1
|
Zheng L, Rajamanickam V, Wang M, Zhang H, Fang S, Linnebacher M, Abd El-Aty AM, Zhang X, Zhang Y, Wang J, Chen M, Zhao Z, Ji J. Fangchinoline inhibits metastasis and reduces inflammation-induced epithelial-mesenchymal transition by targeting the FOXM1-ADAM17 axis in hepatocellular carcinoma. Cell Signal 2024; 124:111467. [PMID: 39393566 DOI: 10.1016/j.cellsig.2024.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Efforts have been focused on developing new anti-HCC agents and understanding their pharmacology. However, few agents have been able to effectively combat tumor growth and invasiveness due to the rapid progression of HCC. In this study, we discovered that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid derived from Stephania tetrandra S. Moore, effectively inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells. FAN treatment also led to the suppression of IL6 and IL1β release, as well as the expression of inflammation-related proteins such as COX-2 and iNOS, and the activation of the NF-κB pathway, thereby reducing inflammation-related EMT. Additionally, FAN directly bound to forkhead box protein M1 (FOXM1), resulting in decreased levels of FOXM1 proteins and disruption of the FOXM1-ADAM17 axis. Our in vivo findings confirmed that FAN effectively hindered the growth and lung metastasis of HCCLM3-xenograft tumors. Importantly, the upregulation of FOXM1 in HCC tissue suggested that targeting FOXM1 inhibition with FAN or its inhibitors could be a promising therapeutic approach for HCC. Overall, this study elucidated the anti-tumor effects and potential pharmacological mechanisms of FAN, and proposed that targeting FOXM1 inhibition may be an effective therapeutic strategy for HCC with potential clinical applications.
Collapse
Affiliation(s)
- Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Vinothkumar Rajamanickam
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Mengyuan Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Huajun Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock 18059, Germany
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Xinbin Zhang
- Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yeyu Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianbo Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
2
|
Su J, Wang X, Li S, Wu X, Li M, Du F, Deng S, Shen J, Zhao Y, Xiao Z, Chen Y. Synthesis and antitumor evaluation of glycyrrhetinic acid-dithiocarbamate hybrids. Arch Pharm (Weinheim) 2024:e2400421. [PMID: 39526492 DOI: 10.1002/ardp.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Glycyrrhetinic acid (GA) is a naturally occurring triterpene compound. The aim of this study was to employ the pharmacophore hybrid strategy to merge GA with various dithiocarbamates and obtain novel compounds with better antitumor activities. We present a two-step synthetic protocol wherein the GA derivative underwent reaction with carbon disulfide and various secondary amines in a one-pot manner under mild conditions, facilitating the preparation of a series of structurally novel GA-dithiocarbamate derivatives. Bioassay screening revealed that the representative compound 3c demonstrated the capacity to reduce the mitochondrial membrane potential in Hep3B and Huh-7 cells, induce nuclear apoptosis, inhibit invasion and migration, and prompt both early and late apoptosis. Furthermore, our research findings indicated that this apoptotic phenomenon may be associated with the expression of Bcl-2, Bax, Bak, PARP, and cleaved-PARP proteins. Utilizing network pharmacology for predicting core targets and signaling pathways of compound 3c for hepatocellular carcinoma (HCC) treatment involved employing molecular docking models to demonstrate high affinity between compound and target protein. In conjunction with Western blot analysis, compound 3c may impact HCC through the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sha Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
3
|
Li WX, Lu YF, Wang F, Ai B, Jin SB, Li S, Xu GH, Jin CH. Application of 18β-glycyrrhetinic acid in the structural modification of natural products: a review. Mol Divers 2024:10.1007/s11030-024-10864-2. [PMID: 38683490 DOI: 10.1007/s11030-024-10864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
18β-Glycyrrhetinic acid (GA) is an oleane-type pentacyclic triterpene saponin obtained from glycyrrhizic acid by removing 2 glucuronic acid groups. GA and its analogues are active substances of glycyrrhiza aicd, with similar structure and important pharmacological effects such as anti-inflammatory, anti-diabetes, anti-tumor and anti-fibrosis. Although GA combined compounds are in the clinical trial stages, its application potential is severely restricted by its low bioavailability, water solubility and membrane permeability. In this article, synthetic methods and structure-activity relationships (SARs) of GA derivatives from 2018 to present are reviewed based on pharmacological activity. It is hoped that this review can provide reference for the future development of potential GA preclinical candidate compounds, and furnish ideas for the development of pentacyclic triterpenoid lead compounds.
Collapse
Affiliation(s)
- Wan-Xin Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ye-Fang Lu
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Fei Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Bing Ai
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Sheng-Bo Jin
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Siqi Li
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
4
|
Wang L, Wang X, Chen F, Song YQ, Nao SC, Chan DSH, Wong CY, Wang W, Leung CH. A glycyrrhetinic acid-iridium(III) conjugate as a theranostic NIR probe for hepatocellular carcinoma with mitochondrial-targeting ability. Eur J Med Chem 2024; 264:115995. [PMID: 38043488 DOI: 10.1016/j.ejmech.2023.115995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to global mortality rates, but current treatment options have limitations. Advanced theranostics are needed to effectively integrate diagnosis and therapeutic of HCC. Glycyrrhetinic acid (GA) has abundant binding sites with glycyrrhetinic acid receptors (GA-Rs) on the surface of HCC cells and has also been reported to possess ligands with mitochondrial-targeting capability but with limited efficacy. Herein, we report a near-infrared (NIR) luminescent theranostic complex 1 through conjugating an iridium(III) complex to GA, which exhibits the desired photophysical properties and promotes mitochondrial-targeting capability. Complex 1 was selectively taken up by HepG2 liver cancer cells and was imaged within mitochondria with NIR emission. Complex 1 targeted mitochondria and opened mitochondrial permeability transition pores (MPTPs), resulting in ROS accumulation, mitochondrial damage, disruption of Bax/Bcl-2 equilibrium, and tumor cell apoptosis, resulting in significantly improved anticancer activity compared to GA. This work offers a methodology for developing multifunctional theranostic probes with amplified specificity and efficacy.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China.
| |
Collapse
|
5
|
Zou L, Li Q, Hou Y, Chen M, Xu X, Wu H, Sun Z, Ma G. Self-assembled glycyrrhetinic acid derivatives for functional applications: a review. Food Funct 2022; 13:12487-12509. [PMID: 36413139 DOI: 10.1039/d2fo02472a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycyrrhetinic acid (GA), a famous natural product, has been attracting more attention recently because of its remarkable biological activity, natural sweetness, and good biocompatibility. In the past few years, a considerable amount of literature has grown up around the theme of GA-based chemical modification to broaden its functional applications. Promising structures including gels, micelles, nanoparticles, liposomes, and so forth have been constantly reported. On the one hand, the assembly mechanisms of various materials based on GA derivatives have been elucidated via modern analytical techniques. On the other hand, their potential application prospects in edible additives, intelligent drug delivery, and other fields have been investigated fully due to availability, biocompatibility, and controllable degradability. Inspired by these findings, a systematic summary and classification of the materials formed by GA derivatives seems necessary and meaningful. This review sums up the new functional applications of GA derivatives for the first time and provides better prospects for their application and development.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Ni Q, Gao Y, Yang X, Zhang Q, Guo B, Han J, Chen S. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front Pharmacol 2022; 13:1001018. [PMID: 36313350 PMCID: PMC9606671 DOI: 10.3389/fphar.2022.1001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18β-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affifiliated to Shandong First Medical University, Jinan, Shandong, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxuan Gao
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuzhen Yang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, Guangdong, China
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| | - Shaoru Chen
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| |
Collapse
|
7
|
Caglayan C, Kandemir FM, Ayna A, Gür C, Küçükler S, Darendelioğlu E. Neuroprotective effects of 18β-glycyrrhetinic acid against bisphenol A-induced neurotoxicity in rats: involvement of neuronal apoptosis, endoplasmic reticulum stress and JAK1/STAT1 signaling pathway. Metab Brain Dis 2022; 37:1931-1940. [PMID: 35699857 DOI: 10.1007/s11011-022-01027-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
The exposure to bisphenol A (BPA) is inevitable owing to its common use in the production of polycarbonate plastics. Studies to reduce side effects are gaining importance since BPA causes severe toxicities in important tissues such as testes, lungs, brain, liver and kidney. The current study was planned to study ameliorative effect of 18β-glycyrrhetinic acid (18β-GA) on BPA induced neurotoxicity. Fourty Wistar albino rats were divided into five equal groups as follows: I-Control group, II-18β-GA group (100 mg/kg), III- BPA group (250 mg/kg), IV-250 mg/kg BPA + 50 mg/kg 18β-GA group, V-250 mg/kg BPA + 100 mg/kg 18β-GA group. BPA intoxication was associated with increased MDA level while reduced GSH concentration, activities of glutathione peroxidase, superoxide dismutase, and catalase. BPA supplementation caused apoptosis in the brain by up-regulating caspase-3 and Bax levels and down-regulating Bcl-2. BPA also caused endoplasmic reticulum (ER) stress by increasing mRNA transcript levels of PERK, IRE1, ATF-6 and GRP78. Additionally, it was observed that BPA administration activated JAK1/STAT1 signaling pathway and levels of TNF-α, NF-κB, p38 MAPK and JNK in the brain. However, co-treatment with 18β-GA at a dose of 50 and 100 mg/kg considerably ameliorated oxidative stress, inflammation, apoptosis, ER stress and JAK1/STAT1 signaling pathway in brain tissue. Overall, the data of this study indicate that brain damage associated with BPA toxicity could be ameliorated by 18β-GA administration.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Science and Literature, University Bingol, 12000, Bingol, Turkey
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, University Bingol, 12000, Bingol, Turkey
| |
Collapse
|
8
|
Liu Y, Sheng R, Fan J, Guo R. A Mini-Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini Rev Med Chem 2022; 22:2024-2066. [PMID: 35081889 DOI: 10.2174/1389557522666220126093033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Pentacyclic triterpenoids, consisting of six isoprene units, are a kind of natural active substance. At present, numerous pentacyclic triterpene have been observed and classified into four subgroups of oleanane, ursane, lupane, and xylene on the basis of the carbon skeleton. Among them, oleanane is the most popular due to its rich backbone and diverse bioactivities. 18β-Glycyrrhetinic acid (GA), an oleanane-type pentacyclic triterpene isolated from licorice roots, possesses diverse bioactivities including antitumor, anti-inflammatory, antiviral, antimicrobial, enzyme inhibitor, hepatoprotective and so on. It has received more attention in medicinal chemistry due to the advantages of easy-to-access and rich bioactivity. Thus, numerous novel lead compounds were synthesized using GA as a scaffold. Herein, we summarize the structure-activity relationship and synthetic methodologies of GA derivatives from 2010 to 2020 as well as the most active GA derivatives. Finally, we anticipate that this review can benefit future research on structural modifications of GA to enhance bioactivity and provide an example for developing pentacyclic triterpene-based novel drugs.
Collapse
Affiliation(s)
- Yuebin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
9
|
Sohaib M, Al-Barakah FN, Migdadi HM, Husain FM. Comparative study among Avicennia marina, Phragmites australis, and Moringa oleifera based ethanolic-extracts for their antimicrobial, antioxidant, and cytotoxic activities. Saudi J Biol Sci 2022; 29:111-122. [PMID: 36105270 PMCID: PMC9465519 DOI: 10.1016/j.sjbs.2021.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance and other emerging health risk problems related to the side effects of synthetic drugs are the major factors that result in the research regarding natural products. Fruits, leaves, seeds, and oils-based phyto-constituents are the most important source of pharmaceutical products. Plant extract chemistry depends largely on species, plant components, solvent utilized, and extraction technique. This study was aimed to compare the ethanolic extracts of a mangrove plant, i.e., Avicennia marina (1E: Lower half of A. marina‘s pneumatophores, 2E: A. marina‘s leaves, 3E: Upper half of A. marina‘s pneumatophores, and 4E: A. marina‘s shoots), with non-mangrove plants, i.e., Phragmites australis (5E: P. australis‘s shoot), and Moringa oleifera (6E: M. oleifera‘s leaves) for their antimicrobial activities, total phenolic contents, antioxidant activity, and cytotoxicity potential. The antimicrobial activity assays were performed on gram-positive bacteria (i.e., Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (i.e., Escherichia coli, and Pseudomonas aeruginosa), and fungi (i.e., Aspergillus niger, Candida albicans, and Rhizopus spp.). We estimated antioxidant activity by TAC, DPPH, and FRAP assays, and the cytotoxicity was evaluated by MTT assay. The results of antimicrobial activities revealed that B. subtilis was the most sensitive to the tested plant extracts compared to S. aureus, while it only showed sensitivity to 6E and Imipenem. 5E and 6E showed statistically similar results against P. aeruginosa as compared to Ceftazidime. E. coli was the most resistant bacteria against tested plant extracts. Among the tested plant extracts, maximum inhibition activity was observed by 6E against A. niger (22 ± 0.57 mm), which was statistically similar to the response of 6E against C. albicans and 3E against Rhizopus spp. 2E did not show any activity against tested fungi. We found that 6E (208.54 ± 1.92 mg g−1) contains maximum phenolic contents followed by 1E (159.42 ± 3.22 mg g−1), 5E (131.08 ± 3.10 mg g−1), 4E (i.e., 72.41 ± 2.96 mg g−1), 3E (67.41 ± 1.68 mg g−1), and 2E (48.72 ± 1.71 mg g−1). The results depict a significant positive correlation between the phenolic contents and the antioxidant activities. As a result, phenolic content may be a natural antioxidant source.
Collapse
Affiliation(s)
- Muhammad Sohaib
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Fahad N.I. Al-Barakah
- Soil Science Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Corresponding authors.
| | - Hussein M. Migdadi
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- National Agricultural Research Center, Baqa 19381, Jordan
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Tang M, Yang M, He K, Li R, Chen X, Wang Y, Zhang X, Qiu T. Glycyrrhetinic acid remodels the tumor microenvironment and synergizes with doxorubicin for breast cancer treatment in a murine model. NANOTECHNOLOGY 2021; 32:185702. [PMID: 33503591 DOI: 10.1088/1361-6528/abe076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We aimed to combine glycyrrhetinic acid with doxorubicin to prepare, characterize and evaluate a drug delivery nano-system with REDOX sensitivity for the treatment of breast cancer. M-DOX-GA NPs prepared by nano sedimentation were spherical, with a particle size of 181 nm. And the maximum encapsulation efficiency and drug loading in M-DOX-GA NPs were 89.28% and 18.22%, respectively. Cytotoxicity and cellular uptake experiments of nanoparticles to KC cells, Cal-27 cells and 4T1 cells were studied by the CCK-8 method. The result indicated that M-DOX-GA NPs could accurately release the drug into the tumor cells, thus achieving the targeted release of the drug. Comparing the survival rate of the above three cells, it was found that M-DOX-GA NPs had a good tumor selectivity and had a more significant therapeutic effect on breast cancer. A 4T1-bearing mouse model was established, and the tumor inhibition rate was 77.37% after injection of nanoparticle solution for 14 d. Normal tissue H&E stained sections and TUNEL assay were verified M-DOX-GA NPs have excellent tumor suppressive effect, and can efficiently reduce the toxic side effects on normal organisms, and effectively avoided 4T1 cells metastasis. Immunofluorescence detection and Western-blot analysis figured a decline in both CUGBP1 and α-SMA, which verifying the TME remodeling induced by glycyrrhetinic acid. Collectively, the combination of doxorubicin and glycyrrhetinic acid is an effective and safe strategy for remodeling fibrotic TME by improving the therapeutic outcome for breast cancer.
Collapse
Affiliation(s)
- Mingxiu Tang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Mengjia Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Kaiyong He
- Hubei Institute for Drug Control, Wuhan University, Wuhan 430079, People's Republic of China
| | - Ran Li
- China Tobacco Hubei Industrial Co., Ltd, Wuhan 430040, People's Republic of China
| | - Xiaojie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, People's Republic of China
| | - Yaowen Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Tong Qiu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
11
|
Buckley C, Zhang X, Wilson C, McCarron JG. Carbenoxolone and 18β-glycyrrhetinic acid inhibit inositol 1,4,5-trisphosphate-mediated endothelial cell calcium signalling and depolarise mitochondria. Br J Pharmacol 2021; 178:896-912. [PMID: 33269468 PMCID: PMC9328419 DOI: 10.1111/bph.15329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Coordinated endothelial control of cardiovascular function is proposed to occur by endothelial cell communication via gap junctions and connexins. To study intercellular communication, the pharmacological agents carbenoxolone (CBX) and 18β-glycyrrhetinic acid (18βGA) are used widely as connexin inhibitors and gap junction blockers. EXPERIMENTAL APPROACH We investigated the effects of CBX and 18βGA on intercellular Ca2+ waves, evoked by inositol 1,4,5-trisphosphate (IP3 ) in the endothelium of intact mesenteric resistance arteries. KEY RESULTS Acetycholine-evoked IP3 -mediated Ca2+ release and propagated waves were inhibited by CBX (100 μM) and 18βGA (40 μM). Unexpectedly, the Ca2+ signals were inhibited uniformly in all cells, suggesting that CBX and 18βGA reduced Ca2+ release. Localised photolysis of caged IP3 (cIP3 ) was used to provide precise spatiotemporal control of site of cell activation. Local cIP3 photolysis generated reproducible Ca2+ increases and Ca2+ waves that propagated across cells distant to the photolysis site. CBX and 18βGA each blocked Ca2+ waves in a time-dependent manner by inhibiting the initiating IP3 -evoked Ca2+ release event rather than block of gap junctions. This effect was reversed on drug washout and was unaffected by small or intermediate K+ -channel blockers. Furthermore, CBX and 18βGA each rapidly and reversibly collapsed the mitochondrial membrane potential. CONCLUSION AND IMPLICATIONS CBX and 18βGA inhibit IP3 -mediated Ca2+ release and depolarise the mitochondrial membrane potential. These results suggest that CBX and 18βGA may block cell-cell communication by acting at sites that are unrelated to gap junctions.
Collapse
Affiliation(s)
- Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
12
|
Wu SY, Wang WJ, Dou JH, Gong LK. Research progress on the protective effects of licorice-derived 18β-glycyrrhetinic acid against liver injury. Acta Pharmacol Sin 2021; 42:18-26. [PMID: 32144337 PMCID: PMC7921636 DOI: 10.1038/s41401-020-0383-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
The first description of the medical use of licorice appeared in "Shennong Bencao Jing", one of the well-known Chinese herbal medicine classic books dated back to 220-280 AD. As one of the most commonly prescribed Chinese herbal medicine, licorice is known as "Guo Lao", meaning "a national treasure" in China. Modern pharmacological investigations have confirmed that licorice possesses a number of biological activities, such as antioxidation, anti-inflammatory, antiviral, immune regulation, and liver protection. 18β-glycyrrhetinic acid is one of the most extensively studied active integrants of licorice. Here, we provide an overview of the protective effects of 18β-glycyrrhetinic acid against various acute and chronic liver diseases observed in experimental models, and summarize its pharmacological effects and potential toxic/side effects at higher doses. We also make additional comments on the important areas that may warrant further research to support appropriate clinical applications of 18β-glycyrrhetinic acid and avoid potential risks.
Collapse
Affiliation(s)
- Shou-Yan Wu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jie Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Hui Dou
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Li-Kun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
14
|
Sarkar MK, Mahapatra SK, Vadivel V. Oxidative stress mediated cytotoxicity in leukemia cells induced by active phyto-constituents isolated from traditional herbal drugs of West Bengal. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112527. [PMID: 31891796 DOI: 10.1016/j.jep.2019.112527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/11/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In search of safe and effective therapeutic agents as alternative to synthetic chemotherapeutics for the treatment of leukemia, the herbal drugs (Leaf of Madhuca longifolia, leaf of Prosopis cineraria and bark of Flacourtia indica) with long traditional use in West Bengal have received our attention. AIM OF THE STUDY Present work was conducted to isolate and identify the active compounds of the selected herbal drugs using bio-assay guided fractionation and also to investigate their anticancer mechanism in leukemia cell lines. MATERIALS AND METHODS Bio-assay guided fractionation was used for the isolation of active constituents such as myricitrin, vitexin and vanillin from the aqueous extracts of M. longifolia, P. cineraria and F. indica, respectively using liquid partitioning and column chromatography and the compounds were characterized by HPLC, MS and NMR. Dose and time-dependent cytotoxicity of isolated compounds were studied against leukemia cells and their anticancer mechanism such as cell wall damage, nuclear damage, ROS and NO generation, SOD level, LDH release and lipid peroxidation were investigated. RESULTS Aqueous extract of M. longifolia, P. cineraria and F. indica exhibited maximum anti-proliferative activity against HL-60 (Acute myeloid leukemia, AML, 72.06%), K-562 (Chronic myeloid leukemia, CML, 42.14%) and Jurkat (Acute lymphoblastic leukemia, ALL, 51.71%) cells. Myricitrin, vitexin and vanillin exhibited dose-dependent (IC-50 values 164.4, 147 & 29.22 μg/ml) and time-dependent activity with maximum cytotoxicity at 48 h. All these three compounds caused apoptosis in leukemia cells by inducing free radicals such as ROS (1.33-2.65 Arbitrary units) and NO (11.17-18.53 μM), cell membrane damage and nuclear condensation which were evidenced by increased release of LDH (1326-1439 U/L), improved lipid peroxidation (10.19-14.41 nM/mg protein) and reduced SOD level (6.2-9.21 U/mg protein) in leukemia cells. CONCLUSIONS Based on anti-proliferative activity, the isolated phyto-compounds myrcitrin, vitexin and vanillin from M. longifolia, P. cineraria and F. indica could be developed as natural drugs for treating AML, CML and ALL leukemia types, respectively.
Collapse
Affiliation(s)
- Monaj Kumar Sarkar
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Santanu Kar Mahapatra
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
15
|
Transcriptional suppression of androgen receptor by 18β-glycyrrhetinic acid in LNCaP human prostate cancer cells. Arch Pharm Res 2020; 43:433-448. [PMID: 32219716 DOI: 10.1007/s12272-020-01228-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Androgen receptor (AR) plays a pivotal role as a target for amplification/mutation in pathogenesis and tumor progression in prostate, and thus, controlling AR activity or expression might be a feasible therapeutic approach for the treatment of prostate cancer. Here, we report the novel mechanisms by which 18β-glycyrrhetinic acid (GA) targets AR to stimulate cell death in both hormone-responsive and -refractory prostate cancer cells. We found that miR-488, a tumor suppressive microRNA, was markedly induced by GA treatment, resulting in the down-regulation of AR expression and inhibition of cellular responses mediated by androgens. Moreover, GA not only suppressed the expression of androgen target genes (TMPRSS2, PSA, and NKX3.1), but also enhanced the suppressive effect of anti-androgens (bicalutamide and flutamide) on LNCaP cell growth. Our data further provides evidence that down-regulation of AR expression by GA may occur through transcriptional suppression at AR promoter region between - 1014 and - 829. Ectopic expression of SFR and E2F3α reversed the inhibitory effect of GA on AR promoter activity as well as protein expression, suggesting that GA may target transcription factors SRF and E2F3α to regulate AR expression. Taken together, our study provides new insights on AR regulation and GA as a potential therapeutic candidate for human prostate cancer.
Collapse
|
16
|
The Effect of SBA-15 Surface Modification on the Process of 18β-Glycyrrhetinic Acid Adsorption: Modeling of Experimental Adsorption Isotherm Data. MATERIALS 2019; 12:ma12223671. [PMID: 31703371 PMCID: PMC6888531 DOI: 10.3390/ma12223671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
This study aimed at the adsorption of 18β-glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid derivative of oleanane type, onto functionalized mesoporous SBA-15 silica and non-porous silica (Aerosil®) as the reference adsorbent. Although 18β-GA possesses various beneficial pharmacological properties including antitumor, anti-inflammatory, and antioxidant activity, it occurs is small amounts in plant materials. Thus, the efficient methods of this bioactive compound enrichment from vegetable raw materials are currently studied. Siliceous adsorbents were functionalized while using various alkoxysilane derivatives, such as (3-aminopropyl)trimethoxysilane (APTMS), [3-(methylamino)propyl]trimethoxysilane (MAPTMS), (N,N-dimethylaminopropyl)trimethoxysilane (DMAPTMS), and [3-(2-aminothylamino)propyl] trimethoxysilane (AEAPTMS). The effect of silica surface modification with agents differing in the structure and the order of amine groups on the adsorption capacity of the adsorbent and adsorption efficiency were thoroughly examined. The equilibrium adsorption data were analyzed while using the Langmuir, Freundlich, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Dubinin-Astakhov isotherms. Both linear regression and nonlinear fitting analysis were employed in order to find the best-fitted model. The adsorption isotherms of 18β-GA onto silicas functionalized with APTMS, MAPTMS, and AEAPTMS indicate the Langmuir-type adsorption, whereas sorbents modified with DMAPTMS show the constant distribution of the adsorbate between the adsorbent and the solution regardless of silica type. The Dubinin-Astakhov, Dubinin-Radushkevich, and Redlich-Peterson equations described the best the process of 18β-GA adsorption onto SBA-15 and Aerosil® silicas that were functionalized with APTMS, MAPTMS, and AEAPTMS, regardless of the method that was used for the estimation of isotherm parameters. Based on nonlinear fitting analysis (Dubinin-Astakhov model), it can be concluded that SBA-15 sorbent that was modified with APTMS, MAPTMS, and AEAPTMS is characterized by twice the adsorption capacity (202.8–237.3 mg/g) as compared to functionalized non-porous silica (118.2–144.2 mg/g).
Collapse
|
17
|
Alho DPS, Salvador JAR, Cascante M, Marin S. Synthesis and Antiproliferative Activity of Novel A-Ring Cleaved Glycyrrhetinic Acid Derivatives. Molecules 2019; 24:E2938. [PMID: 31416117 PMCID: PMC6721064 DOI: 10.3390/molecules24162938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
A series of new glycyrrhetinic acid derivatives was synthesized via the opening of its ring A along with the coupling of an amino acid. The antiproliferative activity of the derivatives was evaluated against a panel of nine human cancer cell lines. Compound 17 was the most active compound, with an IC50 of 6.1 µM on Jurkat cells, which is 17-fold more potent than that of glycyrrhetinic acid, and was up to 10 times more selective toward that cancer cell line. Further biological investigation in Jurkat cells showed that the antiproliferative activity of compound 17 was due to cell cycle arrest at the S phase and induction of apoptosis.
Collapse
Affiliation(s)
- Daniela P S Alho
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, 3000-504 Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, 3000-504 Coimbra, Portugal.
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
18
|
Natural products in licorice for the therapy of liver diseases: Progress and future opportunities. Pharmacol Res 2019; 144:210-226. [PMID: 31022523 DOI: 10.1016/j.phrs.2019.04.025] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. Licorice is one of the most commonly used herbal drugs in Traditional Chinese Medicine for the treatment of liver diseases and drug-induced liver injury (DILI). Various bioactive components have been isolated and identified from the licorice, including glycyrrhizin, glycyrrhetinic acid, liquiritigenin, Isoliquiritigenin, licochalcone A, and glycycoumarin. Emerging evidence suggested that these natural products relieved liver diseases and prevented DILI through multi-targeting therapeutic mechanisms, including anti-steatosis, anti-oxidative stress, anti-inflammation, immunoregulation, anti-fibrosis, anti-cancer, and drug-drug interactions. In the current review, we summarized the recent progress in the research of hepatoprotective and toxic effects of different licorice-derived bioactive ingredients and also highlighted the potency of these compounds as promising therapeutic options for the treatment of liver diseases and DILI. We also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in licorice and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
|
19
|
Synthesis and Antiproliferative Activity of Novel Heterocyclic Glycyrrhetinic Acid Derivatives. Molecules 2019; 24:molecules24040766. [PMID: 30791593 PMCID: PMC6412232 DOI: 10.3390/molecules24040766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023] Open
Abstract
A new series of glycyrrhetinic acid derivatives has been synthesized via the introduction of different heterocyclic rings conjugated with an α,β-unsaturated ketone in its ring A. These new compounds were screened for their antiproliferative activity in a panel of nine human cancer cell lines. Compound 10 was the most active derivative, with an IC50 of 1.1 µM on Jurkat cells, which is 96-fold more potent than that of glycyrrhetinic acid, and was 4-fold more selective toward that cancer cell line. Further biological studies performed in Jurkat cells showed that compound 10 is a potent inducer of apoptosis that activates both the intrinsic and extrinsic pathways.
Collapse
|
20
|
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res 2018; 32:2323-2339. [PMID: 30117204 PMCID: PMC7167772 DOI: 10.1002/ptr.6178] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023]
Abstract
In the last years, consumers are paying much more attention to natural medicines and principles, mainly due to the general sense that natural compounds are safe. On the other hand, there is a growing demand by industry for plants used in traditional medicine that could be incorporated in foods, nutraceuticals, cosmetics, or even pharmaceuticals. Glycyrrhiza glabra Linn. belongs to the Fabaceae family and has been recognized since ancient times for its ethnopharmacological values. This plant contains different phytocompounds, such as glycyrrhizin, 18β-glycyrrhetinic acid, glabrin A and B, and isoflavones, that have demonstrated various pharmacological activities. Pharmacological experiments have demonstrated that different extracts and pure compounds from this species exhibit a broad range of biological properties, including antibacterial, anti-inflammatory, antiviral, antioxidant, and antidiabetic activities. A few toxicological studies have reported some concerns. This review addresses all those issues and focuses on the pharmacological activities reported for G. glabra. Therefore, an updated, critical, and extensive overview on the current knowledge of G. glabra composition and biological activities is provided here in order to explore its therapeutic potential and future challenges to be utilized for the formulation of new products that will contribute to human well-being.
Collapse
Affiliation(s)
| | - Laura Cornara
- DISTAVUniversity of GenoaGenoaItaly
- Istituto di BiofisicaConsiglio Nazionale delle RicercheGenoaItaly
| | - Sónia Soares
- LAQV/REQUIMTE, Faculty of PharmacyUniversity of PortoPortoPortugal
| | | | | |
Collapse
|
21
|
Li J, Cha R, Zhang Y, Guo H, Long K, Gao P, Wang X, Zhou F, Jiang X. Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. J Mater Chem B 2018; 6:6413-6423. [PMID: 32254649 DOI: 10.1039/c8tb01657g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Even though iron oxide (Fe3O4) nanoparticles are promising materials for magnetic resonance imaging (MRI) contrast agents, their biocompatibility and targeting efficacy still need to be improved. Herein, we modified glycyrrhetinic acid (GA) groups on Fe3O4 nanoparticles (Fe3O4@cGlu-GA) for liver tumor-targeted imaging. To evaluate the biocompatibility of these nanoparticles, we studied their cytotoxicity, hemolysis, and hepatotoxicity. We measured the uptake of Fe3O4@cGlu-GA nanoparticles in normal and liver tumor cells, then we investigated the specificity of Fe3O4@cGlu-GA nanoparticles in mouse models bearing subcutaneous and orthotopic liver tumors. With good biocompatibility and targeting efficacy both in vitro and in vivo, the Fe3O4@cGlu-GA nanoparticles are promising MRI contrast agents with ultralow hepatotoxicity and show great improvement on existing Fe3O4-based nanoparticles.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kamisli S, Ciftci O, Taslidere A, Basak Turkmen N, Ozcan C. The beneficial effects of 18β-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mouse model. Immunopharmacol Immunotoxicol 2018; 40:344-352. [PMID: 30052483 DOI: 10.1080/08923973.2018.1490318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The aim of this study was to investigate the beneficial effects of 18β-glycyrrhetinic acid (GA) on the experimental allergic encephalomyelitis (EAE) in C57BL/6 mice. GA is a natural substance found in the root of licorice and is used in traditional Chinese medicine. It has many pharmacological activities such as antioxidant, anti-inflammatory, and anti-cancer effects. MATERIALS AND METHODS A total of 40 C57BL/6 mice were divided equally into four groups: (1) Control, (2) EAE, (3) GA and (4) GA + EAE. 14 days after induction of EAE with MOG35-55 and pertussis toxin, mice were treated with GA at doses of 100 mg/kg/day for 7 days intraperitoneally. RESULTS To our results, oxidative stress and lipid peroxidations (elevated TBARS levels, decreased GPx, SOD, CAT, and GSH levels) were significantly (p < .01) increased, causing EAE in brain tissue. Also, histopathological damage (Caspase-3 and IL-17 activity, p ≤ .01) and cytokine levels (TNF-α and IL-1β, p < .01) were induced with EAE in mice brain tissue. On the other hand, GA treatment significantly (p < .01) reversed oxidative histological and immunological alterations caused by EAE. CONCLUSIONS In conclusion, the GA treatment can protect the brain tissue against EAE in mice with its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Suat Kamisli
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| | - Osman Ciftci
- b Faculty of Medicine, Department of Pharmacology , University of Pamukkale , Denizli , Turkey
| | - Asli Taslidere
- c Faculty of Medicine, Department of Histology and Embryology , University of Inonu , Malatya , Turkey
| | - Nese Basak Turkmen
- d Faculty of Pharmacy, Department of Pharmaceutical Toxicology , University of Inonu , Malatya , Turkey
| | - Cemal Ozcan
- a Faculty of Medicine, Department of Neurology , University of Inonu , Malatya , Turkey
| |
Collapse
|
23
|
The Effects of the Honey-Roasting Process on the Pharmacokinetics of the Six Active Compounds of Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5731276. [PMID: 30034498 PMCID: PMC6033295 DOI: 10.1155/2018/5731276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 05/31/2018] [Indexed: 12/02/2022]
Abstract
A convenient UPLC-MS/MS method was established to determine the contents of six bioactive compounds, namely, liquiritin apioside, liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, and glycyrrhetinic acid, in rat plasma and their pharmacokinetics. By comparing the pharmacokinetic parameters of these compounds in rats by orally administering raw and honey-roasting licorice, the Cmax of isoliquiritin showed a significant decrease, while the AUC0-24h showed no significant differences. The Cmax and AUC0-24h of isoliquiritigenin were increased by 49.3% and 42.7% over those of the raw licorice group, respectively. These results indicate that the absorption of isoliquiritin in rats was reduced while the absorption of isoliquiritigenin was promoted in the honey-roasting process. These results may provide one explanation as to why licorice is more able to relieve cough, while honey-roasting licorice is better at invigorating qi and restoring pulse. Furthermore, the Cmax of glycyrrhetinic acid was increased, suggesting that it may enhance the tonic effect of licorice. Additionally, the amount of honey added in the honey-roasting process influenced the pharmacokinetic parameters of the six compounds whose absorption decreased when the 50% honey-roasting licorice water decoction was administered. These results provide an experimental basis for studying the influence of licorice processing on bioactive compound pharmacokinetics.
Collapse
|
24
|
Chen J, Zhang ZQ, Song J, Liu QM, Wang C, Huang Z, Chu L, Liang HF, Zhang BX, Chen XP. 18β-Glycyrrhetinic-acid-mediated unfolded protein response induces autophagy and apoptosis in hepatocellular carcinoma. Sci Rep 2018; 8:9365. [PMID: 29921924 PMCID: PMC6008326 DOI: 10.1038/s41598-018-27142-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
18β-Glycyrrhetinic acid (GA) is the active ingredient of the traditional Chinese medicine, Glycyrrhrzae Radix et Rhizoma. Here, we explored the effects of GA on hepatocellular carcinoma (HCC) in vitro and in vivo and the underlying molecular mechanisms. We confirmed that GA suppressed proliferation of various HCC cell lines. Treatment of GA caused G0/G1 arrest, apoptosis and autophagy in HCC cells. GA-induced apoptosis and autophagy were mainly due to the unfolded protein response. We compared the roles of the ATF4/CHOP and IRE1α/XBP1s UPR pathways, which were both induced by GA. The ATF4/CHOP cascade induced autophagy and was indispensable for the induction of apoptosis in GA-treated HCC cells. In contrast, the IRE1α/XBP1s cascade protected HCC cells from apoptosis in vitro and in vivo induced by GA. Despite this, activation of autophagy protected HCC cells from apoptosis induced by GA. We concluded that pharmacological inhibition of autophagy or IRE1α may be of benefit to enhance the antitumor activity of GA.
Collapse
Affiliation(s)
- Jin Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhao-Qi Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jia Song
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Qiu-Meng Liu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Chao Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhao Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Liang Chu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Hui-Fang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| | - Bi-Xiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| | - Xiao-Ping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Lactobacillus casei Strain Shirota Enhances the In Vitro Antiproliferative Effect of Geniposide in Human Oral Squamous Carcinoma HSC-3 Cells. Molecules 2018; 23:molecules23051069. [PMID: 29751513 PMCID: PMC6099796 DOI: 10.3390/molecules23051069] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
This study investigated the enhanced antiproliferative effect of Lactobacillus casei strain Shirota (LcS) on geniposide actions in human oral squamous carcinoma HSC-3 cells. An MTT assay, flow cytometry, qPCR assay, western blot and HPLC were used for this study. The concentration of 1.0 × 106 CFU/mL of LcS had no effect on the HOK normal oral epithelial cells and HSC-3 cancer cells. The 25 and 50 µg/mL geniposide concentrations also had no impact on HOK normal oral epithelial cells, but they had remarkable inhibitory effects on the growth of HSC-3 cancer cells, which are enhanced in the presence of LcS. By the flow cytometry assay, the LcS-geniposide-H (1.0 × 106 CFU/mL LcS and 50 µg/mL geniposide)-treated HSC-3 cancer cells had the largest number of cells undergoing apoptosis compared to cells treated with other combinationsand obviously more than cells treated with only geniposide-H (50 µg/mL geniposide). Geniposide-H could increase the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, p53, p21, IκB-α, Fas, FasL, TIMP-1, and TIMP-2 as well as decrease those of Bcl-2, Bcl-xL, HIAP-1, HIAP-2, NF-κB, COX-2, iNOS, MMP-2, and MMP-9 compared to other groups of cells, and LcS further enhanced these changes, with results that are greater than for the cells treated with only a high concentration of geniposide. The results of this study show thatLcS enhanced the antiproliferative effect of geniposide in HSC-3 cancer cells.
Collapse
|
26
|
张 韫, 蔡 云, 刘 媛, 赵 博, 李 国. [Glycyrrhetinic acid selectively inhibits proliferation of hepatocellular carcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:477-482. [PMID: 29735451 PMCID: PMC6765654 DOI: 10.3969/j.issn.1673-4254.2018.04.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the selective inhibitory effect of glycyrrhetinic acid on 4 hepatocellular carcinoma (HCC) cells with different proliferation rates and explore the underlying mechanisms. METHODS MTT method was used to detect the proliferation rates of 4 HCC cell lines, namely SMMC-7721, SK-HEP1, HEPG2 and HEP3B. Following treatment of the cells with glycyrrhetinic acid (5, 10, 20, 30, 40, and 60 µmol/L), the cell viability was analyzed using MTT assay and the expressions of total ERK protein, p-ERK protein and topoisomerase IIα were detected using Western blotting. RESULTS Among the 4 cell lines, SMMC-7721 had the lowest and SK-HEP1 had the highest proliferation rate. Treatment with glycyrrhetinic acid for 48 h dose-dependently inhibited the proliferation of all the 4 cell lines in vitro and produced the strongest inhibitory effect in SMMC-7721 cells with the IC50 of 28.04 µmol/L. The proliferation rate of the cells was positively correlated with the expression levels of p-ERK and topoisomerase IIα, which were the lowest in SMMC-7721 cells and the highest in SK-HEP1 cells. Treatment with 50 µmol/L glycyrrhetinic acid significantly down-regulated the expressions of p-ERK and topoisomerase IIα in the 4 HCC cell lines (P<0.05), while 25 µmol/L glycyrrhetinic acid significantly reduced the expression of topoisomerase IIα and p-ERK in SMMC-7721, HEPG2 and HEP3B cells (P<0.05) but not in SK-HEP1 cells. CONCLUSION Glycyrrhetinic acid can inhibit the proliferation of different HCC cells particularly in cells with a low proliferation rate. The inhibitory effect of glycyrrhetinic acid might be mediated by reducing the expressions of topoisomerase IIα and inhibiting the ERK pathway.
Collapse
Affiliation(s)
- 韫琪 张
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - 云 蔡
- 广州医科大学附属第三医院药学部,广东 广州 510150Department of Pharmacy, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 媛 刘
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - 博欣 赵
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| | - 国锋 李
- 南方医科大学南方医院药学部//南方医院合理用药评价与药物递送发展实验室//南方医科大学药学院广东省 新药筛选重点实验室,广东 广州 510515Department of Pharmacy, Nanfang Hospital/Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital/ Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutics, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
27
|
Sun Y, Dai C, Yin M, Lu J, Hu H, Chen D. Hepatocellular carcinoma-targeted effect of configurations and groups of glycyrrhetinic acid by evaluation of its derivative-modified liposomes. Int J Nanomedicine 2018; 13:1621-1632. [PMID: 29588589 PMCID: PMC5862014 DOI: 10.2147/ijn.s153944] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background There are abundant glycyrrhetinic acid (GA) receptors on the cellular membrane of hepatocytes and hepatocellular carcinoma (HCC) cells. The receptor binding effect might be related to the structure of the guiding molecule. GA exists in two stereoisomers with C3-hydroxyl and C11-carbonyl active groups. Purpose The objective of this study was to investigate the relationship between the HCC-targeted effect and the configurations and groups of GA. Methods and results Different GA derivatives (18β-GA, 18α-GA, 3-acetyl-18β-GA [3-Ace-GA] and 11-deoxy-18β-GA [11-Deo-GA]) were used to investigate the targeting effect of GA’s configurations and groups on HCC cells. The EC50 values of competition to binding sites and the ratio of specific binding in HepG2 cells showed that 18β-GA and 3-Ace-GA demonstrated significant competitive effect with fluorescein isothiocyanate (FITC)-labeled GA. Then, the GA derivatives were distearoyl-phosphatidylethanolamine (DSPE)-PEGylated. 18β-GA-, 18α-GA-, 3-Ace-GA-and 11-Deo-GA-modified liposomes were prepared and characterized by size, zeta potential, encapsulation efficiency, loading capacity, leakage and membrane stability. Evaluation on the cellular location in vitro and tumor targeting in vivo was carried out. Compared to common long-circulation liposome (PEG-Lip), more 18β-GA- and 3-Ace-GA-modified liposomes aggregated around HepG2 cells in vitro in short time and transferred into HCC tumors in vivo for a longer time. Conclusion The β-configuration hydrogen atom on C18 position of GA played the most important role on the targeting effect. C11-carbonyl and C3-hydroxy groups of GA have certain and little influence on targeting action to HCC, respectively. In general, GA might be a promising targeting molecule for the research on liver diseases and hepatoma therapy.
Collapse
Affiliation(s)
- Yuqi Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou, China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunmei Dai
- School of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Meilin Yin
- School of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Jinghua Lu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
28
|
Hejazi II, Khanam R, Mehdi SH, Bhat AR, Rizvi MMA, Thakur SC, Athar F. Antioxidative and anti-proliferative potential of Curculigo orchioides Gaertn in oxidative stress induced cytotoxicity: In vitro, ex vivo and in silico studies. Food Chem Toxicol 2018; 115:244-259. [PMID: 29545143 DOI: 10.1016/j.fct.2018.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/14/2018] [Accepted: 03/10/2018] [Indexed: 02/07/2023]
Abstract
Plant phytoconstituents have been a valuable source of clinically important anticancer agents. Antioxidant and anticancerous activity of plant Curculigo orchioides Gaertn were explored In vitro antioxidant activity, antioxidant enzyme activity of oxidatively stressed tissue, and cell culture studies on human cancer cell lines HepG2, HeLa and MCF-7 were carried out. Active plant fractions were subjected to GC-MS analysis and compounds selected on the basis of their abundance were screened in silico with the help of Auto Dock 4.2 tools with pre-selected antioxidant enzymes. Curculigo orchioides Gaertn plant fractions exhibited significant antioxidant activities by virtue of scavenging of free radicals having IC50 value of ethylacetate fraction (EA) for DPPH radical scavenging assay to be 52.93 ± 0.66 μg/ml. Further, antioxidant enzyme defense of mammalian tissue when treated with plant fractions revealed that enzyme concentrations were refurbished which were increased during oxidative stress. MTT assay on cell lines HepG2, HeLa and MCF-7 presented IC50 values of ethylacetate (EA) fraction as 171.23 ± 2.1 μg/ml, 144.80 ± 1.08 μg/ml and 153.51 μg/ml and aqueous ethylacetate (AEA) fraction as 133.44 ± 1.1 μg/ml, 136.50 ± 0.8 μg/ml and 145.09 μg/ml respectively. Further EA and AEA plant fractions down regulated the levels of antiapoptotic Bcl-2 expression and upregulated the expression of apoptotic proteins caspase-3 and caspase-8 through an intrinsic ROS-mediated mitochondrial dysfunction pathway. KEY MESSAGE Key findings explained that fractions of Curculigo orchioides Gaertn inhibited oxidative stress by increasing the antioxidant enzyme content and have anticancerous potential on cancer cell lines HepG2, HeLa and MCF-7.
Collapse
Affiliation(s)
- Iram Iqbal Hejazi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| | - Rashmin Khanam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| | | | | | | | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| |
Collapse
|
29
|
Liu X, Zhang L, Feng X, Lv B, Li C. Biosynthesis of Glycyrrhetinic Acid-3-O-monoglucose Using Glycosyltransferase UGT73C11 from Barbarea vulgaris. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaochen Liu
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Liang Zhang
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Xudong Feng
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Bo Lv
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Chun Li
- Institute for Biotransformation and
Synthetic Biosystem, Department of Biological Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
30
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
31
|
Sun YQ, Dai CM, Zheng Y, Shi SD, Hu HY, Chen DW. Binding effect of fluorescence labeled glycyrrhetinic acid with GA receptors in hepatocellular carcinoma cells. Life Sci 2017; 188:186-191. [DOI: 10.1016/j.lfs.2017.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 11/24/2022]
|
32
|
Jiang Q, Yang M, Qu Z, Zhou J, Zhang Q. Resveratrol enhances anticancer effects of paclitaxel in HepG2 human liver cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:477. [PMID: 28978315 PMCID: PMC5628430 DOI: 10.1186/s12906-017-1956-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The aim of this in vitro study was to measure the enhanced anticancer effects of Res (resveratrol) on PA (paclitaxel) in HepG2 human liver cancer cells. METHODS The MTT (thiazolyl blue tetrazolium bromide, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), flow cytometry, qPCR (real-time quantitative polymerase chain reaction) and western blot assay were used for cells growth inhibitory effects, cells apoptosis (DNA content of sub-G1), mRNA and protein expressions, respectively. RESULTS The 10 μg/mL of Res had no growth inhibitory effect on Nthy-ori 3-1 normal cells or HepG2 cancer cells meanwhile the 5 or 10 μg/mL of PA also had no growth inhibitory effect on Nthy-ori 3-1 normal cells. Where as PA-L (5 μg/mL) and PA-H (10 μg/mL) had the growth inhibitory effects in HepG2 cancer cells, and Res increase these growth inhibitory effects. By flow cytometry experiment, after Res (5 μg/mL) + PA-H (10 μg/mL) treatment, the HepG2 cells showed the most apoptosis in cells as compared to other treatments groups, and after additionally treated with Res, both the apoptosis cells of two concentrations PA were raised. As PA raised it also raised the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax (Bcl-2 assaciated X protein), p53, p21, IκB-α (inhibitor of NF-κB alpha), Fas (factor associated suicide), FasL (factor associated suicide ligand), TIMP-1 (tissue inhibitor of metalloproteinases 1), TIMP-2 (tissue inhibitor of metalloproteinases 2) and decrease Bcl-2 (B cell leukemia 2), Bcl-xL (B cell leukemia extra large), HIAP-1 (cIAP-1, cellular inhibitor of apoptosis 1), HIAP-2 (cIAP-2, cellular inhibitor of apoptosis 2), NF-κB (nuclear factor kappa B), COX-2 (cyclooxygenase 2), iNOS (inducible nitric oxide synthase), MMP-2 (metalloproteinase 2), MMP-9 (metalloproteinase 9), EGF (epidermal growth factor), EGFR (epidermal growth factor receptor), VEGF (vascular endothelial growth factor), Fit-1 (VEGFR-1, vascular endothelial growth factor receptor 1). Meanwhile, the 5 μg/mL of Res could enhance these mRNA expressions changes as compared to the control cells. CONCLUSION From these results, we can conclude that Res could raise the anticancer effects of PA in HepG2 cells, Res could be used as a good sensitizing agent for PA.
Collapse
Affiliation(s)
- Qin Jiang
- Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Manyi Yang
- National Hepatobiliary & Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Zhan Qu
- Department of Hepatobiliary & Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Jixiang Zhou
- Department of Hepatobiliary & Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Qi Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
33
|
Cheng Z, Xu H, Wang X, Liu Z. Lactobacillus raises in vitro anticancer effect of geniposide in HSC-3 human oral squamous cell carcinoma cells. Exp Ther Med 2017; 14:4586-4594. [PMID: 29104666 DOI: 10.3892/etm.2017.5105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
The present study determined the ability of the Lactobacillus rhamnosus GG strain (LGG) to enhance the anticancer effects of geniposide on HSC-3 human oral squamous carcinoma cells. LGG (1.0×103 CFU/ml) on its own had no impact on human oral keratinocytes and HSC-3 cancer cells. Geniposide (25 or 50 µg/ml) had no impact on human oral keratinocytes, but exerted growth inhibitory effects on HSC-3 cancer cells, which were increased in the presence of LGG. Flow cytometric analysis and a nuclear staining assay with DAPI revealed that HSC-3 cancer cells treated with LGG-geniposide (1.0×103 CFU/ml LGG and 50 µg/ml geniposide) had a higher apoptotic rate than cells in other treatment groups, particularly that treated with geniposide (50 µg/ml) only. Geniposide also increased the mRNA and protein expression of caspase-3, -8 and -9 as well as B-cell lymphoma 2 (Bcl-2)-associated X protein, p53, p21, inhibitor of nuclear factor-κB (NF-κB) α, Fas and Fas ligand, while decreasing Bcl-2, Bcl extra large protein, inhibitor of apoptosis-1 and -2, NF-κB, cyclooxigenase-2 and inducible nitric oxide synthase in HSC-3 cells, which was increased in the presence of LGG. These results indicated that LGG enhanced the anticancer effects of geniposide in HSC-3 cells.
Collapse
Affiliation(s)
- Zhou Cheng
- Department of Stomatology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hui Xu
- Department of Stomatology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xiaoping Wang
- Department of Stomatology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zuoye Liu
- Department of Stomatology, Yeda Hospital of Yantai, Yantai, Shandong 264006, P.R. China
| |
Collapse
|
34
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
35
|
|