1
|
Barril C, Gualdoni GS, Damiano AE, Cebral E. Maternal alcohol consumption up to mouse organogenesis disrupts fetal-placental interface at mid-gestation associated with dysregulation of AQP3 immunoexpression. Biochem Biophys Res Commun 2024; 736:150875. [PMID: 39461007 DOI: 10.1016/j.bbrc.2024.150875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Adequate trophoblast development during placentation involves the AQP3 regulation. The link between potential placental fetal-maternal interface abnormalities and AQP3 expression after perigestational alcohol intake was not explored yet. Female mice were treated (TF) with 10 % ethanol in drinking water before and up to day 10 of gestation, and control females (CF) with ethanol-free water. At gestational day 13, TFs showed increased fetal/placental weight ratio and reduced histological placental thickness compared to CFs. TF-placentas had disorganized fetal face layers, increased junctional zone (JZ), and decreased labyrinth (Lab). Concomitantly, immunoexpression of cleaved caspase-3 significantly increased in TF-JZ and Lab vs controls. Consistent with placental changes, AQP3 expression was higher in junctional trophoblast giant cells (TGCs), glycogen cells (GCs), spongiotrophoblasts (spg), and lab-syncytiotrophoblasts compared to CF-placentas. This study reveals, for the first time, that perigestational alcohol consumption up to organogenesis causes abnormal placental development associated with dysregulation of AQP3 expression.
Collapse
Affiliation(s)
- Camila Barril
- Universidad de Buenos Aires- CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)- DBBE- Facultad de Ciencias Exactas y Naturales, Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Buenos Aires, Argentina
| | - Gisela Soledad Gualdoni
- Universidad de Buenos Aires- CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)- DBBE- Facultad de Ciencias Exactas y Naturales, Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Buenos Aires, Argentina
| | - Alicia E Damiano
- Universidad de Buenos Aires- CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)- Facultad de Medicina, Laboratorio de Biología de la Reproducción. Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Elisa Cebral
- Universidad de Buenos Aires- CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)- DBBE- Facultad de Ciencias Exactas y Naturales, Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Martín-Estal I, Fajardo-Ramírez OR, Bermúdez De León M, Zertuche-Mery C, Rodríguez-Mendoza D, Gómez-Álvarez P, Galindo-Rangel M, Leal López A, Castilla-Cortázar I, Castorena-Torres F. Ethanol consumption during gestation promotes placental alterations in IGF-1 deficient mouse placentas. F1000Res 2024; 10:1284. [PMID: 39640427 PMCID: PMC11617828 DOI: 10.12688/f1000research.75116.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background During pregnancy, the placenta is an extremely important organ as it secretes its own hormones, e.g. insulin-like growth factor 1 (IGF-1), to ensure proper intrauterine fetal growth and development. Ethanol, an addictive and widely used drug, has numerous adverse effects during pregnancy, including fetal growth restriction (FGR). To date, the molecular mechanisms by which ethanol triggers its toxic effects during pregnancy, particularly in the placenta, are not entirely known. For this reason, a murine model of partial IGF-1 deficiency was used to determine ethanol alterations in placental morphology and aspartyl/asparaginyl β-hydroxylase (AAH) expression. Methods Wild type (WT, Igf1 +/+) and heterozygous (HZ, Igf1 +/-) female mice were given 10% ethanol in water during 14 days as an acclimation period and throughout pregnancy. WT and HZ female mice given water were used as controls. At gestational day 19, pregnant dams were sacrificed, placentas were collected and genotyped for subsequent studies. Results IGF-1 deficiency and ethanol consumption during pregnancy altered placental morphology, and decreased placental efficiency and AAH expression in placentas from all genotypes. No differences were found in Igf1, Igf2, Igf1r and Igf2r mRNA expression in placentas from all groups. Conclusions IGF-1 deficiency and ethanol consumption throughout gestation altered placental development, suggesting the crucial role of IGF-1 in the establishment of an adequate intrauterine environment that allows fetal growth. However, more studies are needed to study the precise mechanism to stablish the relation between both insults.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | | | - Mario Bermúdez De León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, 64720, Mexico
| | - Carolina Zertuche-Mery
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | | | - Patricio Gómez-Álvarez
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | - Marcela Galindo-Rangel
- Tecnologico de Monterrey, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64710, Mexico
| | - Andrea Leal López
- Tecnologico de Monterrey, Hospital San Jose, Monterrey, Nuevo Leon, Mexico
| | | | | |
Collapse
|
3
|
Dylag KA, Wieczorek-Stawinska W, Burkot K, Drzewiecki L, Przybyszewska K, Tokarz A, Dumnicka P. Exploring Nutritional Status and Metabolic Imbalances in Children with FASD: A Cross-Sectional Study. Nutrients 2024; 16:3401. [PMID: 39408368 PMCID: PMC11478469 DOI: 10.3390/nu16193401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Malnutrition is a significant concern in paediatric populations, particularly among children with neurodevelopmental disorders such as foetal alcohol spectrum disorder (FASD). This study aimed to examine macronutrient and micronutrient imbalances and assess the nutritional status of a group of patients with FASD. METHODS This study involved an analysis of the serum levels of key nutrients in a group of children diagnosed with FASD. Macronutrients and micronutrients were measured to identify any imbalances, including vitamin D, B12, E, A, albumin, and serum protein, among others. RESULTS The study found a high prevalence of vitamin D deficiency among the patients. Additionally, elevated serum concentrations of micronutrients such as vitamin B12, E, and A were observed in 8%, 7%, and 19% of patients, respectively. Macronutrient imbalances were noted, including high levels of albumin and serum protein, indicating a possible metabolic disturbance. Unexpectedly, high rates of hypercholesterolemia were observed, raising concerns about an increased risk of metabolic syndrome in this population. CONCLUSIONS These findings suggest that the principal issue among patients with FASD is an altered metabolism rather than nutritional deficiencies. Potential causes of these abnormalities could include oxidative stress and changes in body composition. The results underline the need for further research to better understand the unique nutritional challenges in children with FASD and to guide the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Katarzyna Anna Dylag
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland
- St. Louis Children Hospital, 31-503 Krakow, Poland (A.T.)
| | | | | | | | | | | | - Paulina Dumnicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
4
|
Gualdoni GS, Barril C, Jacobo PV, Pacheco Rodríguez LN, Cebral E. Involvement of metalloproteinase and nitric oxide synthase/nitric oxide mechanisms in early decidual angiogenesis-vascularization of normal and experimental pathological mouse placenta related to maternal alcohol exposure. Front Cell Dev Biol 2023; 11:1207671. [PMID: 37670932 PMCID: PMC10476144 DOI: 10.3389/fcell.2023.1207671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Successful pregnancy for optimal fetal growth requires adequate early angiogenesis and remodeling of decidual spiral arterioles during placentation. Prior to the initiation of invasion and endothelial replacement by trophoblasts, interactions between decidual stromal cells and maternal leukocytes, such as uterine natural killer cells and macrophages, play crucial roles in the processes of early maternal vascularization, such as proliferation, apoptosis, migration, differentiation, and matrix and vessel remodeling. These placental angiogenic events are highly dependent on the coordination of several mechanisms at the early maternal-fetal interface, and one of them is the expression and activity of matrix metalloproteinases (MMPs) and endothelial nitric oxide synthases (NOSs). Inadequate balances of MMPs and nitric oxide (NO) are involved in several placentopathies and pregnancy complications. Since alcohol consumption during gestation can affect fetal growth associated with abnormal placental development, recently, we showed, in a mouse model, that perigestational alcohol consumption up to organogenesis induces fetal malformations related to deficient growth and vascular morphogenesis of the placenta at term. In this review, we summarize the current knowledge of the early processes of maternal vascularization that lead to the formation of the definitive placenta and the roles of angiogenic MMP and NOS/NO mechanisms during normal and altered early gestation in mice. Then, we propose hypothetical defective decidual cellular and MMP and NOS/NO mechanisms involved in abnormal decidual vascularization induced by perigestational alcohol consumption in an experimental mouse model. This review highlights the important roles of decidual cells and their MMP and NOS balances in the physiological and pathophysiological early maternal angiogenesis-vascularization during placentation in mice.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Cebral
- Laboratorio de Reproducción y Fisiología Materno-Embrionaria, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Gualdoni GS, Pérez-Tito L, Barril C, Sobarzo C, Cebral E. Abnormal growth and morphogenesis of placenta at term is linked to adverse fetal development after perigestational alcohol consumption up to early gestation in mouse. Birth Defects Res 2022; 114:611-630. [PMID: 35775613 DOI: 10.1002/bdr2.2063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gestation alcohol consumption produces fetal growth restriction and malformations by affecting the embryo-fetal development. Recently a relationship between abnormal placentation and fetal malformation and intrauterine growth retardation has been suggested. However, the effects of perigestational alcohol ingestion up to early pregnancy on the placenta at term and its association with fetal abnormalities are little known. METHODS In female mice, ethanol 10% in water was administered for 15 days previous and up to days 4 (D4), 8 (D8), or 10 (D10) of gestation (TF), and gestation continues without ethanol exposure. Control females (CF) received ethanol-free water. At day 18, feto-placental units and implantation sites were studied. RESULTS TF had increased resorptions and only fetuses from D8-TF and D10-TF had significantly increased weights versus CF. D4 and D10-TF-placentas had significantly reduced weights. All TF had increased junctional zone (JZ) and reduced labyrinth (Lab) areas (PAS-histology and morphometry) compared with CF. Fetuses with mainly with craniofacial abnormalities and skeletal defects (Alizarin red staining), significantly increase; while the fetal bone density (alizarin color intensity, ImageJ) was reduced in D4, D8 and D10-TF versus CF. Although all TF-placentas were histo-structural affected, TF-abnormal fetuses had the most severe placental anomalies, with junctional abundant glycogenic cells into the labyrinth, disorganized labyrinthine vascularization with signs of leukocyte infiltrates and feto-maternal blood mix. CONCLUSIONS Perigestational alcohol consumption up to early gestation induces at term fetal growth alterations, dysmorphology and defective skeleton, linked to deficient growth and abnormal morphogenesis of placenta, highlighting insight into the prenatal etiology of FASD.
Collapse
Affiliation(s)
- Gisela Soledad Gualdoni
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia Pérez-Tito
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Barril
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristian Sobarzo
- Facultad de Medicina, CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Elisa Cebral
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Gualdoni GS, Jacobo PV, Barril C, Ventureira MR, Cebral E. Early Abnormal Placentation and Evidence of Vascular Endothelial Growth Factor System Dysregulation at the Feto-Maternal Interface After Periconceptional Alcohol Consumption. Front Physiol 2022; 12:815760. [PMID: 35185604 PMCID: PMC8847216 DOI: 10.3389/fphys.2021.815760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adequate placentation, placental tissue remodeling and vascularization is essential for the success of gestation and optimal fetal growth. Recently, it was suggested that abnormal placenta induced by maternal alcohol consumption may participate in fetal growth restriction and relevant clinical manifestations of the Fetal Alcohol Spectrum Disorders (FASD). Particularly, periconceptional alcohol consumption up to early gestation can alter placentation and angiogenesis that persists in pregnancy beyond the exposure period. Experimental evidence suggests that abnormal placenta following maternal alcohol intake is associated with insufficient vascularization and defective trophoblast development, growth and function in early gestation. Accumulated data indicate that impaired vascular endothelial growth factor (VEGF) system, including their downstream effectors, the nitric oxide (NO) and metalloproteinases (MMPs), is a pivotal spatio-temporal altered mechanism underlying the early placental vascular alterations induced by maternal alcohol consumption. In this review we propose that the periconceptional alcohol intake up to early organogenesis (first trimester) alters the VEGF-NO-MMPs system in trophoblastic-decidual tissues, generating imbalances in the trophoblastic proliferation/apoptosis, insufficient trophoblastic development, differentiation and migration, deficient labyrinthine vascularization, and uncompleted remodelation and transformation of decidual spiral arterioles. Consequently, abnormal placenta with insufficiency blood perfusion, vasoconstriction and reduced labyrinthine blood exchange can be generated. Herein, we review emerging knowledge of abnormal placenta linked to pregnancy complications and FASD produced by gestational alcohol ingestion and provide evidence of the early abnormal placental angiogenesis-vascularization and growth associated to decidual-trophoblastic dysregulation of VEGF system after periconceptional alcohol consumption up to mid-gestation, in a mouse model.
Collapse
|
7
|
Analysis of telomere length variation and Shelterin complex subunit gene expression changes in ethanol-exposed human embryonic stem cells. J Psychiatr Res 2021; 143:543-549. [PMID: 33243459 PMCID: PMC8126580 DOI: 10.1016/j.jpsychires.2020.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 01/19/2023]
Abstract
Telomeres protect chromosome ends from degradation. Telomere length (TL) can be altered by aging and environmental stress. Shortened TL has been observed in peripheral blood leukocytes of alcohol dependent subjects and ethanol-exposed somatic cells. To understand the impact of ethanol on telomeres in pluripotent stem cells, we investigated the influence of ethanol on TL and the expression of six Shelterin complex subunit or telomere-regulating genes (POT1, RAP1, TIN2, TPP1, TRF1, and TRF2) in human embryonic stem cells (hESCs), which were exposed to 0, 25, 50, or 100 mM of ethanol for 3, 7, or 14 days. Ethanol-induced TL and Shelterin complex subunit gene expression changes were examined by quantitative polymerase chain reactions. Two-way ANOVA tests indicated that TL variation and expression changes of four associated Shelterin complex subunit genes (POT1, TPP1, TIN2, and TRF2) were mainly dependent on the length of ethanol exposure, while TRF1 and RAP1expression was influenced by ethanol concentration, exposure time, and the interaction of ethanol concentration and exposure time. Tukey's multiple comparison tests showed that TL and the expression of POT1, RAP1, TIN2, TPP1, and TRF1 were decreased after a 7-day (versus a 3-day) ethanol exposure. However, the decreased expression of all six Shelterin complex subunit genes was recovered and TL was not further shortened after a 14-day (versus a 7-day) ethanol exposure, likely due to the adaptation of hESCs to ethanol-induced stress. Our study provided further evidence that TL is regulated and maintained by telomere-regulating genes in stem cells under ethanol stress.
Collapse
|
8
|
Almeida-Toledano L, Andreu-Fernández V, Aras-López R, García-Algar Ó, Martínez L, Gómez-Roig MD. Epigallocatechin Gallate Ameliorates the Effects of Prenatal Alcohol Exposure in a Fetal Alcohol Spectrum Disorder-Like Mouse Model. Int J Mol Sci 2021; 22:ijms22020715. [PMID: 33450816 PMCID: PMC7828292 DOI: 10.3390/ijms22020715] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/16/2022] Open
Abstract
Fetal alcohol spectrum disorder is the main preventable cause of intellectual disability in the Western world. Although binge drinking is the most studied prenatal alcohol exposure pattern, other types of exposure, such as the Mediterranean, are common in specific geographic areas. In this study, we analyze the effects of prenatal alcohol exposure in binge and Mediterranean human drinking patterns on placenta and brain development in C57BL/6J mice. We also assess the impact of prenatal treatment with the epigallocatechin-3-gallate antioxidant in both groups. Study experimental groups for Mediterranean or binge patterns: (1) control; (2) ethanol; (3) ethanol + epigallocatechin-3-gallate. Brain and placental tissue were collected on gestational Day 19. The molecular pathways studied were fetal and placental growth, placental angiogenesis (VEGF-A, PLGF, VEGF-R), oxidative stress (Nrf2), and neurodevelopmental processes including maturation (NeuN, DCX), differentiation (GFAP) and neural plasticity (BDNF). Prenatal alcohol exposure resulted in fetal growth restriction and produced imbalances of placental angiogenic factors. Moreover, prenatal alcohol exposure increased oxidative stress and caused significant alterations in neuronal maturation and astrocyte differentiation. Epigallocatechin-3-gallate therapy ameliorated fetal growth restriction, attenuated alcohol-induced changes in placental angiogenic factors, and partially rescued neuronal nuclear antigen (NeuN), (doublecortin) DCX, and (glial fibrillary acidic protein) GFAP levels. Any alcohol consumption (Mediterranean or binge) during pregnancy may generate a fetal alcohol spectrum disorder phenotype and the consequences may be partially attenuated by a prenatal treatment with epigallocatechin-3-gallate.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Valencian International University (VIU), 46002 Valencia, Spain
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
| | - Óscar García-Algar
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Grup de Recerca Infancia i Entorn (GRIE), Institut d’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, 08028 Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - María Dolores Gómez-Roig
- BCNatal-Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, 08950 Esplugues de Llobregat, Spain; (L.A.-T.); (Ó.G.-A.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (R.A.-L.); (L.M.)
- Correspondence: (V.A.-F.); (M.D.G.-R.); Tel.: +34-609709258 (V.A.-F.); +34-670061359 (M.D.G.-R.)
| |
Collapse
|
9
|
Martín-Estal I, Castilla-Cortázar I, Castorena-Torres F. The Placenta as a Target for Alcohol During Pregnancy: The Close Relation with IGFs Signaling Pathway. Rev Physiol Biochem Pharmacol 2021; 180:119-153. [PMID: 34159446 DOI: 10.1007/112_2021_58] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alcohol is one of the most consumed drugs in the world, even during pregnancy. Its use is a risk factor for developing adverse outcomes, e.g. fetal death, miscarriage, fetal growth restriction, and premature birth, also resulting in fetal alcohol spectrum disorders. Ethanol metabolism induces an oxidative environment that promotes the oxidation of lipids and proteins, triggers DNA damage, and advocates mitochondrial dysfunction, all of them leading to apoptosis and cellular injury. Several organs are altered due to this harmful behavior, the brain being one of the most affected. Throughout pregnancy, the human placenta is one of the most important organs for women's health and fetal development, as it secretes numerous hormones necessary for a suitable intrauterine environment. However, our understanding of the human placenta is very limited and even more restricted is the knowledge of the impact of toxic substances in its development and fetal growth. So, could ethanol consumption during this period have wounding effects in the placenta, compromising proper fetal organ development? Several studies have demonstrated that alcohol impairs various signaling cascades within G protein-coupled receptors and tyrosine kinase receptors, mainly through its action on insulin and insulin-like growth factor 1 (IGF-1) signaling pathway. This last cascade is involved in cell proliferation, migration, and differentiation and in placentation. This review tries to examine the current knowledge and gaps in our existing understanding of the ethanol effects in insulin/IGFs signaling pathway, which can explain the mechanism to elucidate the adverse actions of ethanol in the maternal-fetal interface of mammals.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | | | | |
Collapse
|
10
|
Perigestational alcohol consumption induces altered early placentation and organogenic embryo growth restriction by disruption of trophoblast angiogenic factors. Reprod Biomed Online 2020; 42:481-504. [PMID: 33549483 DOI: 10.1016/j.rbmo.2020.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
RESEARCH QUESTION Maternal alcohol consumption produces fetal retardation and malformations, probably associated with placental defects. Does perigestational alcohol consumption up to organogenesis lead to abnormal placentation and embryo growth restriction by disrupting the vascular endothelial growth factor (VEGF) system in embryo-placental development? DESIGN Female mice were treated with 10% ethanol in drinking water before and up to day 10 of gestation. Control mice received ethanol-free water. After treatment, the trophoblastic tissue, embryo growth and the angiogenic VEGF pathway were analysed. RESULTS Female mice who had received treatment had resorbed and delayed implantation sites with poor ectoplacental cone development. Reduced trophoblastic area tissue from female mice who had received treatment had abnormal junctional zone and diminished labyrinthine vascularization. After treatment, the labyrinth had increased chorionic trophoblast proliferation, hypoxia inducible factor-1α immunoexpression but reduced apoptosis. The embryo growth was reduced concomitantly with low VEGF immunostaining but high endothelial nitric oxide synthase (eNOS) expression. In junctional and labyrinth of treated female mice, gene and protein immunoexpression of VEGF was reduced and the protein expression of FLT-1 increased compared with controls. Increased activation of kinase insert domain receptor receptor (phosphorylated KDR) and expression of eNOS were observed in placenta of treated female mice. Immunoexpression of metalloproteinase-9, however, was reduced in junctional zone but increased in labyrinth, compared with controls. CONCLUSIONS These data reveal inadequate expression of VEGF/receptors and angiogenic eNOS and metalloproteinase factors related to abnormal early placentation after perigestational alcohol ingestion, providing insight into aetiological factors underlying early placentopathy associated with intrauterine growth restriction caused by maternal alcohol consumption.
Collapse
|
11
|
Ince E. The protective effect of quercetin in the alcohol-induced liver and lymphoid tissue injuries in newborns. Mol Biol Rep 2019; 47:451-459. [PMID: 31673888 DOI: 10.1007/s11033-019-05148-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Recently published experimental and clinical studies indicate that oxidative stress leads to the pathogenesis and progression of alcohol-induced tissue injuries. Quercetin is a type of flavonoid compound that influences antioxidant and anti-inflammatory activities have protective and therapeutic effects for treating various diseases including diabetes mellitus and neuro-degenerative diseases. In this study, fetal alcohol syndrome was tested in rat models, with the aim of verifying the protective effect of quercetin in preventing alcohol-induced liver and lymphoid tissue (thymus, spleen, and lymph nodes) injuries on the 21st day for the offspring of alcohol treated mother rats. The pregnant rats were randomly assigned into four groups. The control group (C) (n = 3) of pregnant rats received only physiological saline intraperitoneally (i.p.) throughout the pregnancy (1 to 21 days gestation) and during lactation until postnatal day 21. The quercetin positive control group (QT) of pregnant rats (n = 3) received quercetin at 50 mg/kg/days i.p. for the same period. The ethanol treatment group (E) (n = 3) of pregnant rats received 1 ml/day of 40% v/v ethanol (4 g/kg) intragastrically (i.g) for the same period. The model group of pregnant rats (EQ) received ethanol + quercetin (n = 3) with a dose of 1 ml/day of v/v ethanol (4 g/kg i.g.) and quercetin at 50 mg/kg body weight per day i.p. for the same period. Ten offspring were used in each of the C, QT, E and EQ groups. Malondialdehyde (MDA), protein carbonyl content (PC) and chemiluminescence levels (CL) in liver and lymphoid tissues significantly increased in group E versus the C group (P < 0.05-P < 0.001) whereas glutathione levels (GSH), glutathione reductase (GR), glutathione peroxidase (GP), superoxide dismutase (SOD), and catalase (CAT) activities significantly decreased in group E compared to the C group (P < 0.05-< 0.001). However, tissue MDA, PC, and CL levels decreased in the EQ group compared to group E. GSH level, GP, GR, SOD, and CAT activity were significantly increased by quercetin (P < 0.05-P < 0.001). The plasma TNFα, IL-1β, and IL-6 levels and NF-κB activation significantly increased in group E compared to the C and QT groups, but IL-10 significantly decreased in group E compared to the C and QT groups. The TNFα, IL-1β, and IL-6 levels and NF-κB activation significantly decreased in group EQ compared to group E. In conclusion, quercetin has a protective effect against maternal alcohol-induced oxidative and inflammatory damage in the liver and lymphoid tissues of newborn rats.
Collapse
Affiliation(s)
- Erdal Ince
- Department of Medical Science Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, 34096, Fatih/Istanbul, Turkey.
| |
Collapse
|
12
|
Ohira S, Motoki N, Shibazaki T, Misawa Y, Inaba Y, Kanai M, Kurita H, Shiozawa T, Nakazawa Y, Tsukahara T, Nomiyama T. Alcohol Consumption During Pregnancy and Risk of Placental Abnormality: The Japan Environment and Children's Study. Sci Rep 2019; 9:10259. [PMID: 31312010 PMCID: PMC6635355 DOI: 10.1038/s41598-019-46760-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
There have been no large nationwide birth cohort studies examining for the effects of maternal alcohol use during pregnancy on placental abnormality. This study searched for associations between alcohol consumption and the placental abnormalities of placenta previa, placental abruption, and placenta accreta using the fixed dataset of a large national birth cohort study commencing in 2011 that included 80,020 mothers with a singleton pregnancy. The presence of placental abnormalities and potential confounding factors were recorded, and multiple logistic regression analysis was employed to search for correlations between maternal alcohol consumption during pregnancy and placental abnormalities. The overall rate of prenatal drinking until the second/third trimester was 2.7% (2,112). The prevalence of placenta previa, placental abruption, and placenta accreta was 0.58% (467), 0.43% (342), and 0.20% (160), respectively. After controlling for potential confounding factors, maternal alcohol use during pregnancy was significantly associated with the development of placenta accreta (OR 3.10, 95%CI 1.69-5.44). In conclusion, this large nationwide survey revealed an association between maternal drinking during pregnancy and placenta accreta, which may lead to excessive bleeding during delivery.
Collapse
Affiliation(s)
- Satoshi Ohira
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Noriko Motoki
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Takumi Shibazaki
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yuka Misawa
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yuji Inaba
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Neurology, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano, 399-8288, Japan
| | - Makoto Kanai
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroshi Kurita
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Teruomi Tsukahara
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tetsuo Nomiyama
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | | |
Collapse
|
13
|
New Insights into the Process of Placentation and the Role of Oxidative Uterine Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9174521. [PMID: 31341539 PMCID: PMC6615000 DOI: 10.1155/2019/9174521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
For a successful pregnancy to occur, a predecidualized receptive endometrium must be invaded by placental differentiated cells (extravillous trophoblast cells (EVTs)) and, at the same time, continue decidualization. EVT invasion is aimed at anchoring the placenta to the maternal uterus and ensuring local blood supply increase necessary to provide normal placental and foetal development. The first is achieved by migrating through the maternal endometrium and deeper into the myometrium, while the second by transforming uterine spiral arteries into large vessels. This process is a tightly regulated battle comprising interests of both the mother and the foetus. Invading EVTs are required to perform a scope of functions: move, adhere, proliferate, differentiate, interact, and digest the extracellular matrix (ECM); tolerate hypoxia; transform the maternal spiral arteries; and die by apoptosis. All these functions are modulated by their surrounding microenvironment: oxygen, soluble factors (e.g., cytokines, growth factors, and hormones), ECM proteins, and reactive oxygen species. A deeper comprehension of oxidative uterine microenvironment contribution to trophoblast function will be addressed in this review.
Collapse
|
14
|
Jakoubek V, Hampl V. Alcohol and fetoplacental vasoconstrictor reactivity. Physiol Res 2018. [PMID: 29527911 DOI: 10.33549/physiolres.933609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alcohol abuse during pregnancy is a well-known factor in fetal morbidity, including smaller fetal size. We have shown that chronic hypoxia, considered the main pathogenetic factor in intrauterine growth restriction, elevates fetoplacental vascular resistance (and vasoconstrictor reactivity) and thus, presumably, reduces placental blood flow. We thus hypothesized that alcohol may affect the fetus - in addition to other mechanisms - by altering fetoplacental vascular resistance and/or reactivity. Using isolated, double-perfused rat placenta model, we found that maternal alcohol intake in the last third of gestation doubled the vasoconstrictor responses to angiotensin II but did not affect resting vascular resistance. Reactivity to acute hypoxic challenges was unchanged. Chronic maternal alcohol intake in a rat model alters fetoplacental vasculature reactivity; nevertheless, these changes do not appear as serious as other detrimental effects of alcohol on the fetus.
Collapse
Affiliation(s)
- V Jakoubek
- Department of Physiology Second Medical School, Charles University in Prague, Prague 5, Czech Republic.
| | | |
Collapse
|
15
|
Sánchez MC, Fontana VA, Galotto C, Cambiasso MY, Sobarzo CMA, Calvo L, Calvo JC, Cebral E. Murine sperm capacitation, oocyte penetration and decondensation following moderate alcohol intake. Reproduction 2018; 155:529-541. [PMID: 29626105 DOI: 10.1530/rep-17-0507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/06/2018] [Indexed: 01/22/2023]
Abstract
Male chronic alcohol abuse causes testicular failure and infertility. We analyzed the effects of moderate sub-chronic alcohol intake on sperm morphology, capacitation, fertilization and sperm head decondensation. CF-1 male mice were administered 15% ethanol in drinking water for 15 days; control mice received ethanol-free water. Similar patterns of tyrosine phosphorylation were observed in capacitated spermatozoa of control and treated males. Percentage of hyperactivation (H) and spontaneous (SAR) and progesterone-induced (IAR) acrosome reaction significantly decreased at 120 and 150 min of capacitation in treated males compared to controls (H: 14.1 ± 2.5 vs 23.7 ± 2.6, P < 0.05; SAR-T120 min: 17.9 ± 2.5 vs 32.9 ± 4.1, P < 0.01; IAR-150 min: 43.3 ± 3.5 vs 73.1 ± 1.1, P < 0.001, n = 6). During in vitro fertilization (2.5, 3.5 and 4.5 h post-insemination), there was an increased percentage of fertilized oocytes (with a decondensed sperm head and one or two pronuclei) in treated males (P < 0.001, n = 7). After 60 min of in vitro decondensation with glutathione plus heparin, the percentage of decondensed sperm heads was significantly higher in treated males than in controls (mean ± s.d.: 57.1 ± 5.6 vs 48.3 ± 4.5, P < 0.05, n = 5). The percentage of morphologically normal sperm heads was significantly decreased in treated males with respect to controls (P < 0.001, n = 9). These results show that short-term moderate alcohol consumption in outbred mice affect sperm morphology, hyperactivation, acrosomal exocytosis, and the dynamics of in vitro fertilization and in vitro sperm nuclear decondensation.
Collapse
Affiliation(s)
- Melisa C Sánchez
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Vanina A Fontana
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina.,Departamento de Química BiológicaFacultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Camila Galotto
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Maite Y Cambiasso
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Cristian M A Sobarzo
- Universidad de Buenos AiresFacultad de Medicina, CONICET-Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Lucrecia Calvo
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Juan C Calvo
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina.,Departamento de Química BiológicaFacultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Elisa Cebral
- Universidad de Buenos AiresFacultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina .,CONICET-Universidad de Buenos AiresInstituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET), Buenos Aires, Argentina
| |
Collapse
|