1
|
Kim J, Lee H, Kim HM, Kim JH, Byun S, Lee S, Kim CY, Ryou C. Isolation of Anti-Prion Compounds from Curcuma phaeocaulis Valeton Extract. Molecules 2024; 29:4034. [PMID: 39274884 PMCID: PMC11397528 DOI: 10.3390/molecules29174034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Prion diseases, known as a group of fatal neurodegenerative disorders caused by prions, remain incurable despite extensive research efforts. In a recent study, crude extract from Curcuma phaeocaulis Valeton (Cp) showed promising anti-prion efficacy in in vitro and in vivo models, prompting further investigation into their active compounds. We endeavored to identify the chemical constituents of the Cp extract and discover potential anti-prion agents. With the use of centrifugal partition chromatography (CPC), major constituents were isolated from the n-hexane (HX) fraction of the extract in a single step. Spectroscopic analysis confirmed the presence of curcumenone, curcumenol, and furanodienone. Subsequent efficacy testing in a cell culture model of prion disease identified curcumenol and furanodienone as active compounds. This study underscores the potential of natural products in the search for effective treatments against prion diseases.
Collapse
Affiliation(s)
- Jaehyeon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hakmin Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hye Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Ji Hoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sanghoon Byun
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chul Young Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
The Effect of Curcuma phaeocaulis Valeton (Zingiberaceae) Extract on Prion Propagation in Cell-Based and Animal Models. Int J Mol Sci 2022; 24:ijms24010182. [PMID: 36613636 PMCID: PMC9820341 DOI: 10.3390/ijms24010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.
Collapse
|
3
|
Arad E, Jelinek R, Rapaport H. Amyloid fishing: β-Amyloid adsorption using tailor-made coated titania nanoparticles. Colloids Surf B Biointerfaces 2022; 212:112374. [PMID: 35121429 DOI: 10.1016/j.colsurfb.2022.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to fibril aggregates, amyloids. Extensive research efforts are devoted to developing inhibitors to amyloid aggregates. Here we set to explore functionalized titania (TiO2) nanoparticles (NPs) as potential amyloid inhibiting agents. TiO2 NPs were coated by a catechol derivative, dihydroxy-phenylalanine propanoic acid (DPA), and further conjugated to the amyloids' specific dye Congo-Red (CR). TiO2-DPA-CR NPs were found to target mature fibrils of β-amyloid (Aβ). Moreover, coated NPs incubated with Aβ proteins suppressed amyloid fibrillation. TiO2-DPA-CR were found to target amyloids in solution and induce their sedimentation upon centrifugation. This work demonstrates the potential utilization of TiO2-DPA NPs for labeling and facilely separating from solution mature amyloid fibrils.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hanna Rapaport
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
4
|
Lee H, Kim J, Lee YJ, Lee S, Ryou C. The Effect of Plasminogen-Derived Peptides to PrPSc Formation. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Omidvar M, Zdarta J, Sigurdardóttir SB, Pinelo M. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors. Biotechnol Adv 2021; 54:107798. [PMID: 34265377 DOI: 10.1016/j.biotechadv.2021.107798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Engineering microenvironments for sequential enzymatic reactions has attracted specific interest within different fields of research as an effective strategy to improve the catalytic performance of enzymes. While in industry most enzymatic reactions occur in a single compartment carrier, living cells are however able to conduct multiple reactions simultaneously within confined sub-compartments, or organelles. Engineering multi-compartments with regulated environments and transformation properties enhances enzyme activity and stability and thus increases the overall yield of final products. In this review, we discuss current and potential methods to fabricate artificial cells for sequential enzymatic reactions, which are inspired by mechanisms and metabolic pathways developed by living cells. We aim to advance the understanding of living cell complexity and its compartmentalization and present solutions to mimic these processes in vitro. Particular attention has been given to layer-by-layer assembly of polyelectrolytes for developing multi-compartments. We hope this review paves the way for the next steps toward engineering of smart artificial multi-compartments with adoptive stimuli-responsive properties, mimicking living cells to improve catalytic properties and efficiency of the enzymes and enhance their stability.
Collapse
Affiliation(s)
- Maryam Omidvar
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Jakub Zdarta
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland
| | - Sigyn Björk Sigurdardóttir
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Arad E, Green H, Jelinek R, Rapaport H. Revisiting thioflavin T (ThT) fluorescence as a marker of protein fibrillation - The prominent role of electrostatic interactions. J Colloid Interface Sci 2020; 573:87-95. [PMID: 32272300 DOI: 10.1016/j.jcis.2020.03.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/07/2020] [Accepted: 03/21/2020] [Indexed: 12/25/2022]
Abstract
Thioflavin T (ThT), a benzothiazole-based fluorophore, is a prominent dye widely employed for monitoring amyloid fibril assembly. Despite the near-universal presumption that ThT binds to β-sheet domains upon fibrillar surface via hydrophobic forces, the contribution of the positive charge of ThT to fibril binding and concomitant fluorescence enhancement have not been thoroughly assessed. Here we demonstrate a considerable interdependence between ThT fluorescence and electrostatic charges of peptide fibrils. Specifically, by analyzing both fibril-forming synthetic peptides and prominent natural fibrillar peptides, we demonstrate pronounced modulations of ThT fluorescence signal that were solely dependent upon electrostatic interactions between ThT and peptide surface. The results further attest to the fact that fibril ζ-potential rather than pH-dependent assembly of the fibrils constitute the primary factor affecting ThT binding and fluorescence. This study provides the first quantitative assessment of electrostatically driven ThT fluorescence upon adsorption to amyloid fibrils.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Hodaya Green
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Hanna Rapaport
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel.
| |
Collapse
|
7
|
Honda R, Yamaguchi KI, Elhelaly AE, Fuji M, Kuwata K. Poly-L-histidine inhibits prion propagation in a prion-infected cell line. Prion 2018; 12:226-233. [PMID: 30074430 DOI: 10.1080/19336896.2018.1505395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of lethal neurodegenerative diseases involving the structural conversion of cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) for which no effective treatment is currently available. Previous studies have implicated that a polymeric molecule with a repeating unit, such as pentosane polysulfate and polyamidoamide dendrimers, exhibits a potent anti-prion activity, suggesting that poly-(amino acid)s could be a candidate molecule for inhibiting prion propagation. Here, by screening a series of poly-(amino acid)s in a prion-infected neuroblastoma cell line (GTFK), we identified poly-L-His as a novel anti-prion compound with an IC50 value of 1.8 µg/mL (0.18 µM). This potent anti-prion activity was specific to a high-molecular-weight poly-L-His and absent in monomeric histidine or low-molecular-weight poly-L-His. Solution NMR data indicated that poly-L-His directly binds to the loop region connecting Helix 2 and Helix 3 of PrPC and sterically blocks the structural conversion toward PrPSc. Poly-L-His, however, did not inhibit prion propagation in a prion-infected mouse when administered intraperitoneally, suggesting that the penetration of blood-brain barrier and/or the chemical stability of this polypeptide must be addressed before its application in vivo. Taken together, this study revealed the potential use of poly-L-His as a novel treatment against TSEs. (203 words).
Collapse
Affiliation(s)
- Ryo Honda
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | | | - Abdelazim Elsayed Elhelaly
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | - Mitsuhiko Fuji
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan
| | - Kazuo Kuwata
- a United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University , Gifu , Japan.,c Department of Gene and Development , Graduate School of Medicine, Gifu University , Gifu , Japan
| |
Collapse
|
8
|
Arad E, Bhunia SK, Jopp J, Kolusheva S, Rapaport H, Jelinek R. Lysine-Derived Carbon Dots for Chiral Inhibition of Prion Peptide Fibril Assembly. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Elad Arad
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Susanta Kumar Bhunia
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Jürgen Jopp
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Hanna Rapaport
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Ilse Katz Institute (IKI) for Nanoscale Science and Technology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|