1
|
Bhawna, Kumar S, Kumar P, Kumar A. Correlation intensity index-index of ideality of correlation: A hyphenated target function for furtherance of MAO-B inhibitory activity assessment. Comput Biol Chem 2024; 108:107975. [PMID: 37950961 DOI: 10.1016/j.compbiolchem.2023.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023]
Abstract
Monoamine oxidases are the enzymes involved in the management of brain homeostasis through oxidative deamination of monoamines such as neurotransmitters, tyramine etc. The excessive production of monoamine oxidase-B specifically results in numerous neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Inhibitors of monoamine oxidase-B are applied in the management of these disorders. Here in this article we have developed robust hybrid descriptor based QSAR models related to 123 monoamine oxidase-B inhibitors through CORAL software by means of Monte Carlo optimization method. Three target functions were applied to prepare QSAR models and three splits were made for each target function. The most reliable, robust and better predictive QSAR models were developed with TF3 (correlation intensity index -index of ideality of correlation). Correlation intensity index showed positive effect on QSAR models. The structural features obtained from the QSAR modeling were incorporated in newly designed molecules and exhibited positive effect on their endpoint. Significant binding interactions were represented by these molecules in docking studies. Molecule B5 displayed prominent pIC50 (8.3) and binding affinity (-11.5 kcal mol-1) towards monoamine oxidase-B.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| |
Collapse
|
2
|
Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. The System of Self-Consistent Models: QSAR Analysis of Drug-Induced Liver Toxicity. TOXICS 2023; 11:toxics11050419. [PMID: 37235234 DOI: 10.3390/toxics11050419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Removing a drug-like substance that can cause drug-induced liver injury from the drug discovery process is a significant task for medicinal chemistry. In silico models can facilitate this process. Semi-correlation is an approach to building in silico models representing the prediction in the active (1)-inactive (0) format. The so-called system of self-consistent models has been suggested as an approach for two tasks: (i) building up a model and (ii) estimating its predictive potential. However, this approach has been tested so far for regression models. Here, the approach is applied to building up and estimating a categorical hepatotoxicity model using the CORAL software. This new process yields good results: sensitivity = 0.77, specificity = 0.75, accuracy = 0.76, and Matthew correlation coefficient = 0.51 (all compounds) and sensitivity = 0.83, specificity = 0.81, accuracy = 0.83 and Matthew correlation coefficient = 0.63 (validation set).
Collapse
Affiliation(s)
- Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alessandra Roncaglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
3
|
Goyal S, Rani P, Chahar M, Hussain K, Kumar P, Sindhu J. Quantitative structure activity relationship studies of androgen receptor binding affinity of endocrine disruptor chemicals with index of ideality of correlation, their molecular docking, molecular dynamics and ADME studies. J Biomol Struct Dyn 2023; 41:13616-13631. [PMID: 37010991 DOI: 10.1080/07391102.2023.2193991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 04/04/2023]
Abstract
Endocrine disrupter chemicals (EDCs) are both natural and man-made chemicals that mimic, block or interfere with human hormonal system. In the present manuscript, QSAR modeling was performed for the androgen disruptors that interfere with biosynthesis, metabolism or action of androgens that causes adverse effects on male reproductive system. A set of 96 EDCs that exhibited affinity towards androgen receptors (Log RBA) in rats were employed for carrying out QSAR studies using Hybrid descriptors (combination of HFG and SMILES) through Monte Carlo Optimization. Using index of ideality of correlation (TF2), five splits were formed and predictability of five models resulting from these splits was assessed by various validation parameters. Models resulted from first split was the top most one with R2validation = 0.7878. Structural attributes responsible for change in endpoint were studied by employing correlation weights of structural attributes. In order to further validate the model, new EDCs were designed using these attributes. In silico molecular modelling studies were performed to assess the detailed interactions with the receptor. The binding energies of all the designed compounds were observed to be better than lead and are in the range of -10.46 to -14.80. Molecular dynamics simulation of 100 ns was performed for ED01 and NED05. The results revealed that the protein-ligand complex bearing NED05 was more stable than lead ED01 exhibiting better interactions with the receptor. Further, in an attempt to assess their metabolism, ADME studies were evaluated using SwissADME. The developed model enables to predict the characteristics of designed compounds in an authentic way.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Surbhi Goyal
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Monika Chahar
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Khalid Hussain
- Department of AS&H, Mewat Engineering College, Palla, Nuh, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
4
|
Kumar P, Kumar A. Correlation intensity index (CII) as a benchmark of predictive potential: Construction of quantitative structure activity relationship models for anti-influenza single-stranded DNA aptamers using Monte Carlo optimization. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
Toropova AP, Toropov AA, Benfenati E. Semi-correlations as a tool to model for skin sensitization. Food Chem Toxicol 2021; 157:112580. [PMID: 34560179 DOI: 10.1016/j.fct.2021.112580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/20/2021] [Indexed: 01/10/2023]
Abstract
Semi-correlation specifically assesses the correlation between a binary variable and a continuous variable. Semi-correlations were applied to develop binary models for various endpoints. We applied the semi-correlation to develop models of two kinds of skin sensitization one related to animals (local lymph node assay LLNA) and one to human beings (direct peptide reactivity assay DPRA and/or human cell line activation test h-CLAT). The models refer to binary classification for a two-level strategy: the first level (analysis of all compounds) is used in the format "sensitizer or non-sensitizer", and the second level (only sensitizers) is a further classification in the format "strong or weak sensitizer". The ranges of statistical characteristics of the models depend on the endpoint, LLNA or DPRA/h-CLAT: for the first level, sensitivity: 0.69-0.88, specificity: 0.75-0.89, accuracy: 0.77-0.87, Matthew's correlation coefficient (MCC): 0.54-0.57 and for the second level, sensitivity: 0.70-1.0, specificity: 0.78-0.83, accuracy: 0.77-0.87, MCC: 0.54-0.76. Thus, the described approach can be applied to building up models of the skin sensitization potency.
Collapse
Affiliation(s)
- Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy.
| | - Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milano, Italy
| |
Collapse
|
6
|
Perić V, Golubović M, Lazarević M, Marjanović V, Kostić T, Đorđević M, Milić D, Veselinović AM. Development of potential therapeutics for pain treatment by inducing Sigma 1 receptor antagonism – in silico approach. NEW J CHEM 2021. [DOI: 10.1039/d1nj00883h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
QSAR modeling with computer-aided drug design were used for the in silico development of novel therapeutics for pain treatment.
Collapse
Affiliation(s)
- Velimir Perić
- Department for Cardiac Surgery
- Clinic for Anaesthesiology and Intensive Therapy
- Clinical Center Niš
- Niš
- Serbia
| | - Mladjan Golubović
- Department for Cardiac Surgery
- Clinic for Anaesthesiology and Intensive Therapy
- Clinical Center Niš
- Niš
- Serbia
| | - Milan Lazarević
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Vesna Marjanović
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Tomislav Kostić
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Miodrag Đorđević
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | - Dragan Milić
- Faculty of Medicine
- Department of Chemistry
- Medical School of Niš
- University of Niš
- 18000 Niš
| | | |
Collapse
|
7
|
Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, Lal S, Kumar A, Kumar S, Hussain K. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn 2020; 40:4933-4953. [PMID: 33357037 DOI: 10.1080/07391102.2020.1863861] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present manuscript describes the synthesis, α-amylase inhibition, in silico studies and in-depth quantitative structure-activity relationship (QSAR) of a library of aroyl hydrazones based on benzothiazole skeleton. All the compounds of the developed library are characterized by various spectral techniques. α-Amylase inhibitory potential of all compounds has been explored, where compound 7n exhibits remarkable α-amylase inhibition of 87.5% at 50 µg/mL. Robust QSAR models are made by using the balance of correlation method in CORAL software. The chemical structures at different concentration with optimal descriptors are represented by SMILES. A data set of 66 SMILES of 22 hydrazones at three distinct concentrations are prepared. The significance of the index of ideality of correlation (IIC) with applicability domain (AD) is also studied at depth. A QSAR model with best Rvalidation2 = 0.8587 for split 1 is considered as a leading model. The outliers and promoters of increase and decrease of endpoint are also extracted. The binding modes of the most active compound, that is, 7n in the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) are also explored by in silico molecular docking studies. Compound 7n displays high resemblance in binding mode and pose with the standard drug acarbose. Molecular dynamics simulations performed on protein-ligand complex for 100 ns, the protein gets stabilised after 20 ns and remained below 2 Å for the remaining simulation. Moreover, the deviation observed in RMSF during simulation for each amino acid residue with respect to Cα carbon atom is insignificant.
Collapse
Affiliation(s)
- Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, India
| | - Sudhir Kumar
- Department of MBB&B, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, India
| |
Collapse
|
8
|
Duhan M, Singh R, Devi M, Sindhu J, Bhatia R, Kumar A, Kumar P. Synthesis, molecular docking and QSAR study of thiazole clubbed pyrazole hybrid as α-amylase inhibitor. J Biomol Struct Dyn 2019; 39:91-107. [DOI: 10.1080/07391102.2019.1704885] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Rimpy Bhatia
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
9
|
Kumar P, Kumar A. Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method. J Biomol Struct Dyn 2019; 38:3296-3306. [PMID: 31411551 DOI: 10.1080/07391102.2019.1656109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study describes in silico designing of aptamers against the influenza virus using Monte Carlo method. Aptamers are short, single-stranded oligonucleotides and these bind to an ample range of biologically important proteins which are related to many disease conditions. The affinities and specificities of aptamers are comparable to antibodies. In the medicinal chemistry, quantitative structure-activity relationship (QSAR) is an important skill which is used for drug design and development. To study the inhibitory activity of aptamers, we have developed QSAR models based on Monte Carlo method. The nucleobase sequence descriptors Bk, BBk and BBBk are used to generate the QSAR models. A number of statistical benchmarks together with index of ideality of correlation (IIC) is considered to validate the build QSAR models. Data set of 98 aptamers is divided into four random splits. The statistical criteria R2 = 0.8711 and CCC = 0.9207 of the validation set of split 3 are best, so the build QSAR model of split 3 is the paramount model. The aptamer fragment responsible for the promotors of endpoint increase and decrease are also determined. These fragments are applied to design new nine aptamers from the lead aptamer APT01.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
10
|
Kumar P, Kumar A, Sindhu J. In silico design of diacylglycerol acyltransferase-1 (DGAT1) inhibitors based on SMILES descriptors using Monte-Carlo method. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:525-541. [PMID: 31331203 DOI: 10.1080/1062936x.2019.1629998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Diabetes, obesity and other diseases related to metabolism are worldwide health problems. These syndromes can be well treated when a particular enzyme-based therapy is developed. Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme which is responsible for the synthesis of triglycerides from 1,2-diacylglycerol by catalyzing the acyl-CoA-dependent acylation. The obesity and type-II diabetes can be checked by the inhibition of DGAT1 enzyme. Quantitative structure-activity relationship (QSAR) modelling is an essential technique in drug design and development. To study the aspect of DGAT1 inhibitors, Monte-Carlo method-based QSAR was developed for 197 DGAT1 inhibitors. QSAR models were derived by using the optimal descriptor based on SMILES notation. Different statistical parameters including the novel index of ideality of correlation were applied to validate the generated QSAR models. Four random splits were prepared from the data set. The statistical criteria r2 = 0.8129, CCC = 0.8979 and Q2 = 0.7962 of the validation set of split 1 were the best; therefore, the developed QSAR model of split 1 was decided to be the leading model. The molecular fragments, which were promoter of endpoint increase or decrease were also determined. Thirteen new DGAT1 inhibitors were designed from the lead compound DGAT011.
Collapse
Affiliation(s)
- P Kumar
- Department of Chemistry, Kurukshetra University , Kurukshetra , India
| | - A Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology , Hisar , India
| | - J Sindhu
- Department of Chemsitry, COBS&H CCS Haryana Agriculture University , Hisar , India
| |
Collapse
|
11
|
Toropov AA, Toropova AP. QSAR as a random event: criteria of predictive potential for a chance model. Struct Chem 2019. [DOI: 10.1007/s11224-019-01361-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|