1
|
Szodorai R, Banias L, Kovalszky I, Dezső K, Kovács Z, Gurzu S. Gastric-Type Expression Signature in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:6588. [PMID: 38928294 PMCID: PMC11203738 DOI: 10.3390/ijms25126588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
It is known that V-set and immunoglobulin domain containing 1 (VSIG1) is a cell-cell adhesion molecule that can serve as an indicator of better survival in patients with gastric cancer. Its interaction with cytoplasmic thyroid transcription factor 1 (TTF-1) has been hypothesized to characterize gastric-type HCC, but its clinical importance is far from understood. As VSIG1 has also been supposed to be involved in the epithelial-mesenchymal transition (EMT) phenomenon, we checked for the first time in the literature the supposed interaction between VSIG1, TTF-1, and Vimentin (VIM) in HCCs. Immunohistochemical (IHC) stains were performed on 217 paraffin-embedded tissue samples that included tumor cells and normal hepatocytes, which served as positive internal controls. VSIG1 positivity was seen in 113 cases (52.07%). In 71 out of 217 HCCs (32.71%), simultaneous positivity for VSIG1 and TTF-1 was seen, being more specific for G1/G2 carcinomas with a trabecular architecture and a longer OS (p = 0.004). A negative association with VIM was revealed (p < 0.0001). Scirrhous-type HCC proved negative for all three examined markers. The present paper validates the hypothesis of the existence of a gastric-type HCC, which shows a glandular-like architecture and is characterized by double positivity for VSIG1 and TTF-1, vimentin negativity, and a significant OS.
Collapse
Affiliation(s)
- Rita Szodorai
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania; (R.S.); (L.B.)
- Department of Pathology, Clinical County Emergency Hospital Targu Mures, 540140 Targu Mures, Romania;
| | - Laura Banias
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania; (R.S.); (L.B.)
- Department of Pathology, Clinical County Emergency Hospital Targu Mures, 540140 Targu Mures, Romania;
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (K.D.)
| | - Katalin Dezső
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (K.D.)
| | - Zsolt Kovács
- Department of Pathology, Clinical County Emergency Hospital Targu Mures, 540140 Targu Mures, Romania;
- Research Center of Oncopathology and Translational Research (CCOMT), 540139 Targu Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania; (R.S.); (L.B.)
- Department of Pathology, Clinical County Emergency Hospital Targu Mures, 540140 Targu Mures, Romania;
- Research Center of Oncopathology and Translational Research (CCOMT), 540139 Targu Mures, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
| |
Collapse
|
2
|
Woźniak P, Kleczka A, Jasik K, Kabała-Dzik A, Dzik R, Stojko J. The Effect of Natural Substances Contained in Bee Products on Prostate Cancer in In Vitro Studies. Molecules 2023; 28:5719. [PMID: 37570691 PMCID: PMC10420981 DOI: 10.3390/molecules28155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer is a common cancer in men in older age groups. The WHO forecasts an increase in the incidence of prostate cancer in the coming years. Patients may not respond to treatment, and may not tolerate the side effects of chemotherapy. Compounds of natural origin have long been used in the prevention and treatment of cancer. Flavonoids obtained from natural products, e.g., propolis, are compounds with proven antibacterial and antiviral efficacy which modulate the immune response and may be useful as adjuvants in chemotherapy. The main aim of the present study was to evaluate the cytotoxic and pro-apoptotic properties of selected flavonoids on prostate cancer cells of the LNCaP line. The compounds used in this study were CAPE, curcumin (CUR), and quercetin (QUE). Mitochondrial and lysosome metabolism was assessed by the XTT-NR-SRB triple assay as well as by the fluorescent staining techniques. Staining for reactive oxygen species was performed as well. The experiment showed that each of the tested compounds has a cytotoxic effect on the LNCaP cell line. Different types of cell death were induced by the tested compounds. Apoptosis was induced by quercetin, while autophagy-specific changes were observed after using CAPE. Compounds obtained from other bee products have antiproliferative and cytotoxic activity against LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Przemysław Woźniak
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (P.W.); (J.S.)
| | - Anna Kleczka
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Krzysztof Jasik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Radosław Dzik
- Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland;
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (P.W.); (J.S.)
| |
Collapse
|
3
|
Nazam N, Jabir NR, Ahmad I, Alharthy SA, Khan MS, Ayub R, Tabrez S. Phenolic Acids-Mediated Regulation of Molecular Targets in Ovarian Cancer: Current Understanding and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:274. [PMID: 37259418 PMCID: PMC9962268 DOI: 10.3390/ph16020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a global health concern with a dynamic rise in occurrence and one of the leading causes of mortality worldwide. Among different types of cancer, ovarian cancer (OC) is the seventh most diagnosed malignant tumor, while among the gynecological malignancies, it ranks third after cervical and uterine cancer and sadly bears the highest mortality and worst prognosis. First-line treatments have included a variety of cytotoxic and synthetic chemotherapeutic medicines, but they have not been particularly effective in extending OC patients' lives and are associated with side effects, recurrence risk, and drug resistance. Hence, a shift from synthetic to phytochemical-based agents is gaining popularity, and researchers are looking into alternative, cost-effective, and safer chemotherapeutic strategies. Lately, studies on the effectiveness of phenolic acids in ovarian cancer have sparked the scientific community's interest because of their high bioavailability, safety profile, lesser side effects, and cost-effectiveness. Yet this is a road less explored and critically analyzed and lacks the credibility of the novel findings. Phenolic acids are a significant class of phytochemicals usually considered in the nonflavonoid category. The current review focused on the anticancer potential of phenolic acids with a special emphasis on chemoprevention and treatment of OC. We tried to summarize results from experimental, epidemiological, and clinical studies unraveling the benefits of various phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid) in chemoprevention and as anticancer agents of clinical significance.
Collapse
Affiliation(s)
- Nazia Nazam
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Nasimudeen R. Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur 613403, Tamil Nadu, India
| | - Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Saif A. Alharthy
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashid Ayub
- Technology and Innovation Unit, Department of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Ali ES, Akter S, Ramproshad S, Mondal B, Riaz TA, Islam MT, Khan IN, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Targeting Ras-ERK cascade by bioactive natural products for potential treatment of cancer: an updated overview. Cancer Cell Int 2022; 22:246. [PMID: 35941592 PMCID: PMC9358858 DOI: 10.1186/s12935-022-02666-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022] Open
Abstract
MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) pathway is an important link in the transition from extracellular signals to intracellular responses. Because of genetic and epigenetic changes, signaling cascades are altered in a variety of diseases, including cancer. Extant studies on the homeostatic and pathologic behavior of MAPK signaling have been conducted; however, much remains to be explored in preclinical and clinical research in terms of regulation and action models. MAPK has implications for cancer therapy response, more specifically in response to experimental MAPK suppression, compensatory mechanisms are activated. The current study investigates MAPK as a very complex cell signaling pathway that plays roles in cancer treatment response, cellular normal conduit maintenance, and compensatory pathway activation. Most MAPK inhibitors, unfortunately, cause resistance by activating compensatory feedback loops in tumor cells and tumor microenvironment components. As a result, innovative combinatorial treatments for cancer management must be applied to limit the likelihood of alternate pathway initiation as a possibility for generating novel therapeutics based on incorporation in translational research. We summarize current knowledge about the implications of ERK (MAPK) in cancer, as well as bioactive products from plants, microbial organisms or marine organisms, as well as the correlation with their chemical structures, which modulate this pathway for the treatment of different types of cancer.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Thoufiqul Alam Riaz
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Parafiniuk K, Skiba W, Pawłowska A, Suszczyk D, Maciejczyk A, Wertel I. The Role of the Adipokine Resistin in the Pathogenesis and Progression of Epithelial Ovarian Cancer. Biomedicines 2022; 10:920. [PMID: 35453670 PMCID: PMC9028191 DOI: 10.3390/biomedicines10040920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity is a civilization disease associated with an increased risk of developing cardiovascular diseases, diabetes, and some malignancies. The results concerning the relationship between obesity and epithelial ovarian cancer (EOC) are inconclusive. The higher incidence of neoplasms in obese subjects has led to the development of the adipokine hypothesis. Omental adipocyte cells interact with cancer cells, promoting their migration and metastasis via the secretion of adipokines, growth factors, and hormones. One of the adipokines is resistin. It was shown in vitro that resistin stimulates the growth and differentiation of ovarian cancer cells. Moreover, it increases the level of angiogenesis factors, e.g., matrix metalloproteinase 2 (MMP-2) and vascular epithelial growth factor (VEGF). Additionally, resistin induces epithelial-mesenchymal transition (EMT) and stemness in EOC cell lines. A positive correlation has been shown between a higher level of resistin expression and the stage of histological differentiation of EOC or the occurrence of lymph node metastases. In addition, the overexpression of resistin has been found to act as an independent factor determining disease-free survival as well as overall survival in EOC patients. Growing evidence supports the finding that resistin plays an important role in some mechanisms leading to the progression of EOC, though this issue still requires further research.
Collapse
Affiliation(s)
- Klaudia Parafiniuk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Anna Pawłowska
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| | - Aleksandra Maciejczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Faculty of Medicine, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.P.); (A.P.); (D.S.); (A.M.); (I.W.)
| |
Collapse
|
6
|
Caffeic acid phenethyl ester targets ubiquitin-specific protease 8 and synergizes with cisplatin in endometrioid ovarian carcinoma cells. Biochem Pharmacol 2022; 197:114900. [PMID: 34995485 DOI: 10.1016/j.bcp.2021.114900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023]
Abstract
Deubiquitinases (DUBs) mediate the removal of ubiquitin from diverse proteins that participate in the regulation of cell survival, DNA damage repair, apoptosis and drug resistance. Previous studies have shown an association between activation of cell survival pathways and platinum-drug resistance in ovarian carcinoma cell lines. Among the strategies available to inhibit DUBs, curcumin derivatives appear promising, thus we hypothesized their use to enhance the efficacy of cisplatin in ovarian carcinoma preclinical models. The caffeic acid phenethyl ester (CAPE), inhibited ubiquitin-specific protease 8 (USP8), but not proteasomal DUBs in cell-free assays. When CAPE was combined with cisplatin in nine cell lines representative of various histotypes a synergistic effect was observed in TOV112D cells and in the cisplatin-resistant IGROV-1/Pt1 variant, both of endometrioid type and carrying mutant TP53. In the latter cells, persistent G1 accumulation upon combined treatment associated with p27kip1 protein levels was observed. The synergy was not dependent on apoptosis induction, and appeared to occur in cells with higher USP8 levels. In vivo antitumor activity studies supported the advantage of the combination of CAPE and cisplatin in the subcutaneous model of cisplatin-resistant IGROV-1/Pt1 ovarian carcinoma as well as CAPE activity on intraperitoneal disease. This study reveals the therapeutic potential of CAPE in cisplatin-resistant ovarian tumors as well as in tumors expressing USP8.
Collapse
|
7
|
Gurzu S, Sugimura H, Szederjesi J, Szodorai R, Braicu C, Kobori L, Fodor D, Jung I. Interaction between cadherins, vimentin, and V-set and immunoglobulin domain containing 1 in gastric-type hepatocellular carcinoma. Histochem Cell Biol 2021; 156:377-390. [PMID: 34170400 DOI: 10.1007/s00418-021-02006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
In hepatocellular carcinomas (HCCs), the role of the cell surface protein V-set and immunoglobulin domain containing 1 (VSIG1), which is known as a specific marker of the gastric mucosa and testis, has not yet been determined. We examined VSIG1 immunohistochemical (IHC) expression in 105 consecutive samples provided by HCC patients, along with the IHC expression of three of the biomarkers known to be involved in the epithelial-mesenchymal transition (EMT): vimentin (VIM), and E- and N-cadherin (encoded by CDH1 and CDH2 genes). IHC subcellular localization of thyroid transcription factor 1 (TTF1), in which nuclear-to-cytoplasmic translocation is known to cause a lineage shift from lung to gastric-type adenocarcinoma, was also checked. The obtained data were validated using the miRNET program. In the examined HCC samples, VSIG1 expression was observed in the cytoplasm of normal hepatocytes and downregulated in 47 of the 105 HCCs (44.76%). In 29 cases (27.62%), VSIG1 was co-expressed with cytoplasmic TTF1. VSIG1 expression was positively correlated with both E-cadherin and N-cadherin and negatively correlated with VIM (p < 0.0001). The VSIG1+/E-cadherin+/N-cadherin-/VIM phenotype was seen in 13 cases (12.4%) and was characteristic of well-differentiated (G1/2) carcinomas diagnosed in pT1/2 stages. Like pulmonary carcinomas, simultaneous cytoplasmic positivity of HCC cells for VSIG1 and TTF1 may be a potential indicator of a lineage shift from conventional to gastric-type HCC. The E-cadherin/VSIG1 complex can help suppress tumor growth by limiting HCC dedifferentiation. The miRNET-based interaction between VSIG1/VIM/CDH1/CDH2 genes might be interconnected by miR-200b-3p, a central regulator of EMT which also targets VIM and VSIG1.
Collapse
Affiliation(s)
- Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania.
- Research Center for Oncopathology and Translational Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu-Mures, Romania.
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Janos Szederjesi
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu-Mures, Romania
| | - Rita Szodorai
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laszlo Kobori
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Decebal Fodor
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania
- Department of Anatomy and Embryology, Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Romania
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 530149, Targu-Mures, Romania
| |
Collapse
|
8
|
Lv L, Cui H, Ma Z, Liu X, Yang L. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1327-1339. [PMID: 33492405 DOI: 10.1007/s00210-021-02054-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The past decades have seen a growing interest in natural products. Caffeic acid phenethyl ester (CAPE), a flavonoid isolated from honeybee propolis, has shown multiple pharmacological potentials, including anti-cancer, anti-inflammatory, antioxidant, antibacterial, antifungal, and protective effects on nervous systems and multiple organs, since it was found as a potent nuclear factor κB (NF-κB) inhibitor. This review summarizes the advances in these beneficial effects of CAPE, as well as the underlying mechanisms, and proposes that CAPE offers an opportunity for developing therapeutics in multiple diseases. However, clinical trials on CAPE are necessary and encouraged to obtain certain clinically relevant conclusions.
Collapse
Affiliation(s)
- Lili Lv
- Jilin University, Changchun, 130021, China
| | | | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
9
|
Olgierd B, Kamila Ż, Anna B, Emilia M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021; 26:molecules26051335. [PMID: 33801469 PMCID: PMC7958844 DOI: 10.3390/molecules26051335] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honey bee-hive propolis. The mentioned compound, a well-known NF-κB inhibitor, has been used in traditional medicine as a potent anti-inflammatory agent. CAPE has a broad spectrum of biological properties including anti-viral, anti-bacterial, anti-cancer, immunomodulatory, and wound-healing activities. This review characterizes published data about CAPE biological properties and potential therapeutic applications, that can be used in various diseases.
Collapse
Affiliation(s)
- Batoryna Olgierd
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
- Correspondence: or ; Tel.: +48-602-689-347
| | - Żyła Kamila
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Banyś Anna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Morawiec Emilia
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland;
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
- Department of Histology, Cytophysiology and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland
| |
Collapse
|
10
|
Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci 2021; 22:1219. [PMID: 33530651 PMCID: PMC7865323 DOI: 10.3390/ijms22031219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gynecological cancer confers an enormous burden among women worldwide. Accumulating evidence points to the role of phytochemicals in preventing cervical, endometrial, and ovarian cancer. Experimental studies emphasize the chemopreventive and therapeutic potential of plant-derived substances by inhibiting the early stages of carcinogenesis or improving the efficacy of traditional chemotherapeutic agents. Moreover, a number of epidemiological studies have investigated associations between a plant-based diet and cancer risk. This literature review summarizes the current knowledge on the phytochemicals with proven antitumor activity, emphasizing their effectiveness and mechanism of action in gynecological cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Rafał Krajewski
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
Evaluation of the In Vitro Cytotoxic Activity of Caffeic Acid Derivatives and Liposomal Formulation against Pancreatic Cancer Cell Lines. MATERIALS 2020; 13:ma13245813. [PMID: 33352809 PMCID: PMC7766656 DOI: 10.3390/ma13245813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer belongs to the most aggressive group of cancers, with very poor prognosis. Therefore, there is an important need to find more potent drugs that could deliver an improved therapeutic approach. In the current study we searched for selective and effective caffeic acid derivatives. For this purpose, we analyzed twelve compounds and evaluated their in vitro cytotoxic activity against two human pancreatic cancer cell lines, along with a control, normal fibroblast cell line, by the classic MTT assay. Six out of twelve tested caffeic acid derivatives showed a desirable effect. To improve the therapeutic efficacy of such active compounds, we developed a formulation where caffeic acid derivative (7) was encapsulated into liposomes composed of soybean phosphatidylcholine and DSPE-PEG2000. Subsequently, we analyzed the properties of this formulation in terms of basic physical parameters (such as size, zeta potential, stability at 4 °C and morphology), hemolytic and cytotoxic activity and cellular uptake. Overall, the liposomal formulation was found to be stable, non-hemolytic and had activity against pancreatic cancer cells (IC50 19.44 µM and 24.3 µM, towards AsPC1 and BxPC3 cells, respectively) with less toxicity against normal fibroblasts. This could represent a promising alternative to currently available treatment options.
Collapse
|
12
|
Sari C, SÜmer C, Celep EyÜpoĞlu F. Caffeic acid phenethyl ester induces apoptosis in colorectal cancer cells via inhibition of survivin. ACTA ACUST UNITED AC 2020; 44:264-274. [PMID: 33110364 PMCID: PMC7585156 DOI: 10.3906/biy-2003-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Colorectal cancer is one of the most common types of cancer. Drug resistance and drug-induced damage of healthy tissues are major obstacles in cancer treatment. Therefore, to develop efficient anticancer therapy, it is necessary to find compounds that affect tumor cells, but do not exhibit toxicity to healthy cells. Caffeic acid phenethyl ester (CAPE) has been demonstrated to have anticancer properties in many types of cancer. In this study, the cytotoxic and apoptotic effects of CAPE on the RKO colorectal cancer cell line and CCD 841-CoN normal colorectal cell line was investigated. In addition, changes in the survivin expression were determined. According to the results, CAPE decreased cell viability in the RKO cell line in a dose-dependent manner. Likewise, CAPE induced apoptotic cell death in approximately 40% of the RKO cells. Furthermore, CAPE treatment increased the Serine 15 (Ser15) and Serine 46 (Ser46) phosphorylation of p53, while decreased the survivin expression. The results suggested that CAPE induced apoptosis by regulating p53 phosphorylation, leading to inhibition of the survivin expression. In accordance with the results, it is suggested that CAPE might be evaluated as an alternative drug in cancer therapy and further investigation is needed within this scope.
Collapse
Affiliation(s)
- Ceren Sari
- Department of Medical Biology, Institute of Health Sciences, Karadeniz Technical University, Trabzon Turkey
| | - Ceren SÜmer
- Department of Medical Biology, Institute of Health Sciences, Karadeniz Technical University, Trabzon Turkey
| | - Figen Celep EyÜpoĞlu
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon Turkey
| |
Collapse
|
13
|
Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anticancer Drugs 2020; 30:251-259. [PMID: 30489290 DOI: 10.1097/cad.0000000000000715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is a major propolis component that possesses a variety of pharmacological properties such as antioxidant and anticancer effects. Herein, we investigated the effectiveness of CAPE on cytotoxicity of clinically used anticancer drugs, doxorubicin (DXR) and cisplatin (CDDP), in parental and the drug-resistant cells of stomach (MKN45) and colon (LoVo) cancers. Concomitant treatment with CAPE potentiated apoptotic effects of DXR and CDDP against the parental cells. The treatment significantly reduced the production of reactive oxygen species elicited by DXR but did not affect the DXR-mediated accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation-derived aldehyde. Intriguingly, treatment of parental MKN45 cells with CAPE alone reduced 26S proteasome-based proteolytic activities, in which a chymotrypsin-like activity was most affected. This effect of CAPE was the most prominent among those of eight flavonoids and nine cinnamic acid derivatives and was also observed in parental LoVo cells. In the DXR-resistant or CDDP-resistant cells, the chymotrypsin-like activity was highly up-regulated and significantly decreased by CAPE treatment, which sensitized the resistant cells to DXR and CDDP. Reverse transcription-PCR analysis showed that CAPE treatment led to downregulation of five proteasome subunits (PSMB1-PSMB5) and three immunoproteasome subunits (PSMB8-PSMB10) in DXR-resistant MKN45 cells. The results suggest that CAPE enhances sensitivity of these cancer cells and their chemoresistant cells to DXR and CDDP, most notably through decreasing proteasome function. Thus, CAPE may be valuable as an adjuvant for DXR or CDDP chemotherapy in gastric cancer.
Collapse
|
14
|
Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes. Molecules 2020; 25:molecules25153514. [PMID: 32752091 PMCID: PMC7435968 DOI: 10.3390/molecules25153514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer has the worst prognosis among all gynecological cancers. Therefore, it seems reasonable to seek new drugs that may improve the effectiveness of treatment or mitigate the adverse effects of chemotherapy. Caffeic acid phenethyl ester (CAPE) has many beneficial biological properties. The aim of the study was to assess the anticancer properties of CAPE against serum ovarian carcinoma cells. The morphology of the cells was evaluated in H-E staining and in transmission electron microscopy. The cytotoxic and proapoptotic activity of CAPE was investigated by using the XTT-NR-SRB assay, qRT-PCR analysis of BAX/BCL2 expression, and by cytometric evaluation. CAPE causes constriction in OV7 cells, numerous granulomas were observed in the cytoplasm, the cell nuclei were pyknotic. Autophagosomal vacuoles could suggest the occurrence of aponecrosis. CAPE significantly decreased the lysosomal activity and the total synthesis of cellular proteins. CAPE exhibited, dose and time dependent, cytotoxic activity against OV7 serum ovarian cancer cells. In OV7 cells CAPE induced apoptosis via dysregulation of BAX/BCL2 balance, while activated proapoptotic BAX gene expression level was 10 times higher than BCL2.
Collapse
|
15
|
Vlaisavljević S, Jelača S, Zengin G, Mimica-Dukić N, Berežni S, Miljić M, Stevanović ZD. Alchemilla vulgaris agg. (Lady's mantle) from central Balkan: antioxidant, anticancer and enzyme inhibition properties. RSC Adv 2019; 9:37474-37483. [PMID: 35542286 PMCID: PMC9075513 DOI: 10.1039/c9ra08231j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/04/2019] [Indexed: 01/03/2023] Open
Abstract
The current study was designed to evaluate the phytochemical profile and biological properties (antioxidant, enzyme inhibitory and cytotoxic activity) of methanolic, ethanolic, ethyl-acetate and water extracts of Alchemilla vulgaris from Southeast Serbia (central Balkan) which was traditionally used to alleviate and treat many diseases. Bioactive compounds were characterized by LC-MS/MS technique and biological properties were evaluated using antioxidant, enzyme inhibitory and cytotoxic assays. Twenty-six phenolic compounds were quantified in methanolic, ethanolic, ethyl acetate and water extracts, whereas the highest yields were found in ethyl-acetate (EA) extract (gallic acid, caffeic acid, catchin, quercetin). This extract has also shown the greatest antioxidant, anticancer and inhibitory enzyme activities which were demonstrated for the first time in this study. The obtained results indicated that Alchemilla vulgaris from South Serbia possesses high potential for pharmaceutical applications.
Collapse
Affiliation(s)
- Sanja Vlaisavljević
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21454065 +381 214852770
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade Serbia
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University Konya Turkey
| | - Neda Mimica-Dukić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21454065 +381 214852770
| | - Sanja Berežni
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21454065 +381 214852770
| | - Milorad Miljić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad Trg Dositeja Obradovića 3 21000 Novi Sad Serbia +381 21454065 +381 214852770
| | | |
Collapse
|
16
|
Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2019; 11:cancers11101618. [PMID: 31652660 PMCID: PMC6827047 DOI: 10.3390/cancers11101618] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells and tumor microenvironment components. Therefore, novel combinatorial therapies have to be implemented for cancer management in order to restrict the possibility of alternative pathway activation, as a perspective for developing novel therapies based on integration in translational studies.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Mihail Buse
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Rares Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | | | - Alexandru Irimie
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 40015 Cluj-Napoca, Romania.
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 601 77 Brno, Czech Republic.
| | - Calin Ionescu
- th Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania.
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Liang Y, Feng G, Wu L, Zhong S, Gao X, Tong Y, Cui W, Qin Y, Xu W, Xiao X, Zhang Z, Huang G, Zhou X. Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1335-1345. [PMID: 31118570 PMCID: PMC6499142 DOI: 10.2147/dddt.s199182] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/23/2019] [Indexed: 12/12/2022]
Abstract
Purpose: Caffeic acid phenethyl ester (CAPE) is the main polyphenol extracted from honeybee propolis, which inhibits the growth of several kinds of tumor. This study aimed to assess the inhibitory effect of CAPE in nasopharyngeal carcinoma (NPC), evaluate the synergistic action of CAPE in radiotherapy sensitivity of NPC cell lines and further elucidate the possible molecular mechanism involved. Materials and methods: CCK-8 assay was used to analyze cell proliferation ability. Colony formation assay was used to evaluate the clonogenic ability and radio-sensitiveness of NPC cells by CAPE treatment. Wound-healing and transwell assay were used to assess the motility of cells. The expression of key molecules of the epithelial–mesenchymal transition (EMT) was determined by western blot analysis and changes in radiation sensitivity were measured by colony-formation assay. cDNA microarray analysis was used to determine differentially expressed genes with and without CAPE treatment, with Gene Ontology enrichment of gene function and KEGG pathways determined. Cell cycle and apoptosis were detected by flow cytometry and western blot analysis. Results: CAPE suppressed the viability of NPC cell lines time- and dose-dependently. It induced apoptosis in NPC cells along with decreased expression of Bcl-XL and increased cleavage of PARP and expression of Bax. G1 phase arrest was induced by CAPE with ower expression of CDK4, CDK6, Rb and p-Rb. The migratory and invasive ability of NPC cells was decreased by the EMT pathway. The irradiation sensitivity of NPC cells was enhanced with CAPE treatment. CAPE specifically inhibited nuclear factor κB (NF-κB) signaling pathway by suppressing p65 subunit translocation from cytoplasm to nucleus. CAPE treatment was synergistic with chemotherapy and radiotherapy. Conclusion: CAPE may inhibit the proliferation and metastasis of NPC cells but enhance radiosensitivity in NPC therapy by inhibiting the NF-κB pathway. CAPE could be a potential therapeutic compound for NPC therapy.
Collapse
Affiliation(s)
- Yushan Liang
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guofei Feng
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Suhua Zhong
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiaoyu Gao
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yan Tong
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Wanmeng Cui
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Yongying Qin
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - WenQing Xu
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China
| | - Xue Xiao
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhe Zhang
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guangwu Huang
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Xiaoying Zhou
- Key laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, People's Republic of China.,Life Science Institute, Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
18
|
Targeting ncRNAs by plant secondary metabolites: The ncRNAs game in the balance towards malignancy inhibition. Biotechnol Adv 2018; 36:1779-1799. [DOI: 10.1016/j.biotechadv.2017.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
|
19
|
Xia X, Wan R, Wang P, Huo W, Dong H, Du Q. Toxicity of imidazoles ionic liquid [C 16mim]Cl to Hela cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:408-414. [PMID: 30015186 DOI: 10.1016/j.ecoenv.2018.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/24/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Our study aimed to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) on the human cervical carcinoma (Hela) cells. We evaluated toxicity, cell viability, genotoxicity, oxidative stress, apoptosis, and apoptosis-related gene expression in Hela cells following exposure to [C16min]Cl. The results indicated that [C16min]Cl inhibited the growth of Hela cells, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, as well as increased the cellular malondialdehyde level of Hela cells. Moreover, [C16min]Cl induced changes in the transcription of p53, Bax and Bcl-2, suggesting that the p53 and Bcl-2 family might have been involved in the cytotoxicity and apoptosis induced by [C16min]Cl in Hela cells. Taken together, these results revealed that [C16min]Cl imparts oxidative stress, genotoxicity, and induces apoptosis in Hela cells; hence, it is not a green solvent.
Collapse
Affiliation(s)
- Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
20
|
Traila A, Dima D, Achimas-Cadariu P, Micu R. Fertility preservation in Hodgkin's lymphoma patients that undergo targeted molecular therapies: an important step forward from the chemotherapy era. Cancer Manag Res 2018; 10:1517-1526. [PMID: 29942153 PMCID: PMC6005299 DOI: 10.2147/cmar.s154819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In total, 80%-90% of Hodgkin's lymphoma (HL) patients are curable with combination chemoradiotherapy. Due to improvements in therapeutic strategies, 50% of all relapsed/refractory patients may undergo complete clinical responses and have long-term survival. Treatment options for HL are effective, but may have a negative impact on post-chemotherapy fertility. Thus, cryopreservation of semen prior to treatment is recommended for male patients. For female patients, assisted reproductive techniques (ART) consult and fertility preservation should be offered as a therapeutical option. In the last years, new targeted molecules have been available for HL treatment. These new drugs showed a high rate of overall responses in the setting of heavily pretreated patients, most of them in relapse after autologous stem cell transplantation, a group previously considered very poor risk. Up to 50% of patients have a complete response and an improved overall survival. Future studies will address the usefulness of novel molecules as a frontline therapy. Considering the high response and survival rates with monoclonal antibody-based therapeutics, fertility has become a concerning issue for long-term HL survivors. As progress has been made regarding ART, with the rigorous steps planned for HL patients, more survivors will become parents.
Collapse
Affiliation(s)
- Alexandra Traila
- School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Surgical Oncology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Patriciu Achimas-Cadariu
- School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Surgical Oncology, Ion Chiricuta Oncology Institute, Cluj Napoca, Romania
| | - Romeo Micu
- School of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Human Assisted Reproduction of 1st Gynecology Clinic, Cluj Napoca, Romania
| |
Collapse
|
21
|
Ovarian cancer cells cisplatin sensitization agents selected by mass cytometry target ABCC2 inhibition. Future Med Chem 2018; 10:1349-1360. [PMID: 29848100 DOI: 10.4155/fmc-2017-0308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Cisplatin resistance in ovarian cancer remains a complex problem as tumors frequently develop resistance against drugs, a mechanism sometimes mediated by ATP-Binding Cassette transporters. Our goal was to find compounds restricting their inhibition capacity to the cisplatin efflux mediated by ABCC2 pump, among previously identified inhibitors, derived from the 2- indolylmethylenebenzofuranones. Methodology & results: An original method setup allows direct quantitation of platinum by employing cyTOF mass cytometry. Among tested derivatives, some led to a full platinum accumulation and efficiently resensitized cisplatin-resistant A2780 cells to cisplatin while preserving most of the calcein efflux activity. CONCLUSION CyTOF is therefore a powerful and promising method to quantify cisplatin accumulation that may be used in the clinical setting to improve and personalize cancer treatment.
Collapse
|
22
|
Wan R, Xia X, Wang P, Huo W, Dong H, Chang Z. Toxicity of imidazoles ionic liquid [C 16mim]Cl to HepG2 cells. Toxicol In Vitro 2018; 52:1-7. [PMID: 29842889 DOI: 10.1016/j.tiv.2018.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023]
Abstract
Ionic liquids have garnered increasing attention due to their capacity for low vapor pressure, lack of flammability, designability, good stability, and as a asubstitute for conventional organic solvents. However, their toxicity to various organisms has caused growing concern in recent years. Our study aims to evaluate the toxicity of 1-hexadecyl-3-methylimidazolium chloride ([C16min]Cl) to human hepatocellular carcinoma (HepG2) cells, including cell viability, genotoxicity, oxidative stress, apoptosis, cell cycle, and apoptosis-related gene expression. Our results with HepG2 cells suggested that [C16min]Cl inhibited cellular growth, decreased cell viability, induced DNA damage and apoptosis, inhibited superoxide dismutase, decreased glutathione content, increased cellular malondialdehyde levels as well as altering the cell cycle. Moreover, the induction of [C16min]Cl altered the transcription of p53, Bax and Bcl-2, which are critical for controlling cell cycles progression and death, which suggests its involvement with cytotoxicity and apoptosis induced by [C16min]Cl in HepG2 cells. Taken together, these results revealed that [C16min]Cl exerted genotoxicity, oxidative stress and induced apoptosis in HepG2 cells; hence, it is not a healthy solvent.
Collapse
Affiliation(s)
- Ruyan Wan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Weiran Huo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Hui Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
23
|
Liu GL, Han NZ, Liu SS. Caffeic acid phenethyl ester inhibits the progression of ovarian cancer by regulating NF-κB signaling. Biomed Pharmacother 2018; 99:825-831. [DOI: 10.1016/j.biopha.2018.01.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 11/24/2022] Open
|
24
|
Yu G, Li N, Zhao Y, Wang W, Feng XL. Salidroside induces apoptosis in human ovarian cancer SKOV3 and A2780 cells through the p53 signaling pathway. Oncol Lett 2018; 15:6513-6518. [PMID: 29616120 DOI: 10.3892/ol.2018.8090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Salidroside is one of the most potent compounds extracted from the plant Rhodiola rosea, and its cardiovascular protective effects have been studied extensively. However, the role of salidroside in human ovarian carcinoma remains unknown. The aim of the current study was to investigate the effects of salidroside on the proliferation and apoptosis of SKOV3 and A2780 cells using MTT assay and acridine orange/ethidium bromide staining. Salidroside activated caspase-3 and upregulated the levels of apoptosis-inducing factor, Bcl-2-associated X and Bcl-2-associated death promoter (Bad) proteins. Furthermore, salidroside downregulated the levels of Bcl-2, p-Bad and X-linked inhibitor of apoptosis proteins. Salidroside activated the caspase-dependent pathway in SKOV3 and A2780 cells, upregulating p53, p21Cip1/Waf1 and p16INK4a. These results suggest that the p53/p21Cip1/Waf1/p16INK4a pathway may serve a key function in salidroside-mediated effects on SKOV3 and A2780 cells. The current findings indicate that salidroside may be a promising novel drug candidate for ovarian cancer therapy.
Collapse
Affiliation(s)
- Ge Yu
- Department of Gynecology of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Na Li
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Zhao
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Wang
- Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Ling Feng
- Department of Gynecology of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China.,Department of Gynecology of Traditional Chinese Medicine, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
25
|
Zhang SJ, Yao J, Shen BZ, Li GB, Kong SS, Bi DD, Pan SH, Cheng BL. Role of piwi-interacting RNA-651 in the carcinogenesis of non-small cell lung cancer. Oncol Lett 2017; 15:940-946. [PMID: 29399156 PMCID: PMC5772788 DOI: 10.3892/ol.2017.7406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/04/2017] [Indexed: 12/28/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs/piRs) are small non-coding RNAs that can serve important roles in genome stability by silencing transposable genetic elements. piR651, one of these novel piRNAs, regulates a number of biological functions, as well as carcinogenesis. Previous studies have reported that piR651 is overexpressed in human gastric cancer tissues and in several cancer cell lines, including non-small cell lung cancer (NSCLC) cell lines. However, the role of piRNAs in carcinogenesis has not been clearly defined. In the present study, a small interfering RNA inhibitor of piR651 was transfected into the NSCLC A549 and HCC827 cell lines to evaluate the effect of piR651 on cell growth. The association between piR651 expression and apoptosis was evaluated by flow cytometry and western blot analysis. Wound-healing and Transwell migration and invasion assays were used to determine the effect of piR651 on the migration and invasion of NSCLC cell lines. The results revealed that inhibition of piR651 inhibited cell proliferation and significantly increased the apoptotic rate compared with the negative control (NC), as well as altering the expression of apoptosis-associated proteins. There were fewer migrating and invading cells in the piR651-inhibited group than in the NC group in the Transwell assays. Furthermore, in the wound-healing assay, the wound remained wider in the piR651 inhibitor group, suggesting decreased cell migration compared with that in the NC group. The results of the present study demonstrate that piR651 potentially regulates NSCLC tumorigenic behavior by inhibiting cell proliferation, migration and invasion and by inducing apoptosis. Therefore, piR651 is a potential cancer diagnosis marker.
Collapse
Affiliation(s)
- Shu-Jun Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jie Yao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Bao-Zhong Shen
- Department of Medical Imaging, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Guang-Bo Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Shan-Shan Kong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Dan-Dan Bi
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Shang-Ha Pan
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Bing-Lin Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
26
|
Nordin A, Sainik NQAV, Zulfarina MS, Naina-Mohamed I, Saim A, Bt Hj Idrus R. Honey and epithelial to mesenchymal transition in wound healing: An evidence-based review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Braicu OL, Budisan L, Buiga R, Jurj A, Achimas-Cadariu P, Pop LA, Braicu C, Irimie A, Berindan-Neagoe I. miRNA expression profiling in formalin-fixed paraffin-embedded endometriosis and ovarian cancer samples. Onco Targets Ther 2017; 10:4225-4238. [PMID: 28894379 PMCID: PMC5584916 DOI: 10.2147/ott.s137107] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is an inflammatory pathology associated with a negative effect on life quality. Recently, this pathology was connected to ovarian cancer, in particular with endometrioid ovarian cancer. microRNAs (miRNAs) are a class of RNA transcripts ~19–22 nucleotides in length, the altered miRNA pattern being connected to pathological status. miRNAs are highly stable transcripts, and these can be assessed from formalin-fixed paraffin-embedded (FFPE) samples leading to the identification of miRNAs that could be developed as diagnostic and prognostic biomarkers, in particular those involved in malignant transformation. The aim of our study was to evaluate miRNA expression pattern in FFPE samples from endometriosis and ovarian cancer patients using PCR-array technology and also to compare the differential expression pattern in ovarian cancer versus endometriosis. For the PCR-array study, we have used nine macrodissected FFPE samples from endometriosis tissue, eight samples of ovarian cancers and five normal ovarian tissues. Quantitative real-time PCR (qRT-PCR) was used for data validation in a new patient cohort of 17 normal samples, 33 endometriosis samples and 28 ovarian cancer macrodissected FFPE samples. Considering 1.5-fold expression difference as a cut-off level and a P-value <0.05, we have identified four miRNAs being overexpressed in endometrial tissue, while in ovarian cancer 15 were differentially expressed (nine overexpressed and six downregulated). The expression level was confirmed by qRT-PCR for miR-93, miR-141, miR-155, miR-429, miR-200c, miR-205 and miR-492. Using the interpretative program Ingenuity Pathway Analysis revealed several deregulated pathways due to abnormal miRNA expression in endometriosis and ovarian cancer, which in turn is responsible for pathogenesis; this differential expression of miRNAs can be exploited as a therapeutic target. A higher number of altered miRNAs were detected in endometriosis versus ovarian cancer tissue, most of them being linked with epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Ovidiu-Leonard Braicu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy
| | - Rares Buiga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy.,Pathology Department, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy
| | - Patriciu Achimas-Cadariu
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca.,Department of Surgical Oncology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca
| | - Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy
| | - Alexandru Irimie
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca.,Department of Surgical Oncology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy.,MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca.,Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin Cancer Biol 2017; 46:84-106. [PMID: 28676460 DOI: 10.1016/j.semcancer.2017.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/04/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Nutrigenomics effects have an important role in the manipulation of dietary components for human benefit, particularly in cancer prevention or treatment. The impact of dietary components, including phytochemicals, is largely studied by nutrigenomics, looking at the gene expression and molecular mechanisms interacting with bioactive compounds and nutrients, based on new 'omics' technologies. The high number of preclinical studies proves the relevant role of nutrigenomics in cancer management. By deciphering the network of nutrient-gene connections associated with cancer, relevant data will be transposed as therapeutic interventions for this devastating pathology and for fulfilling the concept of personalized nutrition. All these are presented under the nutrigenomics canopy for a better comprehension of the relation between ingested phytochemicals and chemoprevention or chemotherapy. The profits from the nutrigenomics progress, with a particular focus on the coding and noncoding genes related to the exposure of natural compounds need to be validated. A precise attention receives the evaluation of the role of natural compounds in tandem with conventional therapy using genomic approaches, with emphasis on the capacity to inhibit drug resistance mechanisms. All these relevant nutrigenomics aspects are summarized in the present review paper. It is concluded that further nutrigenomics studies are required to improve our understanding related to the complex mechanisms of action of the natural compounds and for their appropriate application as gears in cancer therapy.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 139, Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 3 Hristo Botev Blvd., Plovdiv 4000, Bulgaria; Clinic of Maxillofacial Surgery, University Hospital St. George, 66 Peshtersko Shosse Blvd., Plovdiv 4002, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Sheikh Bahaei St., P.O. Box 19395, 5487 Tehran, Iran
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; MEDFUTURE -Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republici 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
29
|
Budisan L, Gulei D, Zanoaga OM, Irimie AI, Sergiu C, Braicu C, Gherman CD, Berindan-Neagoe I. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer. Int J Mol Sci 2017; 18:ijms18061178. [PMID: 28587155 PMCID: PMC5486001 DOI: 10.3390/ijms18061178] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.
Collapse
Affiliation(s)
- Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Oana Mihaela Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Alexandra Iulia Irimie
- Department of Prosthodontics and Dental Materials, Faculty of Dental Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", 23 Marinescu Street, 400012 Cluj-Napoca, Romania.
| | - Chira Sergiu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
| | - Claudia Diana Gherman
- Surgical Clinic II, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania.
- Department of Surgery, University of Medicine and Pharmacy "Iuliu Haţieganu", 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy "Iuliu-Hatieganu", 400012 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", 400015 Cluj-Napoca, Romania.
| |
Collapse
|
30
|
Gasch C, Ffrench B, O'Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer 2017; 16:43. [PMID: 28228161 PMCID: PMC5322629 DOI: 10.1186/s12943-017-0601-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.
Collapse
Affiliation(s)
- Claudia Gasch
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Brendan Ffrench
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Michael F Gallagher
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland. .,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland.
| |
Collapse
|