1
|
Liu Y, Liu S, Wan S, Li Z, Li H, Tang S. Anti-inflammatory properties of Bacillus pumilus TS1 in lipopolysaccharide-induced inflammatory damage in broilers. Anim Biotechnol 2024; 35:2418516. [PMID: 39460459 DOI: 10.1080/10495398.2024.2418516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study investigates whether Bacillus pumilus TS1 improves growth performance and alleviates inflammatory damage in broilers and explored its feasibility as an antibiotic alternative. We divided 240 one-day-old AA308 white-finned broilers into five groups (con, LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS). The TS1L + LPS, TS1M + LPS and TS1H + LPS groups were fed TS1 for 15 days by gavage. The LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS groups were injected intraperitoneally with 1 mg/kg LPS for three days. We investigated the probiotic and anti-inflammatory activities by measuring body weight, sequencing the intestinal flora and examining the structure of tissues by using pathological stain, real-time PCR, Western blotting and immunohistochemical detection. TS1 could improve growth performance and intestinal flora composition, also reduced different organ damage and inflammatory cytokine expression in serum and organs. The mechanism may involve upregulating HSP60 and HSP70 expression, targeting and regulating Nrf2 and P38 MAPK and modulating NF-κB and HO-1 expression at the transcriptional level in different organs. B. pumilus TS1 alleviated Inflammatory injury caused by LPS and attenuated the inflammatory response in broilers, and these effects were achieved through MAPK and Nrf2 regulation of HSPs/HO-1 in different organs. The above results suggested broilers fed with TS1 could release the LPS caused organ damage, and the most suggested dosage was 1.4 × 108 CFU/mL.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sirui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Amin SN, Asali F, Aolymat I, Abuquteish D, Abu Al Karsaneh O, El Gazzar WB, Shaltout SA, Alabdallat YJ, Elberry DA, Kamar SS, Hosny SA, Mehesen MN, Rashed LA, Farag AM, ShamsEldeen AM. Comparing MitoQ10 and heat therapy: Evaluating mechanisms and therapeutic potential for polycystic ovary syndrome induced by circadian rhythm disruption. Chronobiol Int 2023; 40:1004-1027. [PMID: 37548004 DOI: 10.1080/07420528.2023.2241902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/12/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Environmental factors, such as sleep restriction, contribute to polycystic ovary syndrome (PCOS) by causing hyperinsulinemia, hyperandrogenism, insulin resistance, and oligo- or anovulation. This study aimed to evaluate the effects of circadian rhythm disruption on reproductive and metabolic functions and investigate the potential therapeutic benefits of MitoQ10 and hot tub therapy (HTT). Sixty female rats were divided into six groups: control, MitoQ10, HTT, and three groups with PCOS induced by continuous light exposure(L/L). The reproductive, endocrine, and structural manifestations ofL/L-induced PCOS were confirmed by serum biochemical measurements, ultrasound evaluation of ovarian size, and vaginal smear examination at week 14. Subsequently, the rats were divided into the L/L (untreated), L/L+MitoQ10-treated, andL/L+HTT-treated groups. At the end of week 22, all rats were sacrificed. Treatmentwith MitoQ10 or HTT partially reversed the reproductive, endocrine, and structural features of PCOS, leading to a decreased amplitude of isolated uterine contractions, ovarian cystic changes and size, and endometrial thickness. Furthermore, both interventions improved the elevated serum levels of anti-Mullerian hormone (AMH), kisspeptin, Fibulin-1, A disintegrin and metalloproteinase with thrombospondin motifs 19 (ADAMTS-19), lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR), oxidative stress markers, androgen receptors (AR) and their transcription target genes, FKBP52 immunostaining in ovarian tissues, and uterine estrogen receptor alpha (ER-α) and PRimmunostaining. In conclusion, MitoQ10 supplementation and HTT demonstrated the potential for ameliorating metabolic, reproductive, and structural perturbations associated with PCOS induced by circadian rhythm disruption. These findings suggest a potential therapeutic role for these interventions in managing PCOS in women.
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fida Asali
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Dua Abuquteish
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Centre, Amman, Jordan
| | - Ola Abu Al Karsaneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa 13133, Jordan
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif Ahmed Shaltout
- Department of Pharmacology, Public Health, and Clinical Skills, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia Azmy Elberry
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Histology, Armed Forces College of Medicine, Cairo, Egypt
| | - Sara Adel Hosny
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Nahda University, Beni Suef, Egypt
| | - Marwa Nagi Mehesen
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Asmaa Mohammed ShamsEldeen
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Physiology, Faculty of Medicine, October 6 University, Cairo, Egypt
| |
Collapse
|
3
|
The role of calcium, Akt and ERK signaling in cadmium-induced hair cell death. Mol Cell Neurosci 2023; 124:103815. [PMID: 36634791 DOI: 10.1016/j.mcn.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Exposure to heavy metals has been shown to cause damage to a variety of different tissues and cell types including hair cells, the sensory cells of our inner ears responsible for hearing and balance. Elevated levels of one such metal, cadmium, have been associated with hearing loss and shown to cause hair cell death in multiple experimental models. While the mechanisms of cadmium-induced cell death have been extensively studied in other cell types they remain relatively unknown in hair cells. We have found that calcium signaling, which is known to play a role in cadmium-induced cell death in other cell types through calmodulin and CaMKII activation as well as IP3 receptor and mitochondrial calcium uniporter mediated calcium flow, does not appear to play a significant role in cadmium-induced hair cell death. While calmodulin inhibition can partially protect hair cells this may be due to impacts on mechanotransduction activity. Removal of extracellular calcium, and inhibiting CaMKII, the IP3 receptor and the mitochondrial calcium uniporter all failed to protect against cadmium-induced hair cell death. We also found cadmium treatment increased pAkt levels in hair cells and pERK levels in supporting cells. This activation may be protective as inhibiting these pathways enhances cadmium-induced hair cell death rather than protecting cells. Thus cadmium-induced hair cell death appears distinct from cadmium-induced cell death in other cell types where calcium, Akt and ERK signaling all promote cell death.
Collapse
|
4
|
Liu Y, Li Z, Li H, Wan S, Tang S. Bacillus pumilus TS1 alleviates Salmonella Enteritidis-induced intestinal injury in broilers. BMC Vet Res 2023; 19:41. [PMID: 36759839 PMCID: PMC9912683 DOI: 10.1186/s12917-023-03598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the current context of reduced and limited antibiotic use, several pathogens and stressors cause intestinal oxidative stress in poultry, which leads to a reduced feed intake, slow or stagnant growth and development, and even death, resulting in huge economic losses to the poultry breeding industry. Oxidative stress in animals is a non-specific injury for which no targeted drug therapy is available; however, the health of poultry can be improved by adding appropriate feed additives. Bacillus pumilus, as a feed additive, promotes growth and development and reduces intestinal oxidative stress damage in poultry. Heat shock protein 70 (HSP70) senses oxidative damage and repairs unfolded and misfolded proteins; its protective effect has been widely investigated. Mitogen-activated protein kinase/protein kinase C (MAPK/PKC) and hypoxia inducible factor-1 alpha (HIF-1α) are also common proteins associated with inflammatory response induced by several stressors, but there is limited research on these proteins in the context of poultry intestinal Salmonella Enteritidis (SE) infections. In the present study, we isolated a novel strain of Bacillus pumilus with excellent performance from the feces of healthy yaks, named TS1. To investigate the effect of TS1 on SE-induced enteritis in broilers, 120 6-day-old white-feathered broilers were randomly divided into four groups (con, TS1, SE, TS1 + SE). TS1 and TS1 + SE group chickens were fed with 1.4 × 107 colony-forming units per mL of TS1 for 15 days and intraperitoneally injected with SE to establish the oxidative stress model. Then, we investigated whether TS1 protects the intestine of SE-treated broiler chickens using inflammatory cytokine gene expression analysis, stress protein quantification, antioxidant quantification, and histopathological analysis. RESULTS The TS1 + SE group showed lower MDA and higher GSH-Px, SOD, and T-AOC than the SE group. TS1 alleviated the effects of SE on intestinal villus length and crypt depth. Our results suggest that SE exposure increased the expression of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and MCP-1), p38 MAPK, and PKCβ and decreased the expression of HSP60, HSP70, and HIF-1α, whereas TS1 alleviated these effects. CONCLUSIONS Bacillus pumilus TS1 alleviated oxidative stress damage caused by SE and attenuated the inflammatory response in broilers through MAPK/PKC regulation of HSPs/HIF-1α.
Collapse
Affiliation(s)
- Yinkun Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
The regulatory mechanism of HSP70 in endoplasmic reticulum stress in pepsin-treated laryngeal epithelium cells and laryngeal cancer cells. Aging (Albany NY) 2022; 14:8486-8497. [DOI: 10.18632/aging.204356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
|
6
|
Rafieian-Naeini HR, Zhandi M, Sadeghi M, Yousefi AR, Benson AP. Effects of coenzyme Q10 on reproductive performance of laying Japanese quail (Coturnix japonica) under cadmium challenge. Poult Sci 2021; 100:101418. [PMID: 34600273 PMCID: PMC8531857 DOI: 10.1016/j.psj.2021.101418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/02/2022] Open
Abstract
Japanese quail is an increasingly important bird of economic importance for commercial egg and meat production, particularly in developing countries. There is a need for research aimed at improving efficiency of these birds during stressful challenges, such as oxidative stress. Coenzyme Q10 (CoQ10), a highly functional antioxidant, protects cells against oxidative stress. This study was conducted to determine the effects of CoQ10 on reproductive performance of Japanese quail under cadmium (Cd) challenge. A total of 216 six-wk-old Japanese quail were randomly allocated into 3 groups for an 8 wk experimental trial. The treatments include a negative control (NC): feeding basal diet; a positive control (PC): feeding basal diet and cadmium administration (1 mg/100 g BW, at 10 and 11 wk of age), and (CdQ10): feeding CoQ10 supplemented (900 mg/kg diet) basal diet and Cd administration. At 11 and 13 wk of age, egg production, body weight, mortality, oviduct, and ovarian biometry, were recorded. Histology and histopathology of isthmus and magnum, fertility, hatchability, hatchling quality, and HSP70 mRNA transcript abundance in the utero-vaginal junction (UVJ) were evaluated. Positive control and CdQ10 group had no significant effect on live body weight, stroma weight, follicle size, hatchability, and fertility; however, Cd administration increased (P < 0.01) mortality rate in the PC group compared to the NC and CdQ10 groups. CdQ10 quail produced more eggs and had a higher hatchling quality compared to the PC group (P < 0.01). The thickness and height of isthmus and magnum folds in the CdQ10 group was increased compared to the PC group (P < 0.01) and overall oviduct weight was increased with CoQ10 supplementation (P < 0.01). Compared to PC, the CdQ10 group had a reduction in infiltration of inflammatory cells. Relative abundance of HSP70 mRNA in UVJ was influenced by interactive effect of treatment × time (P < 0.05). In conclusion, dietary supplementation of CoQ10 showed beneficial effects on some reproduction characteristics of female Japanese quail under Cd-induced oxidative stress.
Collapse
Affiliation(s)
- Hamid Reza Rafieian-Naeini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Alborz, Karaj, Iran
| | - Ali Reza Yousefi
- Department of Pathology and Experimental Animals, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Andrew Parks Benson
- Department of Poultry Science, University of Georgia, Athens, GA 30602-2772, USA
| |
Collapse
|
7
|
Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9615429. [PMID: 34413929 PMCID: PMC8369192 DOI: 10.1155/2021/9615429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/09/2021] [Indexed: 12/23/2022]
Abstract
Keap1-Nrf2-ARE and heat shock proteins (Hsps) are important endogenous protection mechanisms initiated by heat stress to play a double protective role for cell adaptation and survival. H9C2 cells and 80 300-day-old specific pathogen-free chickens were randomly divided into the control and tea polyphenol groups and used to establish a heat stress model in vitro and in vivo. This task was conducted to explore the protection and mechanism of tea polyphenols in relieving thermal injury. A supplement with 10 μg/mL tea polyphenols could effectively relieve the heat damage of H9C2 cells at 42°C. Accordingly, weaker granular degeneration, vacuolar degeneration, and nucleus deep staining were shown. A strong antioxidant capacity was manifested in the upregulation of the total antioxidant capacity (T-AOC) (at 5 h, P < 0.05), Hemeoxygenase-1 mRNA (at 2 h, P < 0.01), superoxide dismutase (SOD) (at 2, 3, and 5 h, P < 0.05), and Nrf2 (at 0 and 5 h, P < 0.01). A high expression of Hsps was reflected in CRYAB at 3 h; Hsp27 at 0, 2, and 3 h (P < 0.01); and Hsp70 at 3 and 5 h (P < 0.01). The supplement with 0.2 g/L tea polyphenols in the drinking water also had a good effect in alleviating the heat stress damage of the myocardial cells of hens at 38°C. Accordingly, light pathological lesions and downregulation of the myocardial injury-related indicators (LDH, CK, CK-MB, and TNF-α) were shown. The mechanism was related to the upregulation of T-AOC (at 0 h, P < 0.05), GSH-PX (at 0.5 d, P < 0.01), SOD (at 0.5 d), and Nrf2 (at 0 d with P < 0.01 and 2 d with P < 0.05) and the induced expression of CRYAB (at 0.5 and 2 d), Hsp27 (at 0, 0.5, and 5 d), and Hsp70 (at 0 and 0.5 d). In conclusion, the tea polyphenols enhanced the antioxidant capacity and induced Hsps to relieve heat stress injury.
Collapse
|
8
|
Ingersoll MA, Malloy EA, Caster LE, Holland EM, Xu Z, Zallocchi M, Currier D, Liu H, He DZZ, Min J, Chen T, Zuo J, Teitz T. BRAF inhibition protects against hearing loss in mice. SCIENCE ADVANCES 2020; 6:6/49/eabd0561. [PMID: 33268358 PMCID: PMC7821884 DOI: 10.1126/sciadv.abd0561] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/20/2020] [Indexed: 05/13/2023]
Abstract
Hearing loss caused by noise, aging, antibiotics, and chemotherapy affects 10% of the world population, yet there are no Food and Drug Administration (FDA)-approved drugs to prevent it. Here, we screened 162 small-molecule kinase-specific inhibitors for reduction of cisplatin toxicity in an inner ear cell line and identified dabrafenib (TAFINLAR), a BRAF kinase inhibitor FDA-approved for cancer treatment. Dabrafenib and six additional kinase inhibitors in the BRAF/MEK/ERK cellular pathway mitigated cisplatin-induced hair cell death in the cell line and mouse cochlear explants. In adult mice, oral delivery of dabrafenib repressed ERK phosphorylation in cochlear cells, and protected from cisplatin- and noise-induced hearing loss. Full protection was achieved in mice with co-treatment with oral AZD5438, a CDK2 kinase inhibitor. Our study explores a previously unidentified cellular pathway and molecular target BRAF kinase for otoprotection and may advance dabrafenib into clinics to benefit patients with cisplatin- and noise-induced ototoxicity.
Collapse
Affiliation(s)
- Matthew A Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Emma A Malloy
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Lauryn E Caster
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Eva M Holland
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Zhenhang Xu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huizhan Liu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - David Z Z He
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
9
|
Tan GH, Li JZ, Zhang YY, You MF, Liao CM, Zhang YG. Association of PRKCA expression and polymorphisms with layer duck eggshell quality. Br Poult Sci 2020; 62:8-16. [PMID: 32893664 DOI: 10.1080/00071668.2020.1817329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. Eggshell quality is important for the poultry industry. Calcium is deposited during eggshell formation, and protein kinase C alpha (PRKCA) is involved in transmembrane transport of calcium ions in cells. However, the biological function of PRKCA in poultry is still not understood. Therefore, the aim of this study was to explore the association of mRNA expression and single nucleotide polymorphisms (SNPs) of the PRKCA gene with eggshell quality in laying ducks. 2. The mRNA expression and SNPs of the PRKCA gene were detected by real-time fluorescence quantitative PCR (qRT-PCR) and sequencing of PCR products in 45-week-old female Sansui ducks, which is a high production layer duck breed in China. The association of mRNA expression and SNPs in the PRKCA gene with layer duck eggshell traits was analysed using SPSS (v18.0) software. 3. The results demonstrated that PRKCA mRNA was widely expressed in all examined tissues, and expression was highest in kidney and lowest in the gizzard. Furthermore, the PRKCA mRNA level in uterus was significantly positively correlated with eggshell strength and eggshell weight (P < 0.05). Three novel SNPs, the synonymous mutations of g.9571770 T > C in exon 5, g.9583222 C > T and g.9583227 G > A in exon 7, were found in the PRKCA gene, giving four haplotypes and 10 diplotypes, which affected the mRNA secondary structure and free energy. The g.9583222 C > T and g.9583227 G > A mutations were significantly associated with eggshell strength (P < 0.05). Diplotype H1H1 was advantageous for increasing the strength and thickness of an eggshell. 4. In conclusion, the study showed that the mRNA transcription and genetic variation in the PRKCA gene could significantly affect the strength of duck eggshell and that the PRKCA gene is an important candidate gene for improving eggshell quality in poultry.
Collapse
Affiliation(s)
- G H Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - J Z Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - Y Y Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - M F You
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - C M Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University , Guiyang, Guizhou, People's Republic of China
| | - Y G Zhang
- Tiantang Town Agricultural Technology Management Station , Tongren City, People's Republic of China
| |
Collapse
|
10
|
Wei ZD, Sun YZ, Tu CX, Qi RQ, Huo W, Chen HD, Gao XH. DNAJA4 deficiency augments hyperthermia-induced Clusterin and ERK activation: two critical protective factors of human keratinocytes from hyperthermia-induced injury. J Eur Acad Dermatol Venereol 2020; 34:2308-2317. [PMID: 32277496 DOI: 10.1111/jdv.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hyperthermia upregulates DNAJA4, a member of heat shock proteins (HSPs) 40 family, in human keratinocytes and HPV-infected tissue. DNAJA4 deficiency enhances growth arrest induced by hyperthermia. Clusterin (CLU) and phosphorylated ERK (p-ERK) play a role in regulating cell proliferation and apoptosis, under environmental stress. OBJECTIVES To examine the downstream molecules and signalling pathways of DNAJA4 and assess their roles in cell cycle and apoptosis of keratinocytes in response to hyperthermia. METHODS Wild-type and DNAJA4-knockout (KO) HaCaT cells were exposed to either 44 °C (hyperthermia) or 37 °C (control) for 30 min. The expression levels of CLU and p-ERK were determined by RT-PCR and Western blotting. RNAi and PD98059 were used to inhibit the expression of CLU and p-ERK, respectively. Cell viability, cell cycle and apoptosis were analysed by MTS assay and flow cytometry. Fresh biopsy samples of human normal foreskin or condyloma acuminatum (CA) were utilized to examine the expression of CLU and p-ERK after ex vivo culture at 44 °C. RESULTS The expression of CLU and p-ERK was significantly increased by hyperthermia treatment at 44 °C in HaCaT cells, foreskin and HPV-infected tissues. In HaCaT cells subjected to hyperthermia, DNAJA4 deficiency further augmented the expression of CLU and p-ERK. CLU deficiency enhanced the p-ERK expression. Hyperthermia-induced CLU and p-ERK exerted protective roles mainly through inhibiting apoptosis and maintaining cell cycle, respectively. CONCLUSIONS In keratinocytes, CLU and p-ERK are induced by hyperthermia, an effect which can be further enhanced by DNAJA4 deficiency. CLU deficiency also increases p-ERK expression. Both CLU and p-ERK are critical protective factors of human keratinocytes from hyperthermia-induced injury.
Collapse
Affiliation(s)
- Z-D Wei
- China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China.,Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Y-Z Sun
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - C-X Tu
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, China
| | - R-Q Qi
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - W Huo
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - H-D Chen
- Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| | - X-H Gao
- China Medical University, Shenyang, China.,Key Laboratory of Immunodermatology, Department of Dermatology, The First Hospital of China Medical University, Ministry of Health and Ministry of Education, China and National Engineering Research Center for Immunodermatoloigcal Theranostics, Shenyang, China
| |
Collapse
|
11
|
Yin B, Tang S, Xu J, Sun J, Zhang X, Li Y, Bao E. CRYAB protects cardiomyocytes against heat stress by preventing caspase-mediated apoptosis and reducing F-actin aggregation. Cell Stress Chaperones 2019; 24:59-68. [PMID: 30246229 PMCID: PMC6363628 DOI: 10.1007/s12192-018-0941-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/28/2022] Open
Abstract
CRYAB is a small heat shock protein (sHSP) that has previously been shown to protect the heart against various cellular stresses; however, its precise function in myocardial cell injury caused by heat stress remains unclear. This study aimed to investigate the molecular mechanism by which CRYAB protects cardiomyocytes against heat stress. We constructed two H9C2 cell lines that stably express CRYAB protein to differing degrees: CRYAB-5 and CRYAB-7. Both CRYAB-5 and CRYAB-7 showed significantly reduced granular degeneration and vacuolar degeneration following heat stress compared to control cells. In addition, CRYAB overexpression in H9C2 cells relieved cell cycle proportion at the G0/G1 phase following heat stress compared to control cells. These protective effects were associated with the level of CRYAB protein expression. Our immunofluorescence analysis showed CRYAB could translocate from the cytoplasm to the nucleus under heat stress conditions, but that CRYAB co-localized with F-actin (which accumulates under stress conditions). Indeed, overexpression of CRYAB significantly reduced the aggregation of F-actin in H9C2 cells caused by heat stress. Furthermore, overexpressing CRYAB protein significantly reduced the apoptosis of cardiomyocytes induced by heat stress, likely by reducing the expression of cleaved-caspase 3. Collectively, our results show overexpression of CRYAB significantly increases the heat resistance of H9C2 cardiomyocytes, likely by reducing F-actin aggregation (thus stabilizing the cytoskeleton), regulating the cell cycle, and preventing caspase-mediated apoptosis.
Collapse
Affiliation(s)
- Bin Yin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiarui Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Xiaohui Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Yubao Li
- College of Agronomy, Liaocheng University, Hunan road 1, Liaocheng, 252000, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|