1
|
Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, Evaristo-Priego A, Priego-Hernández VD, Dircio-Maldonado R, Zacapala-Gómez AE, Mendoza-Catalán MÁ, Illades-Aguiar B, De Nova Ocampo MA, Salmerón-Bárcenas EG, Leyva-Vázquez MA, Ortiz-Ortiz J. Bioinformatics Analysis Reveals E6 and E7 of HPV 16 Regulate Metabolic Reprogramming in Cervical Cancer, Head and Neck Cancer, and Colorectal Cancer through the PHD2-VHL-CUL2-ELOC-HIF-1α Axis. Curr Issues Mol Biol 2024; 46:6199-6222. [PMID: 38921041 PMCID: PMC11202971 DOI: 10.3390/cimb46060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1β to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.
Collapse
Affiliation(s)
- Adán Arizmendi-Izazaga
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Adilene Evaristo-Priego
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Víctor Daniel Priego-Hernández
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Miguel Ángel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Mónica Ascención De Nova Ocampo
- Escuela Nacional de Medicina y Homeopatía, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, Ciudad de Mexico C.P. 07320, Mexico;
| | - Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico;
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| |
Collapse
|
2
|
Dai P, Xiong L, Wei Y, Wei X, Zhou X, Zhao J, Tang H. A pancancer analysis of the oncogenic role of cyclin B1 (CCNB1) in human tumors. Sci Rep 2023; 13:16226. [PMID: 37758792 PMCID: PMC10533567 DOI: 10.1038/s41598-023-42801-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant levels of the G2/M cyclin cyclin B1 (gene CCNB1) have been associated with multiple cancers; however, the literature lacks a focused and comprehensive analysis of the regulation of this important regulator of cell proliferation in cancer. Through this work, we performed a pancancer analysis of the levels of CCNB1 and dissected aspects of regulation and how this correlates with cancer prognosis. We comprehensively evaluated the expression and promoter methylation of CCNB1 across 38 cancers based on RNA sequencing data obtained from the Cancer Genome Atlas (TCGA). The correlation of CCNB1 with prognosis and the tumor microenvironment was explored. Using lung adenocarcinoma data, we studied the potential upstream noncoding RNAs involved in the regulation of CCNB1 and validated the protein levels and prognostic value of CCNB1 for this disease site. CCNB1 was highly expressed, and promoter methylation was reduced in most cancers. Gene expression of CCNB1 correlated positively with poor prognosis of tumor patients, and these results were confirmed at the protein level using lung adenocarcinoma. CCNB1 expression was associated with the infiltration of T helper cells, and this further correlated with poor prognosis for certain cancers, including renal clear cell carcinoma and lung adenocarcinoma. Subsequently, we identified a specific upstream noncoding RNA contributing to CCNB1 overexpression in lung adenocarcinoma through correlation analysis, expression analysis and survival analysis. This study provides a comprehensive analysis of the expression and methylation status of CCNB1 across several forms of cancer and provides further insight into the mechanistic pathways regulating Cyclin B1 in the tumorigenesis process.
Collapse
Affiliation(s)
- Peng Dai
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lecai Xiong
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Wei
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Xuefeng Zhou
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinping Zhao
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Hexiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Guo D, Yang M, Li S, Zhu W, Chen M, Pan J, Long D, Liu Z, Zhang C. Expression and molecular regulation of non-coding RNAs in HPV-positive head and neck squamous cell carcinoma. Front Oncol 2023; 13:1122982. [PMID: 37064141 PMCID: PMC10090466 DOI: 10.3389/fonc.2023.1122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignancy worldwide. Accumulating evidence suggests that persistent HPV infection is closely related to a subset of HNSCC types, and the incidence of human papillomavirus (HPV)-positive HNSCC has been annually increasing in recent decades. Although the carcinogenesis of HPV-positive HNSCC has not been completely elucidated, it has been well confirmed that E6 and E7, the main viral oncoproteins are responsible for the maintenance of malignant transformation, promotion of cell proliferation, and increase in tumor invasion. Moreover, compared with HPV-negative HNSCC, HPV-positive HNSCC shows some special clinical-pathological features, which are possibly related to HPV infection and their specific regulatory mechanisms. Non-coding RNA (ncRNA) is a class of RNA lacking the protein-coding function and playing a critical regulatory role via multiple complex molecular mechanisms. NcRNA is an important regulatory pattern of epigenetic modification, which can exert significant effects on HPV-induced tumorigenesis and progression by deregulating downstream genes. However, the knowledge of ncRNAs is still limited, hence, a better understanding of ncRNAs could provide some insights for exploring the carcinogenesis mechanism and identifying valuable biomarkers in HPV-positive HNSCC. Therefore, in this review, we mainly focused on the expression profile of ncRNAs (including lncRNA, miRNA, and circRNA) and explored their regulatory role in HPV-positive HNSCC, aiming to clarify the regulatory mechanism of ncRNAs and identify valuable biomarkers for HPV-positive HNSCC.
Collapse
|
4
|
Peng X, Wu X, Wu G, Peng C, Huang B, Huang M, Ding J, Mao C, Zhang H. MiR-129-2-3p Inhibits Esophageal Carcinoma Cell Proliferation, Migration, and Invasion via Targeting DNMT3B. Curr Mol Pharmacol 2023; 16:116-123. [PMID: 35260066 DOI: 10.2174/1874467215666220308122716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE The study aims to explore the regulatory mechanism of miR-129-2-3p underlying esophageal carcinoma (EC) cell progression and generate new ideas for targeted treatment of EC. METHODS Mature miRNA expression data and total RNA sequencing data of EC in the TCGAESCA dataset were utilized to explore differentially expressed miRNAs (DEmiRNAs). StarBase database was then utilized to predict targets of miRNA. MiR-129-2-3p and DNMT3B expression in EC cell lines was assayed through qRT-PCR and Western blot. CCK-8, scratch healing, and transwell assays were conducted to assess the impact of miR-129-2-3p on EC cell phenotypes. In addition, a dual-luciferase assay was completed to identify the binding relationship between DNMT3B and miR-129-2-3p. RESULTS MiR-129-2-3p was noticeably less expressed in EC cell lines, while DNMT3B was highly expressed. MiR-129-2-3p could bind to DNMT3B. Furthermore, in vitro functional experiments uncovered that overexpressed miR-129-2-3p repressed EC cell progression while further overexpressing DNMT3B would restore the above inhibitory effect. CONCLUSION MiR-129-2-3p is a cancer repressor in EC cells, and it could target DNMT3B, thus hampering the progression of EC cells.
Collapse
Affiliation(s)
- Xuyang Peng
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chongxiong Peng
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Mingjiang Huang
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| |
Collapse
|
5
|
Wang X, Zhao Y, Strohmer DF, Yang W, Xia Z, Yu C. The prognostic value of MicroRNAs associated with fatty acid metabolism in head and neck squamous cell carcinoma. Front Genet 2022; 13:983672. [PMID: 36110217 PMCID: PMC9468645 DOI: 10.3389/fgene.2022.983672] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer in humans globally. In addition to smoking and drinking, genetic and epigenetic changes also play a big role in how HNSCC starts and grows. MicroRNAs are short, non-coding RNAs that control cell differentiation and apoptosis by interfering with gene expression. In addition, microRNAs in HNSCC have been shown to affect the clinical behaviors of HNSCC in amazing ways. Moreover, metabolic reprogramming is a key part of cancer and is needed for cancer to turn into a tumor and grow. But it is still not clear what effect microRNAs related to fatty acid metabolism have on the prognosis of HNSCC patients. We downloaded the data of HNSCC patients from the TCGA database and obtained the genes associated with fatty acid metabolism according to the GSEA database. Then, the microRNAs associated with fatty acid metabolism genes were matched. Finally, fatty acid metabolism gene-associated microRNAs for calculating risk scores and then building multifactorial Cox regression models in patients with HNSCC. Heatmap analysis showed that microRNAs involved in fatty acid metabolism were significantly different in HNSCC patients than in healthy controls. A total of 27 microRNAs associated with fatty acid metabolism were screened by univariate Cox analysis (p < 0.05). Using lasso regression, 18 microRNAs substantially linked with the prognosis of HNSCC patients were identified and included in risk scores. The ROC curves demonstrate that risk scores derived from microRNAs involved in fatty acid metabolism can accurately predict the prognosis of HNSCC patients at 1, 3, and 5 years. Moreover, we discovered that 11 microRNAs included in the risk score properly distinguished the prognosis of HNSCC patients. This paper indicated that microRNAs involved with fatty acid metabolism are strongly linked to the prognosis of HNSCC patients. It also indicated that reprogramming of fatty acid metabolism in tumor tissues may play an important role in HNSCC cancer.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Zhao
- Department of Breast Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wenjin Yang
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
- *Correspondence: Zhijia Xia, ; Cong Yu,
| | - Cong Yu
- Department of Neurosurgery, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- *Correspondence: Zhijia Xia, ; Cong Yu,
| |
Collapse
|
6
|
Ghafouri-Fard S, Hussen BM, Shaterabadi D, Abak A, Shoorei H, Taheri M, Rakhshan A. The Interaction Between Human Papilloma Viruses Related Cancers and Non-coding RNAs. Pathol Res Pract 2022; 234:153939. [DOI: 10.1016/j.prp.2022.153939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
7
|
Zhang R, Tang L, Li Q, Tian Y, Zhao B, Zhou B, Yang L. Cholesterol modified DP7 and pantothenic acid induce dendritic cell homing to enhance the efficacy of dendritic cell vaccines. MOLECULAR BIOMEDICINE 2021; 2:37. [PMID: 35006477 PMCID: PMC8643384 DOI: 10.1186/s43556-021-00058-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic cell (DC)-based cancer vaccines have so far achieved good therapeutic effects in animal experiments and early clinical trials for certain malignant tumors. However, the overall objective response rate in clinical trials rarely exceeds 15%. The poor efficiency of DC migration to lymph nodes (LNs) (< 5%) is one of the main factors limiting the effectiveness of DC vaccines. Therefore, increasing the efficiency of DC migration is expected to further enhance the efficacy of DC vaccines. Here, we used DP7-C (cholesterol modified VQWRIRVAVIRK), which can promote DC migration, as a medium. Through multiomics sequencing and biological experiments, we found that it is the metabolite pantothenic acid (PA) that improves the migration and effectiveness of DC vaccines. We clarified that both DP7-C and PA regulate DC migration by regulating the chemokine receptor CXCR2 and inhibiting miR-142a-3p to affect the NF-κB signaling pathway. This study will lay the foundation for the subsequent use of DP7-C as a universal substance to promote DC migration, further enhance the antitumor effect of DC vaccines, and solve the bottleneck problem of the low migration efficiency and unsatisfactory clinical response rate of DC vaccines.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Qing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
8
|
Medda A, Duca D, Chiocca S. Human Papillomavirus and Cellular Pathways: Hits and Targets. Pathogens 2021; 10:262. [PMID: 33668730 PMCID: PMC7996217 DOI: 10.3390/pathogens10030262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Human Papillomavirus (HPV) is the causative agent of different kinds of tumors, including cervical cancers, non-melanoma skin cancers, anogenital cancers, and head and neck cancers. Despite the vaccination campaigns implemented over the last decades, we are far from eradicating HPV-driven malignancies. Moreover, the lack of targeted therapies to tackle HPV-related tumors exacerbates this problem. Biomarkers for early detection of the pathology and more tailored therapeutic approaches are needed, and a complete understanding of HPV-driven tumorigenesis is essential to reach this goal. In this review, we overview the molecular pathways implicated in HPV infection and carcinogenesis, emphasizing the potential targets for new therapeutic strategies as well as new biomarkers.
Collapse
Affiliation(s)
| | | | - Susanna Chiocca
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (A.M.); (D.D.)
| |
Collapse
|
9
|
Li T, Feng Z, Wang Y, Zhang H, Li Q, Schiferle E, Qin Y, Xiao S. Antioncogenic Effect of MicroRNA-206 on Neck Squamous Cell Carcinoma Through Inhibition of Proliferation and Promotion of Apoptosis and Autophagy. Hum Gene Ther 2020; 31:1260-1273. [PMID: 32900244 DOI: 10.1089/hum.2020.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies have reported the crucial role of stanniocalcin-2 (STC2) in hepatocellular carcinoma; however, its role in head and neck squamous cell carcinoma (HNSCC) remains elusive. In this study, microRNA-206 (miR-206) was predicted to target STC2 gene. The study herein aimed to elucidate the effect of miR-206 on HNSCC by targeting STC2. STC2 was highly expressed in HNSCC tissues and cells. By targeting STC2, miR-206 decreased mRNA and protein expression of STC2. Importantly, our study showed that miR-206 blocked the Akt signaling pathway by inhibiting STC2. Intriguingly, our data from in vitro and in vivo experiments suggested that miR-206 overexpression led to decreased cell proliferation and increased cell apoptosis and autophagy, as well as suppressed tumor growth; whereas, STC2 silencing reversed the effects of miR-206 inhibitor on those biological behaviors. In this study, we investigated the antioncogenic effect of miR-206 on HNSCC by targeting STC2, and highlighted miR-206/STC2 aixs as potential therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Tiancheng Li
- Departments of Otorhinolaryngology-Head and Neck Surgery ,Peking University First Hospital, Beijing, P.R. China
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, P.R. China
| | - Yingyi Wang
- Department of Oncology, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Hong Zhang
- Departments of Pathology, Peking University First Hospital, Beijing, P.R. China
| | - Qian Li
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erik Schiferle
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yao Qin
- Departments of Otorhinolaryngology-Head and Neck Surgery ,Peking University First Hospital, Beijing, P.R. China
| | - Shuifang Xiao
- Departments of Otorhinolaryngology-Head and Neck Surgery ,Peking University First Hospital, Beijing, P.R. China
| |
Collapse
|
10
|
Zhang Q, Chen Y, Hu SQ, Pu YM, Zhang K, Wang YX. A HPV16-related prognostic indicator for head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1492. [PMID: 33313237 PMCID: PMC7729314 DOI: 10.21037/atm-20-6338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The human papillomavirus (HPV) is emerging as an important risk factor in head and neck squamous cell carcinoma (HNSCC) patients. This has been observed particularly in the case of HPV16. The HPV16+ HNSCC subtype has distinct pathological, clinical, molecular, and prognostic characteristics. This study aimed to identify potential microRNAs (miRNAs) and their roles in HPV16+ HNSCC progression. Method miRNA, mRNA and the clinical data of 519 HNSCC and 44 HNSCC-negative samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs (DEMs) in HPV16-related HNSCC tissues with prognostic value were selected. DEM levels were assessed based on clinicopathological parameters and overall survival (OS). Target genes were also predicted and functional analysis based on Gene Set Enrichment Analysis (GSEA) were then performed. Results In HPV16+ HNSCC tissues, miR-99a-3p and miR-4746-5p were significantly upregulated. In contrast, miR-411-5p was shown to be downregulated. miR-99a-3phighmiR-411-5plowmiR-4746-5phigh expression could estimate improved OS and low frequent perineural invasion (PNI). Predicted target genes were enriched in cell growth, neuroepithelial cell differentiation, MAPK and FoxO signaling pathways. Epithelial mesenchymal transition (EMT) gene set and invasion related genes were downregulated in miR-99a-3phighmiR-411-5plowmiR-4746-5phigh HNSCC patients. Conclusion miR-99a-3p, miR-411-5p and miR-4746-5p might participate in HPV16+ HNSCC progression through EMT related pathways and affect prognosis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongfeng Chen
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Mei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Chamorro Petronacci CM, García García A, Padín Iruegas E, Rivas Mundiña B, Lorenzo Pouso AI, Pérez Sayáns M. Identification of Prognosis Associated microRNAs in HNSCC Subtypes Based on TCGA Dataset. ACTA ACUST UNITED AC 2020; 56:medicina56100535. [PMID: 33066067 PMCID: PMC7650743 DOI: 10.3390/medicina56100535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Background and Objectives: Head and Neck Squamous Cell Carcinoma (HNSCC) includes cancers from the oral cavity, larynx, and oropharynx and is the sixth-most common cancer worldwide. MicroRNAs are small non-coding RNAs for which altered expression has been demonstrated in pathological processes, such as cancer. The objective of our study was to evaluate the different expression profile in HNSCC subtypes and the prognostic value that one or several miRNAs may have. Materials and Methods: Data from The Cancer Genome Atlas Program-Head and Neck Squamous Cell Carcinoma (TCGA-HNSCC) patients were collected. Differential expression analysis was conducted by edge R-powered TCGAbiolinks R package specific function. Enrichment analysis was developed with Diana Tool miRPath 3.0. Kaplan-Meier survival estimators were used, followed by log-rank tests to compute significance. Results: A total of 127 miRNAs were identified with differential expression level in HNSCC; 48 of them were site-specific and, surprisingly, only miR-383 showed a similar deregulation in all locations studied (tonsil, mouth, floor of mouth, cheek mucosa, lip, tongue, and base of tongue). The most probable affected pathways based on miRNAs interaction levels were protein processing in endoplasmic reticulum, proteoglycans in cancer (p < 0.01), Hippo signaling pathway (p < 0.01), and Transforming growth factor-beta (TGF-beta) signaling pathway (p < 0.01). The survival analysis highlighted 38 differentially expressed miRNAs as prognostic biomarkers. The miRNAs with a greater association between poor prognosis and altered expression (p < 0.001) were miR-137, miR-125b-2, miR-26c, and miR-1304. Conclusions: In this study we have determined miR-137, miR-125b-2, miR-26c, and miR-1304 as novel powerful prognosis biomarkers. Furthermore, we have depicted the miRNAs expression patterns in tumor patients compared with normal subjects using the TCGA-HNSCC cohort.
Collapse
Affiliation(s)
- Cintia M. Chamorro Petronacci
- Faculty of Medicine and Dentistry, Health Research, Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago, IDIS), Oral Medicine, Oral Surgery and Implantology University, Santiago de Compostela University, 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.G.G.); (A.I.L.P.)
| | - Abel García García
- Faculty of Medicine and Dentistry, Health Research, Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago, IDIS), Oral Medicine, Oral Surgery and Implantology University, Santiago de Compostela University, 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.G.G.); (A.I.L.P.)
| | - Elena Padín Iruegas
- Department of Functional Biology and Health Sciences, Faculty of Physiotherapy, Human Anatomy and Embryology Area, Vigo University, 36001 Pontevedra, Spain;
| | - Berta Rivas Mundiña
- Pathology and Therapeutic Unity, Faculty of Medicine and Dentistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Alejandro I. Lorenzo Pouso
- Faculty of Medicine and Dentistry, Health Research, Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago, IDIS), Oral Medicine, Oral Surgery and Implantology University, Santiago de Compostela University, 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.G.G.); (A.I.L.P.)
| | - Mario Pérez Sayáns
- Faculty of Medicine and Dentistry, Health Research, Institute of Santiago de Compostela (Instituto de Investigación Sanitaria de Santiago, IDIS), Oral Medicine, Oral Surgery and Implantology University, Santiago de Compostela University, 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.G.G.); (A.I.L.P.)
- Correspondence: ; Tel.: +34-62-623-3504
| |
Collapse
|
12
|
Liu L, Li F, Wen Z, Li T, Lv M, Zhao X, Zhang W, Liu J, Wang L, Ma X. Preliminary investigation of the function of hsa_circ_0049356 in nonobstructive azoospermia patients. Andrologia 2020; 52:e13814. [PMID: 32894622 DOI: 10.1111/and.13814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023] Open
Abstract
Nonobstructive azoospermia (NOA), which is considered the most severe form of male infertility, has placed a heavy burden on families and society. As vital regulators of transcriptional and post-transcriptional levels, Noncoding RNAs (ncRNAs) are closely related to all the pathophysiological processes involved in infertility in males, especially spermatogenesis. Our study explored the expression levels of circ_0049356 in both the whole blood and seminal plasma samples of idiopathic NOA patients via quantitative real-time PCR. Furthermore, the relative expression of its host gene (CARM1) was also determined using the same methods. In addition, as circRNAs have been demonstrated to regulate gene expression as miRNAs sponge, we predicted a total of five miRNAs and 101 mRNAs as putative downstream targets and constructed a circRNA-miRNA-mRNA network. Based on the predictions, Gene Ontology and KEGG pathway analyses were performed for further bioinformatics analysis to explore the potential function and investigate the circ_0049356-miRNA-mRNA interactions. Our results show target mRNAs that have been predicted to regulate guanyl-nucleotide exchange factor activity to mediate the GTP/GDP exchange, and downstream targets possibly involved in the regulation of the actin cytoskeleton, which play a significant role in cytoskeleton rearrangement of germ cells during spermatogenesis.
Collapse
Affiliation(s)
- Lin Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | | | - Zhen Wen
- Lanzhou University, Lanzhou, China
| | - Tao Li
- Lanzhou University, Lanzhou, China
| | - Meng Lv
- Lanzhou University, Lanzhou, China
| | - Xiaodong Zhao
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Wei Zhang
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Jing Liu
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Liyan Wang
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| | - Xiaoling Ma
- The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Reproductive Medicine and Embryo of Gansu Province, Lanzhou, China
| |
Collapse
|
13
|
Abstract
This study aimed to investigate the microRNA (miRNA) profile in primary tumors from conjunctival melanoma with and without subsequent metastatic spread along with their coupled distant metastases to identify miRNAs likely to be involved in metastatic progression. This observational study included 13 patients with metastatic conjunctival melanoma (follow-up: 1-39 years) treated at a Danish referral center. Twenty-five patients with nonmetastatic conjunctival melanoma (follow-up: 5-17 years) were included for comparison. Global miRNA profiling was performed with the Affymetrix GeneChip 4.1 microarray. Taqman qPCR arrays were used for validation. Significant differentially expressed miRNAs were defined as having a false discovery rate of less than 0.05. Primary conjunctival melanoma with and without subsequent metastatic spread clustered separately according to miRNA expression, and 15 miRNAs were found to have significant differential expression. Six miRNAs (hsa-miR-4528, hsa-miR-1270, hsa-miR-1290, hsa-mir-548f-4, hsa-mir-4278, and hsa-miR-34a-3p) were downregulated and nine miRNAs were upregulated (hsa-mir-575, hsa-miR-527, hsa-miR-518a-5p, hsa-miR-6759-5p, hsa-miR-8078, hsa-mir-4501, hsa-mir-622, hsa-mir-4698, and hsa-mir-4654) in primary conjunctival melanoma with subsequent metastatic spread. A comparison of primary conjunctival melanoma with their pair-matched metastases identified six significant differentially expressed miRNAs (hsa-miR-1246 and hsa-miR-302d-5p, hsa-mir-6084, hsa-miR-184, hsa-mir-658, and hsa-mir-4427). qPCR confirmed downregulation of hsa-miR-184 in the distant metastases when compared with the corresponding primary tumor. Primary conjunctival melanoma with and without subsequent metastatic spread separated clearly on the miRNA level when profiled with microarray-based methods. qPCR was able to replicate expression levels of one miRNA (hsa-miR-184) that was downregulated in metastases when compared with corresponding primary tumors.
Collapse
|
14
|
Arisan ED, Dart A, Grant GH, Arisan S, Cuhadaroglu S, Lange S, Uysal-Onganer P. The Prediction of miRNAs in SARS-CoV-2 Genomes: hsa-miR Databases Identify 7 Key miRs Linked to Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities. Viruses 2020; 12:v12060614. [PMID: 32512929 PMCID: PMC7354481 DOI: 10.3390/v12060614] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the betacoronavirus family, which causes COVID-19 disease. SARS-CoV-2 pathogenicity in humans leads to increased mortality rates due to alterations of significant pathways, including some resulting in exacerbated inflammatory responses linked to the “cytokine storm” and extensive lung pathology, as well as being linked to a number of comorbidities. Our current study compared five SARS-CoV-2 sequences from different geographical regions to those from SARS, MERS and two cold viruses, OC43 and 229E, to identify the presence of miR-like sequences. We identified seven key miRs, which highlight considerable differences between the SARS-CoV-2 sequences, compared with the other viruses. The level of conservation between the five SARS-CoV-2 sequences was identical but poor compared with the other sequences, with SARS showing the highest degree of conservation. This decrease in similarity could result in reduced levels of transcriptional control, as well as a change in the physiological effect of the virus and associated host-pathogen responses. MERS and the milder symptom viruses showed greater differences and even significant sequence gaps. This divergence away from the SARS-CoV-2 sequences broadly mirrors the phylogenetic relationships obtained from the whole-genome alignments. Therefore, patterns of mutation, occurring during sequence divergence from the longer established human viruses to the more recent ones, may have led to the emergence of sequence motifs that can be related directly to the pathogenicity of SARS-CoV-2. Importantly, we identified 7 key-microRNAs (miRs 8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) with significant links to KEGG pathways linked to viral pathogenicity and host responses. According to Bioproject data (PRJNA615032), SARS-CoV-2 mediated transcriptomic alterations were similar to the target pathways of the selected 7 miRs identified in our study. This mechanism could have considerable significance in determining the symptom spectrum of future potential pandemics. KEGG pathway analysis revealed a number of critical pathways linked to the seven identified miRs that may provide insight into the interplay between the virus and comorbidities. Based on our reported findings, miRNAs may constitute potential and effective therapeutic approaches in COVID-19 and its pathological consequences.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey;
| | - Alwyn Dart
- Institute of Medical and Biomedical Education, St George’s University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK;
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Serdar Arisan
- Department of Urology, Şişli Hamidiye Etfal Research and Training Hospital, 34360 Istanbul, Turkey;
| | - Songul Cuhadaroglu
- Thoracic Surgery Clinic, Memorial Hospital Sisli, Kaptanpasa Mah. Piyalepasa Bulvarı, 434385 Istanbul, Turkey;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
15
|
Zhang C, Mi J, Deng Y, Deng Z, Long D, Liu Z. DNMT1 Enhances the Radiosensitivity of HPV-Positive Head and Neck Squamous Cell Carcinomas via Downregulating SMG1. Onco Targets Ther 2020; 13:4201-4211. [PMID: 32523356 PMCID: PMC7237113 DOI: 10.2147/ott.s227395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/18/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Head and neck squamous cell carcinoma (HNSCC), which rank the 7th malignant tumors worldwide, is closely related to methylation and HPV infection. Ionizing radiation therapy is the main strategy for HNSCC patients in advanced stage. Previously, HPV-positive HNSCC predict better prognosis than HPV-negative HNSCCs under radiotherapy, however its molecular mechanism is unresolved. SMG1 serves as a potential tumor suppressor in various cancers, including HNSCC. Methods The mRNAs and proteins expression of HPV E6/E7, p16, p53, DNMT1, SMG1 were detected after different treatments by qPCR and Western blot. The clone formation ability was measured in radiation dose after different treatments. Results In our study, the expression of HPV16 E6, DNA Methyltransferase 1(DNMT1) and SMG1 in head and neck carcinomas cell lines was detected by RT-qPCR and Western blot. Forced E6 level in HPV-negative cells by overexpression plasmid promoted the expression of DNMT1, which resulted in decreased SMG1 expression. Silenced SMG1 in HPV-negative HNSCC cells elicited increased radiation sensitivity, suggesting that SMG1 may be an effective switch to regulate the effect of radiotherapy in HNSCC. Conclusion Our study indicated that DNMT1 enhances the radiosensitivity of HPV-positive head and neck squamous cell carcinomas via downregulating SMG1.
Collapse
Affiliation(s)
- Chunlin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiaoping Mi
- Department of Otorhinolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sun University, Zunyi, People's Republic of China
| | - Yuan Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zeyi Deng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dan Long
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China.,The Graduate School of Zunyi Medical University, Zunyi, People's Republic of China
| | - Zhaohui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
16
|
Javed Z, Farooq HM, Ullah M, Iqbal MZ, Raza Q, Sadia H, Pezzani R, Salehi B, Sharifi-Rad J, Cho WC. Wnt Signaling: A Potential Therapeutic Target in Head and
Neck Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2019; 20:995-1003. [PMID: 31030466 PMCID: PMC6948882 DOI: 10.31557/apjcp.2019.20.4.995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cellular maintenance and development are two fundamental mechanisms regulated by the canonical Wnt signaling pathway. Wnt/beta-catenin signaling pathway controls a myriad of cellular processes that are essential for normal cell functioning. Cell cycle progression, differentiation, fate determination, and migration are generally orchestrated by canonical Wnt signaling. Altered Wnt/beta-catenin signaling has been considered a promoting event for different types of cancers and the oncogenic potential of Wnt signaling have been discussed in many cancer types, including breast, colon, pancreatic as well as head and neck. Furthermore, Wnt signaling is critical for the maintenance and stemness of both the normal as well as cancer stem cells. This review sheds new light on Wnt signaling and explains how it can regulate normal physiological processes and curtail the development of cancer. It depicts the vital functions of Wnt signaling in the stem cell growth and differentiation by focusing on current druggable targets that have been ascribed by recent studies. Thus, Wnt signaling pathway retains a tremendous potential in eradicating head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
| | | | | | - Muhammad Zaheer Iqbal
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Pakistan,
| | - Qamar Raza
- Center for Excellence in Molecular Biology, University of The Punjab, Lahore,
| | | | - Raffaele Pezzani
- OU Endocrinology, Department of Medicine (DIMED), University of Padova, via Ospedale 105,
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy,
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam,
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran,
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| |
Collapse
|
17
|
Spugnini EP, Logozzi M, Di Raimo R, Mizzoni D, Fais S. A Role of Tumor-Released Exosomes in Paracrine Dissemination and Metastasis. Int J Mol Sci 2018; 19:E3968. [PMID: 30544664 PMCID: PMC6321583 DOI: 10.3390/ijms19123968] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial⁻mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called "tumor niches" in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.
Collapse
Affiliation(s)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
18
|
Dong W, Li H, Wu X. Rab11-FIP2 suppressed tumor growth via regulation of PGK1 ubiquitination in non-small cell lung cancer. Biochem Biophys Res Commun 2018; 508:60-65. [PMID: 30471866 DOI: 10.1016/j.bbrc.2018.11.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Mounting evidence has shown that the Rab11-FIP2 has critical roles in cancer cell growth. However, the clinical significance of Rab11-FIP2 in Non-small cell lung cancer (NSCLC) remains to be fully elucidated. In this study, we investigated the expression of Rab11-FIP2 using immunohistochemistry in 150 patients with NSCLC. We found that its expression level in NSCLC was much lower than that in the corresponding adjacent normal tissues. The DNA methylation data revealed that Rab11-FIP2 were significantly hypermethylated in NSCLC. The methylation level in the gene body was negatively correlated with the expression level of Rab11-FIP2 in NSCLC. Furthermore, enforced expression of Rab11-FIP2 dramatically reduced cancer cell proliferation and tumorigenesis, indicating a tumor suppressor role of PGK1 in NSCLC progression. Mechanistic investigations showed that Rab11-FIP2 interacted with the glycolytic kinase PGK1 and promoted its ubiquitination in NSCLC cells, leading to inactivation of the oncogenic AKT/mTOR signaling pathway. Overall, our data indicate that reduced expression of Rab11-FIP2 by DNA hypermethylation plays an important role in NSCLC tumor growth.
Collapse
Affiliation(s)
- Wenjie Dong
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, China.
| | - Huixia Li
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, China
| | - Xinai Wu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, China.
| |
Collapse
|