1
|
Marqués J, Ainzúa E, Orbe J, Martínez-Azcona M, Martínez-González J, Zalba G. NADPH Oxidase 5 (NOX5) Upregulates MMP-10 Production and Cell Migration in Human Endothelial Cells. Antioxidants (Basel) 2024; 13:1199. [PMID: 39456453 PMCID: PMC11504164 DOI: 10.3390/antiox13101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
NADPH oxidases (NOXs) have been described as critical players in vascular remodeling, a mechanism modulated by matrix metalloproteinases. In this study, we describe for the first time the upregulation of MMP-10 through the activation of NOX5 in endothelial cells. In a chronic NOX5 overexpression model in human endothelial cells, MMP-10 production was measured at different levels: extracellular secretion, gene expression (mRNA and protein levels), and promoter activity. Effects on cell migration were quantified using wound healing assays. NOX5 overexpression increased MMP-10 production, favoring cell migration. In fact, NOX5 and MMP-10 silencing prevented this promigratory effect. We showed that NOX5-mediated MMP-10 upregulation involves the redox-sensitive JNK/AP-1 signaling pathway. All these NOX5-dependent effects were enhanced by angiotensin II (Ang II). Interestingly, MMP-10 protein levels were found to be increased in the hearts of NOX5-expressing mice. In conclusion, we described that NOX5-generated ROS may modulate the MMP-10 expression in endothelial cells, which leads to endothelial cell migration and may play a key role in vascular remodeling.
Collapse
Affiliation(s)
- Javier Marqués
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| | - Elena Ainzúa
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| | - Josune Orbe
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, CIMA (University of Navarra), 31008 Pamplona, Spain
- RICORS-Ictus, Carlos III Health Institute, 28029 Madrid, Spain
| | - María Martínez-Azcona
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain;
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
| | - Guillermo Zalba
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.M.); (E.A.); (J.O.); (M.M.-A.)
- Department of Biochemistry and Genetics, University of Navarra, 31009 Pamplona, Spain
| |
Collapse
|
2
|
Chowdhury A, Sarkar J, Kanti Pramanik P, Chakraborti T, Chakraborti S. Role of PKCζ-NADPH oxidase signaling axis in PKCα-mediated Giα2 phosphorylation for inhibition of adenylate cyclase activity by angiotensin II in pulmonary artery smooth muscle cells. Cell Biol Int 2020; 44:1142-1155. [PMID: 31965656 DOI: 10.1002/cbin.11311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022]
Abstract
We sought to determine the mechanism by which angiotensin II (AngII) inhibits isoproterenol induced increase in adenylate cyclase (AC) activity and cyclic adenosine monophosphate (cAMP) production in bovine pulmonary artery smooth muscle cells (BPASMCs). Treatment with AngII stimulates protein kinase C-ζ (PKC-ζ), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and PKC-α activities, and also inhibits isoproterenol induced increase in AC activity and cAMP production in the cells. Pertussis toxin pretreatment eliminates AngII caused inhibition of isoproterenol induced increase in AC activity without a discernible change in PKC-ζ, NADPH oxidase, and PKC-α activities. Treatment of the cells with AngII increases α2 isoform of Gi (Giα2) phosphorylation; while pretreatment with chemical and genetic inhibitors of PKC-ζ and NADPH oxidase attenuate AngII induced increase in PKC-α activity and Giα2 phosphorylation, and also reverse AngII caused inhibition of isoproterenol induced increase in AC activity. Pretreatment of the cells with chemical and genetic inhibitors of PKC-α attenuate AngII induced increase in Giα2 phosphorylation and inhibits isoproterenol induced increase in AC activity without a discernible change in PKC-ζ and NADPH oxidase activities. Overall, PKCζ-NADPH oxidase-PKCα signaling axis plays a crucial role in Giα2 phosphorylation resulting in AngII-mediated inhibition of isoproterenol induced increase in AC activity in BPASMCs.
Collapse
Affiliation(s)
- Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| |
Collapse
|
3
|
Liu N, Guo XH, Liu JP, Cong YS. Role of telomerase in the tumour microenvironment. Clin Exp Pharmacol Physiol 2019; 47:357-364. [PMID: 31799699 DOI: 10.1111/1440-1681.13223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
Telomeres are specialized genomic structures that protect chromosomal ends to maintain genomic stability. Telomeric length is primarily regulated by the telomerase complex, essentially consisting of an RNA template (TERC), an enzymatic subunit (telomerase reverse transcriptase, TERT). In humans, telomerase activity is repressed during embryonic differentiation and is absent in most somatic cells. However, it is upregulated or reactivated in 80%-90% of the primary tumours in humans. The human TERT (hTERT) plays a pivotal role in cellular immortality and tumourigenesis. However, the molecular mechanisms of telomerase functioning in cancer have not been fully understood beyond the telomere maintenance. Several research groups, including ours, have demonstrated that hTERT possesses vital functions independent of its telomere maintenance, including angiogenesis, inflammation, cancer cell stemness, and epithelial-mesenchymal transformation (EMT). All these telomere-independent activities of hTERT may contribute to the regulation of the dynamics and homeostasis of the tumour microenvironment (TME), thereby promoting tumour growth and development. Cancer progression and metastasis largely depend upon the interactions between cancer cells and their microenvironment. In this review, the involvement of TERT in the tumour microenvironment and the underlying implications in cancer therapeutics have been summarized.
Collapse
Affiliation(s)
- Ning Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Xue-Hua Guo
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yu-Sheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Chakraborti S, Sarkar J, Chakraborti T. Role of PLD-PKCζ signaling axis in p47phox phosphorylation for activation of NADPH oxidase by angiotensin II in pulmonary artery smooth muscle cells. Cell Biol Int 2019; 43:678-694. [PMID: 30977575 DOI: 10.1002/cbin.11145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022]
Abstract
We sought to determine the mechanism by which angiotensin II (ANGII) stimulates NADPH oxidase-mediated superoxide (O2 .- ) production in bovine pulmonary artery smooth muscle cells (BPASMCs). ANGII-induced increase in phospholipase D (PLD) and NADPH oxidase activities were inhibited upon pretreatment of the cells with chemical and genetic inhibitors of PLD2, but not PLD1. Immunoblot study revealed that ANGII treatment of the cells markedly increases protein kinase C-α (PKC-α), -δ, -ε, and -ζ levels in the cell membrane. Pretreatment of the cells with chemical and genetic inhibitors of PKC-ζ, but not PKC-α, -δ, and -ε, attenuated ANGII-induced increase in NADPH oxidase activity without a discernible change in PLD activity. Transfection of the cells with p47phox small interfering RNA inhibited ANGII-induced increase in NADPH oxidase activity without a significant change in PLD activity. Pretreatment of the cells with the chemical and genetic inhibitors of PLD2 and PKC-ζ inhibited ANGII-induced p47phox phosphorylation and subsequently translocation from cytosol to the cell membrane, and also inhibited its association with p22phox (a component of membrane-associated NADPH oxidase). Overall, PLD-PKCζ-p47phox signaling axis plays a crucial role in ANGII-induced increase in NADPH oxidase-mediated O2 .- production in the cells.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| |
Collapse
|
5
|
Sarkar J, Chakraborti T, Chowdhury A, Bhuyan R, Chakraborti S. Protective role of epigallocatechin-3-gallate in NADPH oxidase-MMP2-Spm-Cer-S1P signalling axis mediated ET-1 induced pulmonary artery smooth muscle cell proliferation. J Cell Commun Signal 2019; 13:473-489. [PMID: 30661173 DOI: 10.1007/s12079-018-00501-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
The signalling pathway involving MMP-2 and sphingosine-1-phosphate (S1P) in endothelin-1 (ET-1) induced pulmonary artery smooth muscle cell (PASMC) proliferation is not clearly known. We, therefore, investigated the role of NADPH oxidase derived O2.--mediated modulation of MMP2-sphingomyeline-ceramide-S1P signalling axis in ET-1 induced increase in proliferation of PASMCs. Additionally, protective role of the tea cathechin, epigallocatechin-3-gallate (EGCG), if any, in this scenario has also been explored. ET-1 markedly increased NADPH oxidase and MMP-2 activities and proliferation of bovine pulmonary artery smooth muscle cells (BPASMCs). ET-1 also caused significant increase in sphingomyelinase (SMase) activity, ERK1/2 and sphingosine kinase (SPHK) phosphorylations, and S1P level in the cells. EGCG inhibited ET-1 induced increase in SMase activity, ERK1/2 and SPHK phosphorylations, S1P level and the SMC proliferation. EGCG also attenuated ET-1 induced activation of MMP-2 by inhibiting NADPH oxidase activity upon inhibiting the association of the NADPH oxidase components, p47phox and p67phox in the cell membrane. Molecular docking study revealed a marked binding affinity of p47phox with the galloyl group of EGCG. Overall, our study suggest that ET-1 induced proliferation of the PASMCs occurs via NADPH oxidase-MMP2- Spm- Cer-S1P signalling axis, and EGCG attenuates ET-1 induced increase in proliferation of the cells by inhibiting NADPH oxidase activity.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
6
|
Chakraborti S, Sarkar J, Bhuyan R, Chakraborti T. Role of catechins on ET-1-induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: determination of the probable mechanism by molecular docking studies. Biochem Cell Biol 2018; 96:417-432. [PMID: 29206487 DOI: 10.1139/bcb-2017-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The treatment of human pulmonary artery smooth muscle cells with ET-1 stimulates the activity of PLD and NADPH oxidase, but this stimulation is inhibited by pretreatment with bosentan (ET-1 receptor antagonist), FIPI (PLD inhibitor), apocynin (NADPH oxidase inhibitor), and EGCG and ECG (catechins having a galloyl group), but not EGC and EC (catechins devoid of a galloyl group). Herein, using molecular docking analyses based on our biochemical studies, we determined the probable mechanism by which the catechins containing a galloyl group inhibit the stimulation of PLD activity induced by ET-1. The ET-1-induced stimulation of PLD activity was inhibited by SecinH3 (inhibitor of cytohesin). Arf6 and cytohesin-1 are associated in the cell membrane, which is not inhibited by the catechins during ET-1 treatment of the cells. However, EGCG and ECG inhibited the binding of GTPγS with Arf6, even in the presence of cytohesin-1. The molecular docking analyses revealed that the catechins containing a galloyl group (EGCG and ECG) with cytohesin-1–Arf6GDP, but not the catechins without a galloyl group (EGC and EC), prevent GDP–GTP exchange in Arf6, which seems to be an important mechanism for inhibiting the activation of PLD induced by ET-1, and subsequently increases the activity of NADPH oxidase.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| |
Collapse
|
7
|
Deiana M, Calfapietra S, Incani A, Atzeri A, Rossin D, Loi R, Sottero B, Iaia N, Poli G, Biasi F. Derangement of intestinal epithelial cell monolayer by dietary cholesterol oxidation products. Free Radic Biol Med 2017; 113:539-550. [PMID: 29102636 DOI: 10.1016/j.freeradbiomed.2017.10.390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Abstract
The emerging role of the diet in the incidence of intestinal inflammatory diseases has stimulated research on the influence of eating habits with pro-inflammatory properties in inducing epithelial barrier disturbance. Cholesterol oxidation products, namely oxysterols, have been shown to promote and sustain oxidative/inflammatory reactions in human digestive tract. This work investigated in an in vitro model the potential ability of a combination of dietary oxysterols representative of a hyper-cholesterol diet to induce the loss of intestinal epithelial layer integrity. The components of the experimental mixture were the main oxysterols stemming from heat-induced cholesterol auto-oxidation, namely 7-ketocholesterol, 5α,6α-and 5β,6β-epoxycholesterol, 7α- and 7β-hydroxycholesterol. These compounds added to monolayers of differentiated CaCo-2 cells in combination or singularly, caused a time-dependent induction of matrix metalloproteinases (MMP)-2 and -9, also known as gelatinases. The hyperactivation of MMP-2 and -9 was found to be associated with decreased levels of the tight junctions zonula occludens-1 (ZO-1), occludin and Junction Adhesion Molecule-A (JAM-A). Together with such a protein loss, particularly evident for ZO-1, a net perturbation of spatial localization of the three tight junctions was observed. Cell monolayer pre-treatment with the selective inhibitor of MMPs ARP100 or polyphenol (-)-epicathechin, previously shown to inhibit NADPH oxidase in the same model system, demonstrated that the decrease of the three tight junction proteins was mainly a consequence of MMPs induction, which was in turn dependent on the pro-oxidant property of the oxysterols investigated. Although further investigation on oxysterols intestinal layer damage mechanism is to be carried on, the consequent - but incomplete - prevention of oxysterols-dependent TJs alteration due to MMPs inhibition, avoided the loss of scaffold protein ZO-1, with possible significant recovery of intestinal monolayer integrity.
Collapse
Affiliation(s)
- Monica Deiana
- Dept. of Biomedical Sciences, Pathology Section, University of Cagliari, 09124 Cagliari, Italy.
| | - Simone Calfapietra
- Dept. of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Alessandra Incani
- Dept. of Biomedical Sciences, Pathology Section, University of Cagliari, 09124 Cagliari, Italy.
| | - Angela Atzeri
- Dept. of Biomedical Sciences, Pathology Section, University of Cagliari, 09124 Cagliari, Italy.
| | - Daniela Rossin
- Dept. of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Roberto Loi
- Dept. of Biomedical Sciences, Pathology Section, University of Cagliari, 09124 Cagliari, Italy.
| | - Barbara Sottero
- Dept. of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Noemi Iaia
- Dept. of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Giuseppe Poli
- Dept. of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| | - Fiorella Biasi
- Dept. of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Turin, Italy.
| |
Collapse
|
8
|
Chakraborti S, Sarkar J, Chowdhury A, Chakraborti T. Role of ADP ribosylation factor6- Cytohesin1-PhospholipaseD signaling axis in U46619 induced activation of NADPH oxidase in pulmonary artery smooth muscle cell membrane. Arch Biochem Biophys 2017; 633:1-14. [PMID: 28822840 DOI: 10.1016/j.abb.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Treatment of human pulmonary artery smooth muscle cells (HPASMCs) with the thromboxane A2 receptor antagonist, SQ29548 inhibited U46619 stimulation of phospholipase D (PLD) and NADPH oxidase activities in the cell membrane. Pretreatment with apocynin inhibited U46619 induced increase in NADPH oxidase activity. The cell membrane contains predominantly PLD2 along with PLD1 isoforms of PLD. Pretreatment with pharmacological and genetic inhibitors of PLD2, but not PLD1, attenuated U46619 stimulation of NADPH oxidase activity. U46619 stimulation of PLD and NADPH oxidase activities were insensitive to BFA and Clostridium botulinum C3 toxin; however, pretreatment with secinH3 inhibited U46619 induced increase in PLD and NADPH oxidase activities suggesting a major role of cytohesin in U46619-induced increase in PLD and NADPH oxidase activities. Arf-1, Arf-6, cytohesin-1 and cytohesin-2 were observed in the cytosolic fraction, but only Arf-6 and cytohesin-1 were translocated to the cell membrane upon treatment with U46619. Coimmunoprecipitation study showed association of Arf-6 with cytohesin-1 in the cell membrane fraction. In vitro binding of GTPγS with Arf-6 required the presence of cytohesin-1 and that occurs in BFA insensitive manner. Overall, BFA insensitive Arf6-cytohesin1 signaling axis plays a pivotal role in U46619-mediated activation of PLD leading to stimulation of NADPH oxidase activity in HPASMCs.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
9
|
Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies. Mol Cell Biochem 2016; 427:111-122. [PMID: 28013477 DOI: 10.1007/s11010-016-2903-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/03/2016] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMPs) play a crucial role in developing different types of lung diseases, e.g., pulmonary arterial hypertension (PAH). Green tea polyphenolic catechins such as EGCG and ECG have been shown to ameliorate various types of diseases including PAH. Our present study revealed that among the four green tea catechins (EGCG, ECG, EC, and EGC), EGCG and ECG inhibit pro-/active MMP-2 activities in pulmonary artery smooth muscle cell (PASMC) culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-2 with the green tea catechins by computational methods. In silico analysis revealed a strong interaction of pro-/active MMP-2 with EGCG/ECG, and galloyl group has been observed to be responsible for this interaction. The in silico analysis corroborated our experimental observation that EGCG and ECG are active in preventing both the proMMP-2 and MMP-2 activities. Importantly, these two catechins appeared to be better inhibitors for proMMP-2 in comparison to MMP-2 as revealed by gelatin zymogram and also by molecular docking studies. In many type of cells, activation of proMMP-2 occurs via an increase in the level of MT1-MMP (MMP-14). We, therefore, determined the interactions of MT1-MMP with the green tea catechins by molecular docking analysis. The study revealed a strong interaction of MT1-MMP with EGCG/ECG, and galloyl group has been observed to be responsible for the interaction.
Collapse
|