1
|
Semyachkina-Glushkovskaya O, Sokolovski S, Fedosov I, Shirokov A, Navolokin N, Bucharskaya A, Blokhina I, Terskov A, Dubrovski A, Telnova V, Tzven A, Tzoy M, Evsukova A, Zhlatogosrkaya D, Adushkina V, Dmitrenko A, Manzhaeva M, Krupnova V, Noghero A, Bragin D, Bragina O, Borisova E, Kurths J, Rafailov E. Transcranial Photosensitizer-Free Laser Treatment of Glioblastoma in Rat Brain. Int J Mol Sci 2023; 24:13696. [PMID: 37762000 PMCID: PMC10530910 DOI: 10.3390/ijms241813696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Sergey Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Alla Bucharskaya
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dubrovski
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Anna Tzven
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Daria Zhlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ekaterina Borisova
- Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd. 72, 1784 Sofia, Bulgaria;
| | - Jürgen Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University Moscow, 119991 Moscow, Russia
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
2
|
Zheng Y, Xiao J, Wang J, Dong B, Guo D, Ji H, Sun H, Peng L, Jiang S, Gao X. V-ATPase V0 subunit activation mediates maduramicin-induced methuosis through blocking endolysosomal trafficking in vitro and in vivo. Food Chem Toxicol 2023:113922. [PMID: 37394175 DOI: 10.1016/j.fct.2023.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Methuosis, a novel cell death phenotype, is characterized by accumulation of cytoplasmic vacuolization upon external stimulus. Methuosis plays a critical role in maduramicin-induced cardiotoxicity despite the underlying mechanism is largely unknown. Herein, we aimed to investigate the origin and intracellular trafficking of cytoplasmic vacuoles, as well as the molecular mechanism of methuosis caused by maduramicin (1 μg/mL) in myocardial cells. H9c2 cells and broiler chicken were used and were exposed to maduramicin at doses of 1 μg/mL in vitro and 5 ppm-30 ppm in vivo. Morphological observation and dextran-Alexa Fluor 488 tracer experiment showed that endosomal compartments swelling and excessive macropinocytosis contributed to madurdamcin-induced methuosis. Cell counting kit-8 assay and morphology indicated pharmacological inhibition of macropinocytosis largely prevent H9c2 cells from maduramicin-triggered methuosis. In addition, late endosomal marker Rab7 and lysosomal associated membrane protein 1 (LAMP1) increased in a time-dependent manner after maduramicin treatment, and the recycling endosome marker Rab11 and ADP-ribosylation factor 6 (Arf6) were decreased by maduramicin. Vacuolar-H+-ATPase (V-ATPase) was activated by maduramicin, and pharmacological inhibition and genetic knockdown V0 subunit of V-ATPase restore endosomal-lysosomal trafficking and prevent H9c2 cells methuosis. Animal experiment showed that severe cardiac injury included the increase of creatine kinase (CK) and creatine kinase-MB (CK-MB), and vacuolar degeneration resembled methuosis in vivo after maduramicin treatment. Taken together, these findings demonstrate that targeting the inhibition of V-ATPase V0 subunit will prevent myocardial cells methuosis by restoring endosomal-lysosomal trafficking.
Collapse
Affiliation(s)
- Yuling Zheng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Jing Xiao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Junqi Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Bin Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Dawei Guo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Hui Ji
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Peng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Shanxiang Jiang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Xiuge Gao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China; Center for Veterinary Drug Research and Evaluation, Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China.
| |
Collapse
|
3
|
Jin W, Zhang H, Li M, Lin S. Long Noncoding RNA Regulator of Reprogramming Regulates Cell Growth, Metastasis, and Cisplatin Resistance in Gastric Cancer via miR-519d-3p/HMGA2 Axis. Cancer Biother Radiopharm 2023; 38:122-131. [PMID: 32614615 DOI: 10.1089/cbr.2019.3525] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Gastric cancer (GC) is a common tumor found worldwide, and cisplatin is the first-line agent for the treatment of GC. However, the resistance to cisplatin is an obstacle. Here, we explored the biological mechanism of long noncoding RNA regulator of reprogramming (ROR) in the cisplatin resistance of GC. Materials and Methods: ROR, miR-519d-3p, and high mobility group protein A2 (HMGA2) expression in GC tissues and cells were measured by quantitative real-time polymerase chain reaction and Western blot. Cell viability, migration, invasion, and apoptosis were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, and flow cytometry, respectively. The relative protein expression was detected by Western blot. The interactions between miR-519d-3p and ROR, HMGA2 were predicted using miRcode and starBase v2.0 online database, and then verified by dual luciferase reporter assay and RNA immunoprecipitation assay. In addition, the xenograft tumor mouse model was constructed to verify the biological role of ROR in vivo. Results: The levels of ROR, HMGA2 were significantly upregulated, and miR-519d-3p was apparently downregulated in GC tissues and cells. The miRcode and starBase v2.0 online websites and dual luciferase reporter assay validated that miR-519d-3p directly interacted with ROR and HMGA2. Furthermore, ROR knockdown downregulated HMGA2 to restrain cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and cisplatin resistance in GC cells by targeting miR-519d-3p. In addition, the depletion of ROR repressed the xenograft tumor growth in vivo. Conclusion: In conclusion, we first found the ROR/miR-519d-3p/HMGA2 regulatory network to regulate cell proliferation, migration, invasion, EMT, and cisplatin resistance in GC, and this may shed light on the GC tumorigenesis.
Collapse
Affiliation(s)
- Wenhua Jin
- Department of Gastroenterology, The People's Hospital of Zhangqiu, Jinan, China
| | - Hua Zhang
- Department of Gastroenterology, The People's Hospital of Zhangqiu, Jinan, China
| | - Meng Li
- Department of Computer Tomography (CT), The People's Hospital of Zhangqiu, Jinan, China
| | - Sen Lin
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Jang G, Oh J, Jun E, Lee J, Kwon JY, Kim J, Lee SH, Kim SC, Cho SY, Lee C. Direct cell-to-cell transfer in stressed tumor microenvironment aggravates tumorigenic or metastatic potential in pancreatic cancer. NPJ Genom Med 2022; 7:63. [PMID: 36302783 PMCID: PMC9613679 DOI: 10.1038/s41525-022-00333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer exhibits a characteristic tumor microenvironment (TME) due to enhanced fibrosis and hypoxia and is particularly resistant to conventional chemotherapy. However, the molecular mechanisms underlying TME-associated treatment resistance in pancreatic cancer are not fully understood. Here, we developed an in vitro TME mimic system comprising pancreatic cancer cells, fibroblasts and immune cells, and a stress condition, including hypoxia and gemcitabine. Cells with high viability under stress showed evidence of increased direct cell-to-cell transfer of biomolecules. The resulting derivative cells (CD44high/SLC16A1high) were similar to cancer stem cell-like-cells (CSCs) with enhanced anchorage-independent growth or invasiveness and acquired metabolic reprogramming. Furthermore, CD24 was a determinant for transition between the tumorsphere formation or invasive properties. Pancreatic cancer patients with CD44low/SLC16A1low expression exhibited better prognoses compared to other groups. Our results suggest that crosstalk via direct cell-to-cell transfer of cellular components foster chemotherapy-induced tumor evolution and that targeting of CD44 and MCT1(encoded by SLC16A1) may be useful strategy to prevent recurrence of gemcitabine-exposed pancreatic cancers.
Collapse
Affiliation(s)
- Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eunsung Jun
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea
| | - Jee Young Kwon
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
5
|
Peng J, Liang Q, Xu Z, Cai Y, Peng B, Li J, Zhang W, Kang F, Hong Q, Yan Y, Zhang M. Current Understanding of Exosomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses. Front Immunol 2022; 12:813747. [PMID: 35095909 PMCID: PMC8796999 DOI: 10.3389/fimmu.2021.813747] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Exosomes, the small extracellular vesicles, are released by multiple cell types, including tumor cells, and represent a novel avenue for intercellular communication via transferring diverse biomolecules. Recently, microRNAs (miRNAs) were demonstrated to be enclosed in exosomes and therefore was protected from degradation. Such exosomal miRNAs can be transmitted to recipient cells where they could regulate multiple cancer-associated biological processes. Accumulative evidence suggests that exosomal miRNAs serve essential roles in modifying the glioma immune microenvironment and potentially affecting the malignant behaviors and therapeutic responses. As exosomal miRNAs are detectable in almost all kinds of biofluids and correlated with clinicopathological characteristics of glioma, they might be served as promising biomarkers for gliomas. We reviewed the novel findings regarding the biological functions of exosomal miRNAs during glioma pathogenesis and immune regulation. Furthermore, we elaborated on their potential clinical applications as biomarkers in glioma diagnosis, prognosis and treatment response prediction. Finally, we summarized the accessible databases that can be employed for exosome-associated miRNAs identification and functional exploration of cancers, including glioma.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Dandawate P, Ahmed K, Padhye S, Ahmad A, Biersack B. Anticancer Active Heterocyclic Chalcones: Recent Developments. Anticancer Agents Med Chem 2021; 21:558-566. [PMID: 32628595 DOI: 10.2174/1871520620666200705215722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chalcones are structurally simple compounds that are easily accessible by synthetic methods. Heterocyclic chalcones have gained the interest of scientists due to their diverse biological activities. The anti-tumor activities of heterocyclic chalcones are especially remarkable and the growing number of publications dealing with this topic warrants an up-to-date compilation. METHODS Search for antitumor active heterocyclic chalcones was carried out using Pubmed and Scifinder as common web-based literature searching tools. Pertinent and current literature was covered from 2015/2016 to 2019. Chemical structures, biological activities and modes of action of anti-tumor active heterocyclic chalcones are summarized. RESULTS Simply prepared chalcones have emerged over the last years with promising antitumor activities. Among them, there are a considerable number of tubulin polymerization inhibitors. But there are also new chalcones targeting special enzymes such as histone deacetylases or with DNA-binding properties. CONCLUSION This review provides a summary of recent heterocyclic chalcone derivatives with distinct antitumor activities.
Collapse
Affiliation(s)
- Prasad Dandawate
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Khursheed Ahmed
- Department of Chemistry, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Subhash Padhye
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar Senior College, University of Pune, 2390-B, K.B. Hidayatullah Road, Pune 411001, India
| | - Aamir Ahmad
- University of Alabama at Birmingham, 9th Ave South, Birmingham AL 33294, United States
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Harnessing the full potential of extracellular vesicles as drug carriers. Curr Opin Colloid Interface Sci 2021; 51. [DOI: 10.1016/j.cocis.2020.101412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Shi J, Zhang Y, Yao B, Sun P, Hao Y, Piao H, Zhao X. Role of Exosomes in the Progression, Diagnosis, and Treatment of Gliomas. Med Sci Monit 2020; 26:e924023. [PMID: 33245712 PMCID: PMC7706139 DOI: 10.12659/msm.924023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors associated with a low survival rate. Even after surgery, radiotherapy, and chemotherapy, gliomas still have a poor prognosis. Extracellular vesicles are a heterogeneous group of cell-derived membranous structures. Exosomes are a type of extracellular vesicles, their size ranges from 30 nm to 100 nm. Recent studies have proved that glioma cells could release numerous exosomes; therefore, exosomes have gained increasing attention in glioma-related research. Recent studies have confirmed the importance of extracellular vesicles, particularly exosomes, in the development of brain tumors, including gliomas. Exosomes mediate intercellular communication in the tumor microenvironment by transporting biomolecules (proteins, lipids, deoxyribonucleic acid, and ribonucleic acid); thereby playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Given their nanoscale size, exosomes can traverse the blood-brain barrier and promote tumor progression by modifying the tumor microenvironment. Based on their structural and functional characteristics, exosomes are demonstrating their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting glioma cells. Therefore, exosomes are a promising therapeutic target for the diagnosis, prognosis, and treatment of malignant gliomas. More research will be needed before exosomes can be used in clinical applications. Here, we describe the exosomes, their morphology, and their roles in the diagnosis and progression of gliomas. In addition, we discuss the potential of exosomes as a therapeutic target/drug delivery system for patients with gliomas.
Collapse
Affiliation(s)
- Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuanyuan Hao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xi Zhao
- Department of Anesthesia, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
9
|
Tran TT, Tran PH. Lead Compounds in the Context of Extracellular Vesicle Research. Pharmaceutics 2020; 12:E716. [PMID: 32751565 PMCID: PMC7463631 DOI: 10.3390/pharmaceutics12080716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Studies of small extracellular vesicles (sEVs), known as exosomes, have been flourishing in the last decade with several achievements, from advancing biochemical knowledge to use in biomedical applications. Physiological changes of sEVs due to the variety of cargos they carry undoubtedly leave an impression that affects the understanding of the mechanism underlying disease and the development of sEV-based shuttles used for treatments and non-invasive diagnostic tools. Indeed, the remarkable properties of sEVs are based on their nature, which helps shield them from recognition by the immune system, protects their payload from biochemical degradation, and contributes to their ability to translocate and convey information between cells and their inherent ability to target disease sites such as tumors that is valid for sEVs derived from cancer cells. However, their transport, biogenesis, and secretion mechanisms are still not thoroughly clear, and many ongoing investigations seek to determine how these processes occur. On the other hand, lead compounds have been playing critical roles in the drug discovery process and have been recently employed in studies of the biogenesis and secretion of sEVs as external agents, affecting sEV release and serving as drug payloads in sEV drug delivery systems. This article gives readers an overview of the roles of lead compounds in these two research areas of sEVs, the rising star in studies of nanoscale medicine.
Collapse
Affiliation(s)
- Thao T.D. Tran
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- The Faculty of Pharmacy, Duy Tan University, Danang 550000, Vietnam
| | - Phuong H.L. Tran
- Deakin University, School of Medicine, IMPACT, Institute for innovation in Physical and Mental health and Clinical Translation, Geelong, Australia
| |
Collapse
|
10
|
Naryzhny S, Volnitskiy A, Kopylov A, Zorina E, Kamyshinsky R, Bairamukov V, Garaeva L, Shlikht A, Shtam T. Proteome of Glioblastoma-Derived Exosomes as a Source of Biomarkers. Biomedicines 2020; 8:E216. [PMID: 32708613 PMCID: PMC7399833 DOI: 10.3390/biomedicines8070216] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EV) are involved in important processes of glioblastoma multiforme (GBM), including malignancy and invasion. EV secreted by glioblastoma cells may cross the hematoencephalic barrier and carry molecular cargo derived from the tumor into the peripheral circulation. Therefore, the determination of the molecular composition of exosomes released by glioblastoma cells seems to be a promising approach for the development of non-invasive methods of the detection of the specific exosomal protein markers in the peripheral blood. The present study aimed to determine the common exosomal proteins presented in preparations from different cell lines and search potential glioblastoma biomarkers in exosomes. We have performed proteomics analysis of exosomes obtained from the conditioned culture medium of five glioblastoma cell lines. A list of 133 proteins common for all these samples was generated. Based on the data obtained, virtual two-dimensional electrophoresis (2DE) maps of proteins presented in exosomes of glioblastoma cells were constructed and the gene ontology (GO) analysis of exosome proteins was performed. A correlation between overexpressed in glial cell proteins and their presence in exosomes have been found. Thus, the existence of many potential glioblastoma biomarkers in exosomes was confirmed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
| | - Arthur Kopylov
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
| | - Elena Zorina
- Orekhovich Institute of Biomedical Chemistry of Russian Academy of Medical Sciences Pogodinskaya 10, 119121 Moscow, Russia; (A.K.); (E.Z.)
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre ’Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy Prospect 59, 119333 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, 141700 Moscow, Russia
| | - Viktor Bairamukov
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
- Peter the Great Saint-Petersburg Polytechnic University, Politehnicheskaya 29, 19525 St. Petersburg, Russia
| | - Anatoly Shlikht
- Far Eastern Federal University, Sukhanova 8, 690091 Vladivostok, Russia;
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute NRC «Kurchatov Institute», Orlova Roshcha 1, 188300 Gatchina, Russia; (A.V.); (V.B.); (L.G.)
| |
Collapse
|
11
|
Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U, Schäfer BW. Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ 2020; 27:2500-2516. [PMID: 32144381 DOI: 10.1038/s41418-020-0518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a highly malicious childhood malignancy characterized by specific chromosomal translocations mostly encoding the oncogenic transcription factor PAX3-FOXO1 and therefore also referred to as fusion-positive RMS (FP-RMS). Previously, we have identified fenretinide (retinoic acid p-hydroxyanilide) to affect PAX3-FOXO1 expression levels as well as FP-RMS cell viability. Here, we characterize the mode of action of fenretinide in more detail. First, we demonstrate that fenretinide-induced generation of reactive oxygen species (ROS) depends on complex II of the mitochondrial respiratory chain, since ROS scavenging as well as complexing of iron completely abolished cell death. Second, we co-treated cells with a range of pharmacological inhibitors of specific cell death pathways including z-vad (apoptosis), necrostatin-1 (necroptosis), 3-methyladenine (3-MA) (autophagy), and ferrostatin-1 (ferroptosis) together with fenretinide. Surprisingly, none of these inhibitors was able to prevent cell death. Also genetic depletion of key players in the apoptotic and necroptotic pathway (BAK, BAX, and RIPK1) confirmed the pharmacological data. Interestingly however, electron microscopy of fenretinide-treated cells revealed an excessive accumulation of cytoplasmic vacuoles, which were distinct from autophagosomes. Further flow cytometry and fluorescence microscopy experiments suggested a hyperstimulation of macropinocytosis, leading to an accumulation of enlarged early and late endosomes. Surprisingly, pharmacological inhibition as well as genetic depletion of large dynamin GTPases completely abolished fenretinide-induced vesicle formation and subsequent cell death, suggesting a new form of dynamin-dependent programmed cell death. Taken together, our data identify a new form of cell death mediated through the production of ROS by fenretinide treatment, highlighting the value of this compound for treatment of sarcoma patients including FP-RMS.
Collapse
Affiliation(s)
- Eva Brack
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anja Wolf
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Liu X, Gao Y, Long X, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ogura T, Wang DO, Ikejima T. Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblastsviathe release of interleukin-6 mediated by FAK/NF-κB p65 activation. Food Funct 2020; 11:328-338. [DOI: 10.1039/c9fo01346f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type I collagen has the potential to promote the migration and differentiation of C2C12myoblastviaIL-6 release that was mediated by FAK/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Yanfang Gao
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Xinyu Long
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Toshihiko Hayashi
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
- Department of Chemistry and Life Science
| | | | | | | | | | - Dan Ohtan Wang
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
| | - Takashi Ikejima
- Wuya College of Innovation
- Shenyang Pharmaceutical University
- Shenyang, 110016
- China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
| |
Collapse
|
13
|
Seyfizadeh N, Seyfizadeh N, Borzouisileh S, Elahimanesh F, Hosseini V, Nouri M. Exosome-mediated therapeutic delivery: A new horizon for human neurodegenerative disorders’ treatment (with a focus on siRNA delivery improvement). Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Zhang X, Tan X, Liu Y, You W, Liu G, Liu X, Jin Q, Wei C, Wan F, Zhao H. Alanyl-glutamine ameliorates lipopolysaccharide-induced inflammation and barrier function injury in bovine jejunum epithelial cells. Biochem Cell Biol 2019; 97:670-680. [PMID: 30773024 DOI: 10.1139/bcb-2018-0320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to investigate the effects of alanyl-glutamine (Ala-Gln) on the regulation of lipopolysaccharide (LPS)-induced inflammation and barrier function in bovine jejunum epithelial cells (BJECs). BJECs were exposed (or not) to 1 μg/mL LPS for 24 h to generate a pro-inflammatory model. The cells were then treated with different concentrations of Ala-Gln (0.25, 0.5, 1.0, 2.0, or 4.0 mmol/L) to detect any regulatory effects on the inflammation and barrier function of BJECs. LPS decreased cell viability and enhanced the production of the pro-inflammatory cytokines interleukin (IL)-6 and IL-8. LPS induced inflammation and damaged the barrier function of BJECs, as evidenced by up-regulated mRNA and protein expression of inflammatory factors and down-regulated expression of tight junction proteins. Conversely, Ala-Gln rescued the decrease in cell viability and prevented the accumulation of ILs after LPS exposure by reducing the mRNA and protein expression levels of inflammatory factors. In addition, Ala-Gln induced the mRNA and protein expression of multiple tight junction proteins, and thus reconstituted the barrier function of BJECs. In conclusion, Ala-Gln attenuates injury from inflammation and repairs damaged intestinal barrier induced with LPS, suggesting its potential as a therapeutic agent against intestinal inflammation in mammals.
Collapse
Affiliation(s)
- Xianglun Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Xiuwen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Yifan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Xiaomu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Qing Jin
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Fachun Wan
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China.,College of Life Sciences, Shandong Normal University, Jinan 250114, People's Republic of China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Key Lab of Animal Disease Control and Breeding, Shandong Provincial Testing Center of Beef Cattle Performance, Shandong Provincial Engineering Technology Center of Animal Healthy Breeding, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| |
Collapse
|
15
|
Lertsuwan J, Lertsuwan K, Sawasdichai A, Tasnawijitwong N, Lee KY, Kitchen P, Afford S, Gaston K, Jayaraman PS, Satayavivad J. CX-4945 Induces Methuosis in Cholangiocarcinoma Cell Lines by a CK2-Independent Mechanism. Cancers (Basel) 2018; 10:E283. [PMID: 30142881 PMCID: PMC6162756 DOI: 10.3390/cancers10090283] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a disease with a poor prognosis and increasing incidence and hence there is a pressing unmet clinical need for new adjuvant treatments. Protein kinase CK2 (previously casein kinase II) is a ubiquitously expressed protein kinase that is up-regulated in multiple cancer cell types. The inhibition of CK2 activity using CX-4945 (Silmitasertib) has been proposed as a novel treatment in multiple disease settings including cholangiocarcinoma. Here, we show that CX-4945 inhibited the proliferation of cholangiocarcinoma cell lines in vitro. Moreover, CX-4945 treatment induced the formation of cytosolic vacuoles in cholangiocarcinoma cell lines and other cancer cell lines. The vacuoles contained extracellular fluid and had neutral pH, features characteristic of methuosis. In contrast, simultaneous knockdown of both the α and α' catalytic subunits of protein kinase CK2 using small interfering RNA (siRNA) had little or no effect on the proliferation of cholangiocarcinoma cell lines and failed to induce the vacuole formation. Surprisingly, low doses of CX-4945 increased the invasive properties of cholangiocarcinoma cells due to an upregulation of matrix metallopeptidase 7 (MMP-7), while the knockdown of CK2 inhibited cell invasion. Our data suggest that CX-4945 inhibits cell proliferation and induces cell death via CK2-independent pathways. Moreover, the increase in cell invasion brought about by CX-4945 treatment suggests that this drug might increase tumor invasion in clinical settings.
Collapse
Affiliation(s)
- Jomnarong Lertsuwan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
| | - Anyaporn Sawasdichai
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| | | | - Ka Ying Lee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Philip Kitchen
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Simon Afford
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Padma-Sheela Jayaraman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.
| |
Collapse
|