNT4 were markedly up-regulated upon reperfusion surgery in both clinical samples from subjects who underwent LT and in a mouse model. We found that GALNT4 deficiency significantly exacerbated I/R-induced liver damage, inflammation, and cell death, whereas GALNT4 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration clarified that GALNT4 directly binds to apoptosis signal-regulating kinase 1 (ASK1) to inhibit its N-terminal dimerization and subsequent phosphorylation, leading to a robust inactivation of downstream c-Jun N-terminal kinase (JNK)/p38 and NF-κB signaling. Intriguingly, the inhibitory capacity of GALNT4 on ASK1 activation is independent of its glycosyltransferase activity. CONCLUSIONS GALNT4 represents a promising therapeutic target for liver I/R injury and improves liver surgery prognosis by inactivating the ASK1-JNK/p38 signaling pathway.
Collapse
Affiliation(s)
- Jiangqiao Zhou
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lina Guo
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
| | - Tengfei Ma
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of NeurologyHuanggang Central HospitalHuanggangChina
- Huanggang Institute of Translational MedicineHuanggangChina
| | - Tao Qiu
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Sichen Wang
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
| | - Song Tian
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fengjiao Hu
- Institute of Model AnimalWuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wei Li
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhen Liu
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yufeng Hu
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Wang
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Chenyang Kong
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Juan Yang
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Junjie Zhou
- Institute of Model AnimalWuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hongliang Li
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
8
|
Ye Z, Guo H, Wang L, Li Y, Xu M, Zhao X, Song X, Chen Z, Huang R. GALNT4 primes monocytes adhesion and transmigration by regulating O-Glycosylation of PSGL-1 in atherosclerosis. J Mol Cell Cardiol 2022; 165:54-63. [PMID: 34974060 DOI: 10.1016/j.yjmcc.2021.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a major underlying cause of cardiovascular disease. Genome wide association studies have predicted that GalNAc-T4 (GALNT4), which responsible for initiating step of mucin-type O-glycosylation, plays a causal role in the susceptibility to cardiovascular diseases, whereas the precise mechanism remains obscure. Thus, we sought to determine the role and mechanism of GALNT4 in atherosclerosis. Firstly, we found the expression of GALNT4 and protein O-glycosylation were both increased in plaque as atherosclerosis progressed in ApoE-/- mice by immunohistochemistry. And the expression of GALNT4 was also increased in human monocytes treated with ACS (acute coronary syndrome) sera and subjected to LPS and ox-LDL in vitro. Moreover, silencing expression of GALNT4 by shRNA lentivirus alleviated atherosclerotic plaque formation and monocyte/macrophage infiltration in ApoE-/- mice. Functional investigations demonstrate that GALNT4 knockdown inhibited P-selectin-induced activation of β2 integrin on the surface of monocytes, decreased monocytes adhesion under flow condition with P-selectin stimulation, as well as suppressed monocytes transmigration triggered by monocyte chemotactic protein- 1(MCP-1). In contrast, GALNT4 overexpression enhanced monocytes adhesion and transmigration. Furthermore, Vicia Villosa Lectin (VVL) pull down and PSGL-1 immunoprecipitation assays showed that GALNT4 overexpression increased O-Glycosylation of PSGL-1 and P-selectin induce phosphorylation of Akt/mTOR and IκBα/NFκB on monocytes. Conversely, knockdown of GALNT4 decreased VVL binding and attenuated the activation of Akt/mTOR and IκBα/NFκB. Additionally, mTOR inhibitor rapamycin blocked these effects of GALNT4 overexpression on monocytes. Collectively, GALNT4 catalyzed PSGL-1 O-glycosylation that involved in P-selectin induced monocytes adhesion and transmigration via Akt/mTOR and NFκB pathway. Thus, GALNT4 may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Zhishuai Ye
- Division of Cardiovascular Diseases, Beijing Friendship Hospital, Capital Medical University, Yong'an Road, Beijing 100053, China; Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian 116011, China
| | - Hongzhou Guo
- Division of Cardiovascular Diseases, Beijing Friendship Hospital, Capital Medical University, Yong'an Road, Beijing 100053, China
| | - Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road, Panjin 124221, China
| | - Yan Li
- Department of Anatomy and Physiolgy, College of Basic Medical Sciences, Shanghai Jiao Tong University, No.280 Chongqing, South Road, Shanghai 200025, China
| | - Mingyue Xu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian 116011, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Anzhen Road, Beijing 100029, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Anzhen Road, Beijing 100029, China
| | - Zhaoyang Chen
- Cardiology department, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, Fuzhou 350001, China.
| | - Rongchong Huang
- Division of Cardiovascular Diseases, Beijing Friendship Hospital, Capital Medical University, Yong'an Road, Beijing 100053, China; Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road, Dalian 116011, China.
| |
Collapse
|
9
|
Zimmer BM, Howell ME, Ma L, Enders JR, Lehman D, Corey E, Barycki JJ, Simpson MA. Altered glucuronidation deregulates androgen dependent response profiles and signifies castration resistance in prostate cancer. Oncotarget 2021; 12:1886-1902. [PMID: 34548906 PMCID: PMC8448517 DOI: 10.18632/oncotarget.28059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Glucuronidation controls androgen levels in the prostate and the dysregulation of enzymes in this pathway is associated with castration resistant prostate cancer. UDP-glucose dehydrogenase (UGDH) produces UDP-glucuronate, the essential precursor for glucuronidation, and its expression is elevated in prostate cancer. We compared protein and metabolite levels relevant to the glucuronidation pathway in five prostate cancer patient-derived xenograft models paired with their isogenic counterparts that were selected in vivo for castration resistant (CR) recurrence. All pairs showed changes in UGDH and associated enzymes and metabolites that were consistent with those we found in an isogenic androgen dependent (AD) and CR LNCaP prostate cancer model. Ectopic overexpression of UGDH in LNCaP AD cells blunted androgen-dependent gene expression, increased proteoglycan synthesis, significantly increased cell growth compared to controls, and eliminated dose responsive growth suppression with enzalutamide treatment. In contrast, the knockdown of UGDH diminished proteoglycans, suppressed androgen dependent growth irrespective of androgens, and restored androgen sensitivity in CR cells. Importantly, the knockdown of UGDH in both LNCaP AD and CR cells dramatically sensitized these cells to enzalutamide. These results support a role for UGDH in androgen responsiveness and a target for therapeutic strategies in advanced prostate cancer.
Collapse
Affiliation(s)
- Brenna M. Zimmer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | - Linlin Ma
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey R. Enders
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC, USA
| | - Danielle Lehman
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Joseph J. Barycki
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC, USA
| | - Melanie A. Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Chen X, Wang L, Yu X, Wang S, Zhang J. Caveolin-1 facilitates cell migration by upregulating nuclear receptor 4A2/retinoid X receptor α-mediated β-galactoside α2,6-sialyltransferase I expression in human hepatocarcinoma cells. Int J Biochem Cell Biol 2021; 137:106027. [PMID: 34157397 DOI: 10.1016/j.biocel.2021.106027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
It has been reported that caveolin-1 (Cav-1) acts as a tumor promoter in hepatocellular carcinoma (HCC). Our previous studies showed that Cav-1 promoted mouse hepatocarcinoma cell adhesion to fibronectin by upregulating β-galactoside α2,6-sialyltransferase I (ST6Gal-I) expression. However, the detailed mechanism by which Cav-1 regulates ST6Gal-I is not fully understood. In this study, we found that the expression levels of Cav-1 and ST6Gal-I were increased in HCC tissues and correlated with poor prognosis. Cav-1 upregulated ST6Gal-I expression to promote the migration and invasion of HCC cells by inducing epithelial-to-mesenchymal transition. Importantly, the binding of the transcription factor nuclear receptor 4A2/retinoid X receptor alpha (NR4A2/RXRα) to the -550/-200 region of the ST6GAL1 promoter was critical for Cav-1-induced ST6GAL1 gene expression. Furthermore, Cav-1 expression activated the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, followed by upregulation of NR4A2 expression and phosphorylation of RXRα, which facilitated the complex of NR4A2 and phosphorylated RXRα forming and binding to the ST6GAL1 promoter region to induce its transcription. Finally, in the diethylnitrosamine (DEN)-induced HCC murine model, the expression levels of NR4A2, p-RXRα, ST6Gal-I, and α2,6-linked sialic acid decreased in parallel in Cav-1-/- mice compared with Cav-1+/+ mice, which was consistent with the above in vitro results. These findings provide insight into the mechanism of ST6GAL1 gene transcription mediated by Cav-1, which may lead to the development of novel therapeutic strategies targeting metastasis in HCC.
Collapse
Affiliation(s)
- Xixi Chen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiao Yu
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.
| |
Collapse
|
11
|
Brockhausen I, Melamed J. Mucins as anti-cancer targets: perspectives of the glycobiologist. Glycoconj J 2021; 38:459-474. [PMID: 33704667 DOI: 10.1007/s10719-021-09986-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Mucins are highly O-glycosylated glycoproteins that carry a heterogenous variety of O-glycan structures. Tumor cells tend to overexpress specific mucins, such as the cell surface mucins MUC1 and MUC4 that are engaged in signaling and cell growth, and exhibit abnormal glycosylation. In particular, the Tn and T antigens and their sialylated forms are common in cancer mucins. We review herein methods chosen to use cancer-associated glycans and mucins as targets for the design of anti-cancer immunotherapies. Mucin peptides from the glycosylated and transmembrane domains have been combined with immune-stimulating adjuvants in a wide variety of approaches to produce anti-tumor antibodies and vaccines. These mucin conjugates have been tested on cancer cells in vitro and in mice with significant successes in stimulating anti-tumor responses. The clinical trials in humans, however, have shown limited success in extending survival. It seems critical that the individual-specific epitope expression of cancer mucins is considered in future therapies to result in lasting anti-tumor responses.
Collapse
Affiliation(s)
- Inka Brockhausen
- Biomedical and Molecular Sciences, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Jacob Melamed
- Biomedical and Molecular Sciences, Queen's University, 18 Stuart St, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
12
|
Matsumoto Y, Kudelka MR, Hanes MS, Lehoux S, Dutta S, Jones MB, Stackhouse KA, Cervoni GE, Heimburg-Molinaro J, Smith DF, Ju T, Chaikof EL, Cummings RD. Identification of Tn antigen O-GalNAc-expressing glycoproteins in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology 2020; 30:282-300. [PMID: 31742337 DOI: 10.1093/glycob/cwz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022] Open
Abstract
The Tn antigen is a neoantigen abnormally expressed in many human carcinomas and expression correlates with metastasis and poor survival. To explore its biomarker potential, new antibodies are needed that specifically recognize this antigen in tumors. Here we generated two recombinant antibodies to the Tn antigen, Remab6 as a chimeric human IgG1 antibody and ReBaGs6 as a murine IgM antibody and characterized their specificities using multiple biochemical and biological approaches. Both Remab6 and ReBaGs6 recognize clustered Tn structures, but most importantly do not recognize glycoforms of human IgA1 that contain potential cross-reactive Tn antigen structures. In flow cytometry and immunofluorescence analyses, Remab6 recognizes human cancer cell lines expressing the Tn antigen, but not their Tn-negative counterparts. In immunohistochemistry (IHC), Remab6 stains many human cancers in tissue array format but rarely stains normal tissues and then mostly intracellularly. We used these antibodies to identify several unique Tn-containing glycoproteins in Tn-positive Colo205 cells, indicating their utility for glycoproteomics in future biomarker studies. Thus, recombinant Remab6 and ReBaGs6 are useful for biochemical characterization of cancer cells and IHC of tumors and represent promising tools for Tn biomarker discovery independently of recognition of IgA1.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Sucharita Dutta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Mark B Jones
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kathryn A Stackhouse
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Gabrielle E Cervoni
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA.,Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bldg 52/72, Room 2120, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11090, 3 Blackfan Circle, Boston, MA 02115, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087, 3 Blackfan Circle, Boston, MA 02115, USA
| |
Collapse
|
13
|
O-glycan recognition and function in mice and human cancers. Biochem J 2020; 477:1541-1564. [PMID: 32348475 DOI: 10.1042/bcj20180103] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation represents a nearly ubiquitous post-translational modification, and altered glycosylation can result in clinically significant pathological consequences. Here we focus on O-glycosylation in tumor cells of mice and humans. O-glycans are those linked to serine and threonine (Ser/Thr) residues via N-acetylgalactosamine (GalNAc), which are oligosaccharides that occur widely in glycoproteins, such as those expressed on the surfaces and in secretions of all cell types. The structure and expression of O-glycans are dependent on the cell type and disease state of the cells. There is a great interest in O-glycosylation of tumor cells, as they typically express many altered types of O-glycans compared with untransformed cells. Such altered expression of glycans, quantitatively and/or qualitatively on different glycoproteins, is used as circulating tumor biomarkers, such as CA19-9 and CA-125. Other tumor-associated carbohydrate antigens (TACAs), such as the Tn antigen and sialyl-Tn antigen (STn), are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins; they contribute to tumor development and serve as potential biomarkers for tumor presence and stage, both in immunohistochemistry and in serum diagnostics. Here we discuss O-glycosylation in murine and human cells with a focus on colorectal, breast, and pancreatic cancers, centering on the structure, function and recognition of O-glycans. There are enormous opportunities to exploit our knowledge of O-glycosylation in tumor cells to develop new diagnostics and therapeutics.
Collapse
|
14
|
Wu Q, Xie X, Zhang K, Niang B, Liu Y, Zhang C, Huang T, Huang H, Li W, Zhang J, Liu Y. Reduced expression of ppGalNAc-T4 promotes proliferation of human breast cancer cells. Cell Biol Int 2020; 45:320-333. [PMID: 33079401 DOI: 10.1002/cbin.11488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer, one of the most frequently diagnosed and aggressive malignancies, is the major cause of cancer-related death greatly threatening women health. Polypeptide N-acetylgalactosaminyltransferase 4 (ppGalNAc-T4), responsible for the initial step of mucin-type O-glycosylation, has been reported to be implicated in diverse types of human tumors. However, the biological role of ppGalNAc-T4 in breast cancer is still undetermined. In this study, we investigate the effects and mechanism of ppGalNAc-T4 to breast cancer cell proliferation. From analysis of high throughput RNA sequencing datasets of Gene Expression Omnibus and ArrayExpress, a positive correlation between ppGalNAc-T4 and the recurrence-free survival was observed in multigroup of human breast cancer datasets. Moreover, transcriptomes analysis using RNA-sequencing in MCF7 cells revealed that cell cycle-related genes induced the effects of ppGalNAc-T4 on breast cancer cell proliferation. Additionally, investigations showed that ppGalNAc-T4 impaired cell proliferation in MCF-7 and MDA-MB-231 breast cells. Furthermore, our results suggested that the ppGalNAc-T4 knockout activated Notch signaling pathway and enhanced cell proliferation. Collectively, our data indicated that ppGalNAc-T4 affected the proliferation of human breast cancer cells, which appears to be a novel target for understanding the underlying molecular mechanism of breast cancer.
Collapse
Affiliation(s)
- Qiong Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xueqin Xie
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Keren Zhang
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Bachir Niang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Yimin Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Cheng Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Tianmiao Huang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Huang Huang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
15
|
Daniel EJP, las Rivas M, Lira-Navarrete E, García-García A, Hurtado-Guerrero R, Clausen H, Gerken TA. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 2020; 30:910-922. [PMID: 32304323 PMCID: PMC7581654 DOI: 10.1093/glycob/cwaa036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
A family of polypeptide GalNAc-transferases (GalNAc-Ts) initiates mucin-type O-glycosylation, transferring GalNAc onto hydroxyl groups of Ser and Thr residues of target substrates. The 20 GalNAc-T isoenzymes in humans are classified into nine subfamilies according to sequence similarity. GalNAc-Ts select their sites of glycosylation based on weak and overlapping peptide sequence motifs, as well prior substrate O-GalNAc glycosylation at sites both remote (long-range) and neighboring (short-range) the acceptor. Together, these preferences vary among GalNAc-Ts imparting each isoenzyme with its own unique specificity. Studies on the first identified GalNAc-Ts showed Thr acceptors were preferred over Ser acceptors; however studies comparing Thr vs. Ser glycosylation across the GalNAc-T family are lacking. Using a series of identical random peptide substrates, with single Thr or Ser acceptor sites, we determined the rate differences (Thr/Ser rate ratio) between Thr and Ser substrate glycosylation for 12 isoenzymes (representing 7 GalNAc-T subfamilies). These Thr/Ser rate ratios varied across subfamilies, ranging from ~2 to ~18 (for GalNAc-T4/GalNAc-T12 and GalNAc-T3/GalNAc-T6, respectively), while nearly identical Thr/Ser rate ratios were observed for isoenzymes within subfamilies. Furthermore, the Thr/Ser rate ratios did not appreciably vary over a series of fixed sequence substrates of different relative activities, suggesting the ratio is a constant for each isoenzyme against single acceptor substrates. Finally, based on GalNAc-T structures, the different Thr/Ser rate ratios likely reflect differences in the strengths of the Thr acceptor methyl group binding to the active site pocket. With this work, another activity that further differentiates substrate specificity among the GalNAc-Ts has been identified.
Collapse
Affiliation(s)
| | - Matilde las Rivas
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Erandi Lira-Navarrete
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ana García-García
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ramon Hurtado-Guerrero
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Prasher P, Sharma M. Targeting N-acetylgalactosaminyltransferase for anticancer therapy. Drug Dev Res 2020; 82:3-6. [PMID: 32985012 DOI: 10.1002/ddr.21744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | - Mousmee Sharma
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
17
|
Xing L, Hong X, Chang L, Ren P, Zhang H. miR-365b regulates the development of non-small cell lung cancer via GALNT4. Exp Ther Med 2020; 20:1637-1643. [PMID: 32765677 PMCID: PMC7388555 DOI: 10.3892/etm.2020.8857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a type of cancer that is associated with high prevalence and high mortality rates in China. Therefore, it is of importance to identify the mechanisms underlying NSCLC progression. In the present study, reverse transcription-quantitative PCR was performed to measure the expression of microRNA (miR)-365b in NSCLC cell lines. In addition, the biological roles of miR-365b and N-acetylgalactosaminyltransferase 4 (GALNT4) were investigated by manipulating the expression levels of miR-365b and GALNT4 in NSCLC cells. It was found that miR-365b expression was reduced in NSCLC tissues and cells. Overexpression of miR-365b inhibited NSCLC cell proliferation whilst promoting apoptosis, but miR-365b knockdown promoted NSCLC cell proliferation. In addition, it was demonstrated that miR-365b regulated the proliferation and apoptosis of NSCLC cells by targeting GALNT4 expression. Collectively, the present study identified a miR-365b/GALNT4 regulatory axis in NSCLC, suggesting that miR-365b may serve as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Lei Xing
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaodong Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liang Chang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hong Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Zhang S, Bai L, Chen Q, Ren Y, Zhang K, Wu Q, Huang H, Li W, Zhang Y, Zhang J, Liu Y. Identification of the O-GalNAcylation site(s) on FOXA1 catalyzed by ppGalNAc-T2 enzyme in vitro. Biochem Biophys Res Commun 2019; 514:157-165. [PMID: 31029427 DOI: 10.1016/j.bbrc.2019.04.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 01/05/2023]
Abstract
FOXA1 functions as a pioneer factor of transcriptional regulation that binds to specific sites in the chromatin and recruits other transcription factors, promoting the initiation of gene transcription and mediating the regulation of downstream target gene expression. FOXA1 was reported to facilitate or reprogram ERα binding, thus playing a key function in breast cancer progression. Our previous results indicated that the O-linked N-acetylgalactosamine (O-GalNAc) modification of FOXA1 plays a potentially significant role in the ERα transcription network. However, further investigations are needed to identify the specific mechanism of modification and the specific glycosylation sites on FOXA1. In this study, we first suggested that FOXA1 could be O-GalNAcylated by ppGalNAc-T2 in vitro. By dividing and expressing recombinant FOXA1 as three segments, two O-GalNAcylation sites were found on FOXA1, both located at the C-terminal of the protein. Then, synthesized peptides, including the predicted O-GalNAc sites in the C-terminus of FOXA1, were used in a vitro reaction, and peptides mutated at the predicted O-GalNAc sites were employed as controls. Through an ESI-MS assay, S354 and S355 were identified as probable O-GalNAcylation sites on FOXA1. Additionally, we performed ESI-ETD-MS/MS analysis of the full-length O-GalNAcylated FOXA1 protein and identified S355 as the O-GalNAc modification site on FOXA1, consistent with the peptide reaction. In conclusion, our results demonstrated that FOXA1 can be O-GalNAcylated by ppGalNAc-T2 at S355 in vitro. These results will provide new insights for studying the role of O-GalNAcylation in the development of breast cancer.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Lijuan Bai
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Qiushi Chen
- BGI-Shenzhen, Yantian District, Shenzhen, China
| | - Yan Ren
- BGI-Shenzhen, Yantian District, Shenzhen, China
| | - Keren Zhang
- BGI-Shenzhen, Yantian District, Shenzhen, China
| | - Qiong Wu
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Huang Huang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Wenli Li
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China
| | - Yan Zhang
- Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, China.
| | - Jianing Zhang
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China.
| | - Yubo Liu
- School of Life Science & Medicine, Dalian University of Technology, Panjin, China.
| |
Collapse
|
19
|
Yan X, Lu J, Zou X, Zhang S, Cui Y, Zhou L, Liu F, Shan A, Lu J, Zheng M, Feng B, Zhang Y. The polypeptide N-acetylgalactosaminyltransferase 4 exhibits stage-dependent expression in colorectal cancer and affects tumorigenesis, invasion and differentiation. FEBS J 2018; 285:3041-3055. [PMID: 29931806 DOI: 10.1111/febs.14593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/20/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
The aberrant expression of mucin-type O-glycosylation plays important roles in cancer malignancy. The polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) are a family of conserved enzymes that initiate the mucin-type O-glycosylation in cells. In human, consistent up- or down-regulation of ppGalNAc-Ts expression during cancer development has been frequently reported. Here, we provide evidence that ppGalNAc-T4 shows a stage-dependent expression at the different stages of colorectal cancer (CRC) in the 62 pair-matched tumor/normal tissues. In detail, ppGalNAc-T4 expression is significantly induced at stage I and II but not at stage III and IV. Overexpression of ppGalNAc-T4 in CRC cells enhances colony formation and sphere formation suggesting an important role of ppGalNAc-T4 in tumorigenesis. Conversely, knockdown of ppGalNAc-T4 in CRC cells increases the cell migration and invasion, and leads to an epithelial-mesenchymal transition-like transition. Further analysis suggests that loss of ppGalNAc-T4 contributes to the dedifferentiation of CRC and high expression of ppGalNAc-T4 correlates to a good prognosis of patients. Taken together, our results not only demonstrate a stage-dependent expression of ppGalNAc-T4 in CRC progression, but also suggest that such stage-dependent expression may contribute to the tumorigenesis at the early stage and promote cell migration and invasion at the advanced stage.
Collapse
Affiliation(s)
- Xialin Yan
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Sen Zhang
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Leqi Zhou
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jiaoyang Lu
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Minghua Zheng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Bo Feng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| |
Collapse
|
20
|
Sheta R, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Popa I, Bachvarov D. Altered expression of different GalNAc‑transferases is associated with disease progression and poor prognosis in women with high-grade serous ovarian cancer. Int J Oncol 2017; 51:1887-1897. [PMID: 29039611 DOI: 10.3892/ijo.2017.4147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/25/2017] [Indexed: 11/06/2022] Open
Abstract
Protein glycosylation perturbations are implicated in a variety of diseases, including cancer. Aberrant glycosylation in cancer is frequently attributed to altered expression of polypeptide GalNAc transferases (GalNAc‑Ts) - enzymes initiating mucin-type O-glycosylation. A previous study from our group demonstrated that one member of this family (GALNT3) is overexpressed in epithelial ovarian cancer (EOC), and GALNT3 expression correlated with shorter progression-free survival (PFS) in EOC patients with advanced disease. As considerable degree of redundancy between members of the GalNAc‑Ts gene family has been frequently observed, we decided to investigate whether other members of this family are essential in EOC progression. In silico analysis based on publically available data was indicative for altered expression of five GalNAc‑Ts (GALNT2, T4, T6, T9 and T14) in ovarian high-grade serous carcinoma (HGSC) samples compared to non-tumoral (control) ovarian tissue. We analyzed protein expression of these GalNAc‑Ts in EOC cells and tumors by western blotting, followed by immunohistochemical (IHC) evaluation of their expression in EOC tumor and control samples using tissue microarrays (TMAs). Western blot analyses were indicative for low expression of GALNT2 and strong expression of GALNT6, T9 and T14 in both EOC cells and tumors. These observations were confirmed by IHC. GALNT2 displayed significantly lower expression, while GALNT6, GALNT9 and GALNT14 showed significantly higher expression in HGSC tumors compared to control tissue. Importantly, GALNT6 and GALNT14 expression correlated with poor prognosis of serous EOC patients. Moreover, our results suggest for overlapping functions of some GalNAc‑Ts, more specifically GALNT3 and GALNT6, in directing EOC progression. Our results are indicative for a possible implication of different members of the GalNAc‑T gene family in modulating EOC progression, and the potential use of GALNT6 and GALNT14 as novel prognostic EOC biomarkers. These data warrant future studies on the role of members of the GalNAc‑Ts gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Razan Sheta
- Department of Molecular Medicine, Laval University, Quebec, Quebec G1V 0A6, Canada
| | | | - Marie Plante
- CHU de Québec Research Center, Hotel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Jean Gregoire
- CHU de Québec Research Center, Hotel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Marie-Claude Renaud
- CHU de Québec Research Center, Hotel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | | | - Ion Popa
- Molecular Biology, Medical Biochemistry, and Pathology, Laval University, QC G1V 0A6, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Quebec, Quebec G1V 0A6, Canada
| |
Collapse
|
21
|
Qu JJ, Qu XY, Zhou DZ. miR‑4262 inhibits colon cancer cell proliferation via targeting of GALNT4. Mol Med Rep 2017; 16:3731-3736. [PMID: 28731150 PMCID: PMC5646949 DOI: 10.3892/mmr.2017.7057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRs) have been demonstrated to be important in the establishment and progression of colon cancer. However the underlying molecular mechanisms remain to be fully elucidated. Polypeptide N‑acetylgalactosaminyltransferase4 (GALNT4) participates in numerous cellular processes, including tumorigenesis. The present study used reverse transcription‑quantitative polymerase chain reaction and western blotting to investigate the expression levels of miR‑4262 and GALNT4 in tissues and cells. In addition, MTS and colony formation assays, and cell cycle analysis were performed to evaluate the effect of miR‑4262 on cell proliferation and the cell cycle. The findings demonstrated that miR‑4262 was a direct target of GALNT4 mRNA. Overexpression of miR‑4262 was demonstrated to decrease GALNT4 mRNA and protein expression levels, and thereby suppressed cell viability, growth and cell‑cycle progression in SW480 and SW620 colon cancer cells. In addition, knockdown of miR‑4262 significantly increased the cell viability, growth, and cell‑cycle progression of SW480 and SW620 cells. The expression level of miR‑4262 was observed to be downregulated as the expression of GALNT4 was upregulated in colon cancer tissues and cell lines. In conclusion, the results demonstrated that miR‑4262 may be involved in the development of colon cancer via targeting of GALNT4. The miR‑4262/GALNT4 axis may be a novel target for diagnosing and understanding the underlying molecular mechanism of colon cancer.
Collapse
Affiliation(s)
- Jian-Jun Qu
- Department of Surgical Oncology, The People's Hospital of Weifang, Weifang, Shandong 261000, P.R.China
| | - Xiang-Yang Qu
- Department of Internal Medicine, The Second People's Hospital of Weifang, Weifang, Shandong 261000, P.R.China
| | - De-Zhen Zhou
- Department of Surgical Oncology, The People's Hospital of Weifang, Weifang, Shandong 261000, P.R.China
| |
Collapse
|
22
|
Yao X, Yang H, Zhang Y, Ren C, Nie H, Fan Y, Zhou W, Wang S, Feng X, Wang F. Characterization of GALNTL5 gene sequence and expression in ovine testes and sperm. Theriogenology 2017; 95:54-61. [PMID: 28460680 DOI: 10.1016/j.theriogenology.2017.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
The polypeptide N-acetylgalactosaminyltransferase-like protein 5 (GALNTL5), which belongs to the polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) gene family, is a newly identified gene that is specifically expressed in testis and involved in spermatogenesis. However, there is no data showing the existence of GALNTL5 in ram testis at various developmental stages and its influence on sperm motility. Therefore, the objectives of the present study were to evaluate the presence of GALNTL5 in the testis of 3-24 months (M) ram and to investigate the expression of GALNTL5 in spermatozoa with different motilities. We detected a 1602 bp cDNA fragment of GALNTL5 that included a 1326 bp coding sequence, encoding 441 amino acids and 90 and 185 bp of the 5' and 3' untranslated regions, respectively. The GALNTL5 amino acid sequence showed 51.87-83.48% identity with the sequences of proteins from other species. It was detected exclusively in the testis and the levels of both the mRNA and protein were progressively increased with age. Immunohistochemistry further revealed that GALNTL5 specifically localized in the elongating spermatids and spermatozoa, and it was demonstrated to be strongly concentrated in the head, neck, and mid-piece region of spermatozoa by immunocytochemistry. The sperm density and the percentage of live sperm in the high motility group (≥80%) were significantly higher than in the low motility group (≤50%), and the reverse trend was observed with the abnormal sperm. Western blot analysis showed that the protein expression of PGK2, ALDOA, and GALNTL5 were significantly higher in the high motility group than in the low motility group. Overall, the data suggest that GALNTL5 is an important functional molecule during spermatogenesis. Moreover, it is the first to suggest that the expression level of GALNTL5 is positively correlated with the sperm motility.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hua Yang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanli Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caifang Ren
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haitao Nie
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yixuan Fan
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjun Zhou
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuting Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xu Feng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|