1
|
Xia X, Sun DE, Tang Q, Liu X, Fan X, Wan Y, Cui S, Zhang X, Liu Q, Jiang Y, Wu Y, Cheng B, Chen X. Fast Metabolic Glycan Labeling for Click-Labeling and Imaging of Sialoglycans in Living Acute Brain Slices from Mice and Human Patients. J Am Chem Soc 2024; 146:22008-22016. [PMID: 39075879 DOI: 10.1021/jacs.4c07435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Living acute brain slices provide a practical platform for imaging sialylation in human brain pathology. However, the limited lifespan of acute brain slices has impeded the use of metabolic glycan labeling (MGL), which requires long-term incubation of clickable unnatural sugars such as N-azidoacetylmannosamine (ManNAz) to metabolically incorporate azides into sialoglycans. Here, we report a fast variant of MGL (fMGL), in which ManNAz-6-phosphate enables efficient azidosugar incorporation within 12 h by bypassing the bottleneck step in the sialic acid biosynthesis pathway, followed by click-labeling with fluorophores and imaging of sialoglycans in acute brain slices from mice and human patients. In the clinical samples of ganglioglioma, fMGL-based imaging reveals specific upregulation of sialylation in astrocyte-like but not neuron-like tumor cells. In addition, fMGL is integrated with click-expansion microscopy for high-resolution imaging of sialoglycans in brain slices. The fMGL strategy should find broad applications in the tissue imaging of glycans and surgical pathology.
Collapse
Affiliation(s)
- Xiaoqian Xia
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - De-En Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xianyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Xinqi Fan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shiyong Cui
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xu Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qingzhu Liu
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- School of Pharmaceutical Sciences, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Kuliesiute U, Joseph K, Straehle J, Madapusi Ravi V, Kueckelhaus J, Kada Benotmane J, Zhang J, Vlachos A, Beck J, Schnell O, Neniskyte U, Heiland DH. Sialic acid metabolism orchestrates transcellular connectivity and signaling in glioblastoma. Neuro Oncol 2023; 25:1963-1975. [PMID: 37288604 PMCID: PMC10628944 DOI: 10.1093/neuonc/noad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND In glioblastoma (GBM), the effects of altered glycocalyx are largely unexplored. The terminal moiety of cell coating glycans, sialic acid, is of paramount importance for cell-cell contacts. However, sialic acid turnover in gliomas and its impact on tumor networks remain unknown. METHODS We streamlined an experimental setup using organotypic human brain slice cultures as a framework for exploring brain glycobiology, including metabolic labeling of sialic acid moieties and quantification of glycocalyx changes. By live, 2-photon and high-resolution microscopy we have examined morphological and functional effects of altered sialic acid metabolism in GBM. By calcium imaging we investigated the effects of the altered glycocalyx on a functional level of GBM networks. RESULTS The visualization and quantitative analysis of newly synthesized sialic acids revealed a high rate of de novo sialylation in GBM cells. Sialyltrasferases and sialidases were highly expressed in GBM, indicating that significant turnover of sialic acids is involved in GBM pathology. Inhibition of either sialic acid biosynthesis or desialylation affected the pattern of tumor growth and lead to the alterations in the connectivity of glioblastoma cells network. CONCLUSIONS Our results indicate that sialic acid is essential for the establishment of GBM tumor and its cellular network. They highlight the importance of sialic acid for glioblastoma pathology and suggest that dynamics of sialylation have the potential to be targeted therapeutically.
Collapse
Affiliation(s)
- Ugne Kuliesiute
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya Madapusi Ravi
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Jasim Kada Benotmane
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juergen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Freiburg University, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner siteFreiburg
| |
Collapse
|
3
|
Kohansal-Nodehi M, Swiatek-de Lange M, Kroeniger K, Rolny V, Tabarés G, Piratvisuth T, Tanwandee T, Thongsawat S, Sukeepaisarnjaroen W, Esteban JI, Bes M, Köhler B, Chan HLY, Busskamp H. Discovery of a haptoglobin glycopeptides biomarker panel for early diagnosis of hepatocellular carcinoma. Front Oncol 2023; 13:1213898. [PMID: 37920152 PMCID: PMC10619681 DOI: 10.3389/fonc.2023.1213898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
Background There is a need for new serum biomarkers for early detection of hepatocellular carcinoma (HCC). Haptoglobin (Hp) N-glycosylation is altered in HCC, but the diagnostic value of site-specific Hp glycobiomarkers is rarely reported. We aimed to determine the site-specific glycosylation profile of Hp for early-stage HCC diagnosis. Method Hp glycosylation was analyzed in the plasma of patients with liver diseases (n=57; controls), early-stage HCC (n=50) and late-stage HCC (n=32). Hp phenotype was determined by immunoblotting. Hp was immunoisolated and digested into peptides. N-glycopeptides were identified and quantified using liquid chromatography-mass spectrometry. Cohort samples were compared using Wilcoxon rank-sum (Mann-Whitney U) tests. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves and area under curve (AUC). Results Significantly higher fucosylation, branching and sialylation of Hp glycans, and expression of high-mannose glycans, was observed as disease progressed from cirrhosis to early- and late-stage HCC. Several glycopeptides demonstrated high values for early diagnosis of HCC, with an AUC of 93% (n=1), >80% (n=3), >75% (n=13) and >70% (n=11), compared with alpha-fetoprotein (AFP; AUC of 79%). The diagnostic performance of the identified biomarkers was only slightly affected by Hp phenotype. Conclusion We identified a panel of Hp glycopeptides that are significantly differentially regulated in early- and late-stage HCC. Some glycobiomarkers exceeded the diagnostic value of AFP (the most commonly used biomarker for HCC diagnosis). Our findings provide evidence that glycobiomarkers can be effective in the diagnosis of early HCC - individually, as a panel of glycopeptides or combined with conventional serological biomarkers.
Collapse
Affiliation(s)
| | | | | | - Vinzent Rolny
- Roche Diagnostics GmbH, Research and Development Core Lab, Penzberg, Germany
| | - Glòria Tabarés
- Roche Diagnostics GmbH, Research and Development Core Lab, Penzberg, Germany
| | - Teerha Piratvisuth
- NKC Institute of Gastroenterology and Hepatology, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | - Tawesak Tanwandee
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Satawat Thongsawat
- Department of Internal Medicine, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Marta Bes
- Transfusion Safety Laboratory, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Bruno Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg, Germany
| | - Henry Lik-Yuen Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Holger Busskamp
- Roche Diagnostics GmbH, Research and Development Core Lab, Penzberg, Germany
| |
Collapse
|
4
|
Huang J, Li M, Mei B, Li J, Zhu Y, Guo Q, Huang J, Zhang G. Whole-cell tumor vaccines desialylated to uncover tumor antigenic Gal/GalNAc epitopes elicit anti-tumor immunity. J Transl Med 2022; 20:496. [PMID: 36316782 PMCID: PMC9620617 DOI: 10.1186/s12967-022-03714-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aberrant sialoglycans on the surface of tumor cells shield potential tumor antigen epitopes, escape recognition, and suppress activation of immunocytes. α2,3/α2,6Gal- and α2,6GalNAc (Gal/GalNAc)-linked sialic acid residues of sialoglycans could affect macrophage galactose-type lectins (MGL) mediated-antigen uptake and presentation and promote sialic acid-binding immunoglobulin-like lectins (Siglecs) mediated-immunosuppression. Desialylating sialoglycans on tumor cells could present tumor antigens with Gal/GalNAc residues and overcome glyco-immune checkpoints. Thus, we explored whether vaccination with desialylated whole-cell tumor vaccines (DWCTVs) triggers anti-tumor immunity in ovarian cancer (OC). METHODS Sialic acid (Sia) and Gal/GalNAc residues on OC A2780, OVCAR3, and ID8 cells treated with α2-3 neuraminidase (α2-3NA) and α2-6NA, and Sigec-9 or Siglec-E and MGL on DCs pulsed with desialylated OC cells were identified using flow cytometry (FCM); RT-qPCR determined IFNG expression of T cells, TRBV was sequenced using Sanger sequencing and cytotoxicity of αβ T cells was measured with LDH assay; Anti-tumor immunity in vivo was validated via vaccination with desialylated whole-cell ID8 vaccine (ID8 DWCTVs). RESULTS Gal/GalNAc but not Sia residues were significantly increased in the desialylated OC cells. α2-3NA-modified DWCTV increased MGL but decreased Siglec-9 or Siglec E expression on DCs. MGLbright/Siglec-9dim DCs significantly up-regulated IFNG expression and CD4/CD8 ratio of T cells and diversified the TCR repertoire of αβ T-cells that showed enhanced cytotoxic activity. Vaccination with α2-3NA-modified ID8 DWCTVs increased MGLbright/Siglec-Edim DCs in draining lymph nodes, limited tumor growth, and extended survival in tumor-challenged mice. CONCLUSION Desialylated tumor cell vaccine could promote anti-tumor immunity and provide a strategy for OC immunotherapy in a clinical setting.
Collapse
Affiliation(s)
- Jianmei Huang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Meiying Li
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Bingjie Mei
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Junyang Li
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zhu
- grid.54549.390000 0004 0369 4060Department of Ultrasound, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiaoshan Guo
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Jianming Huang
- grid.415880.00000 0004 1755 2258Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, China ,grid.54549.390000 0004 0369 4060Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Tondepu C, Karumbaiah L. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Adv Healthc Mater 2022; 11:e2101956. [PMID: 34878733 PMCID: PMC9048137 DOI: 10.1002/adhm.202101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a stage IV astrocytoma that carries a dismal survival rate of ≈10 months postdiagnosis and treatment. The highly invasive capacity of GBM and its ability to escape therapeutic challenges are key factors contributing to the poor overall survival rate. While current treatments aim to target the cancer cell itself, they fail to consider the significant role that the GBM tumor microenvironment (TME) plays in promoting tumor progression and therapeutic resistance. The GBM tumor glycocalyx and glycan-rich extracellular matrix (ECM), which are important constituents of the TME have received little attention as therapeutic targets. A wide array of aberrantly modified glycans in the GBM TME mediate tumor growth, invasion, therapeutic resistance, and immunosuppression. Here, an overview of the landscape of aberrant glycan modifications in GBM is provided, and the design and utility of 3D glycomaterials are discussed as a tool to evaluate glycan-mediated GBM progression and therapeutic efficacy. The development of alternative strategies to target glycans in the TME can potentially unveil broader mechanisms of restricting tumor growth and enhancing the efficacy of tumor-targeting therapeutics.
Collapse
Affiliation(s)
- Chaitanya Tondepu
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
- Division of Neuroscience, Biomedical & Translational Sciences Institute, University of Georgia, Athens, GA, 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
6
|
Bagchee-Clark AJ, Mucaki EJ, Whitehead T, Rogan PK. Pathway-extended gene expression signatures integrate novel biomarkers that improve predictions of patient responses to kinase inhibitors. MedComm (Beijing) 2021; 1:311-327. [PMID: 34766125 PMCID: PMC8491218 DOI: 10.1002/mco2.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi‐gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM) learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology‐based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway‐extended SVMs predicted responses in patients at accuracies of 70% (imatinib), 71% (lapatinib), 83% (sunitinib), 83% (erlotinib), 88% (sorafenib) and 91% (gefitinib). These best performing pathway‐extended models demonstrated improved balance predicting both sensitive and resistant patient categories, with many of these genes having a known role in cancer aetiology. Ensemble machine learning‐based averaging of multiple pathway‐extended models derived for an individual drug increased accuracy to >70% for erlotinib, gefitinib, lapatinib and sorafenib. Through incorporation of novel cancer biomarkers, machine learning‐based pathway‐extended signatures display strong efficacy predicting both sensitive and resistant patient responses to chemotherapy.
Collapse
Affiliation(s)
- Ashis J Bagchee-Clark
- Department of Biochemistry, Schulich School of Medicine and Dentistry University of Western Ontario, London, Canada N6A 2C8 Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry University of Western Ontario, London, Canada N6A 2C8 Canada
| | - Tyson Whitehead
- SHARCNET University of Western Ontario London Ontario N6A 5B7 Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry University of Western Ontario, London, Canada N6A 2C8 Canada.,Cytognomix Inc., 60 North Centre Road, Box 27052, London, Canada N5X 3X5 Canada
| |
Collapse
|
7
|
Cai X, Tao W, Li L. Glioma cell-derived FGF20 suppresses macrophage function by activating β-catenin. Cell Signal 2021; 89:110181. [PMID: 34757019 DOI: 10.1016/j.cellsig.2021.110181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/19/2023]
Abstract
Macrophages, which are the main regulators of the tumor-associated microenvironment, play a crucial role in the progression of various tumors. The anti-inflammatory role of β-catenin in macrophages has been extensively studied in recent years. However, the association between macrophages and β-catenin with regards to the development of glioma has not yet been investigated, at least to the best of our knowledge. The present study found that fibroblast growth factor 20 (FGF20), as a paracrine cytokine, was secreted by glioma cells and acted on macrophages. FGF20 treated macrophages exhibited a decreased pro-inflammatory phenotype upon LPS and IFN-γ stimulation, characterized by the decreased the level of M1 macrophage markers and the reduced production of pro-inflammatory cytokines. Mechanistic analysis revealed that FGF20 interacted with FGF receptor 1 isoform of macrophages, and subsequently increased the stability of β-catenin via phosphorylating GSK3β, which suppressed macrophage polarization to the M1-phenotype. Finally, it was found that FGF20 of glioma cells expression was upregulated by the glucocorticoids (GCs) treatment, and decreased FGF20 expression of glioma cells markedly blocked the effects of GCs on the polarization of macrophages. On the whole, the present study demonstrates that FGF20, secreted from glioma cells, participates the GCs regulated macrophage function and exerts anti-inflammatory effects during the treatment of glioma by GCs. Moreover, a molecular link was identified between glioma cells and macrophages, demonstrating that FGF20 modulates the GCs-induced dysfunction of macrophages during glioma development.
Collapse
Affiliation(s)
- Xue Cai
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| | - Weichen Tao
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China
| | - Lei Li
- Department of Emergency, ShengJing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China.
| |
Collapse
|
8
|
Yan Z, Yang X, Hua Y, Li Z, Liu Y, Lin Y. An impedance sensor based on chitosan-carbon quantum dots for the detection sialic acid in humuan serum. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Payazdan M, Khatami S, Galehdari H, Delfan N, Shafiei M, Heydaran S. The anti-inflammatory effects of sialic acid on the human glia cells by the upregulation of IL-4 and IL-10 genes' expressions. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Wielgat P, Niemirowicz-Laskowska K, Wilczewska AZ, Car H. Sialic Acid-Modified Nanoparticles-New Approaches in the Glioma Management-Perspective Review. Int J Mol Sci 2021; 22:ijms22147494. [PMID: 34299113 PMCID: PMC8304714 DOI: 10.3390/ijms22147494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022] Open
Abstract
The cell surface is covered by a dense and complex network of glycans attached to the membrane proteins and lipids. In gliomas, the aberrant sialylation, as the final stage of glycosylation, is an important regulatory mechanism of malignant cell behavior and correlates with worse prognosis. Better understanding of the role of sialylation in cellular and molecular processes opens a new way in the development of therapeutic tools for human brain tumors. According to the recent clinical observation, the cellular heterogeneity, activity of brain cancer stem cells (BCSCs), immune evasion, and function of the blood–brain barrier (BBB) are attractive targets for new therapeutic strategies. In this review, we summarize the importance of sialic acid-modified nanoparticles in brain tumor progression.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: (P.W.); (K.N.-L.); Tel.: +48-85-7450647 (P.W.); +48-85-7485554 (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-265 Bialystok, Poland
- Correspondence: (P.W.); (K.N.-L.); Tel.: +48-85-7450647 (P.W.); +48-85-7485554 (K.N.-L.)
| | | | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-265 Bialystok, Poland
| |
Collapse
|
11
|
Wielgat P, Wawrusiewicz-Kurylonek N, Czarnomysy R, Rogowski K, Bielawski K, Car H. The Paired Siglecs in Brain Tumours Therapy: The Immunomodulatory Effect of Dexamethasone and Temozolomide in Human Glioma In Vitro Model. Int J Mol Sci 2021; 22:ijms22041791. [PMID: 33670244 PMCID: PMC7916943 DOI: 10.3390/ijms22041791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The paired sialic acid-binding immunoglobulin like lectins (Siglecs) are characterized by similar cellular distribution and ligand recognition but opposing signalling functions attributed to different intracellular sequences. Since sialic acid—Siglec axis are known to control immune homeostasis, the imbalance between activatory and inhibitory mechanisms of glycan-dependent immune control is considered to promote pathology. The role of sialylation in cancer is described, however, its importance in immune regulation in gliomas is not fully understood. The experimental and clinical observation suggest that dexamethasone (Dex) and temozolomide (TMZ), used in the glioma management, alter the immunity within the tumour microenvironment. Using glioma-microglia/monocytes transwell co-cultures, we investigated modulatory action of Dex/TMZ on paired Siglecs. Based on real-time PCR and flow cytometry, we found changes in SIGLEC genes and their products. These effects were accompanied by altered cytokine profile and immune cells phenotype switching measured by arginases expression. Additionally, the exposure to Dex or TMZ increased the binding of inhibitory Siglec-5 and Siglec-11 fusion proteins to glioma cells. Our study suggests that the therapy-induced modulation of the interplay between sialoglycans and paired Siglecs, dependently on patient’s phenotype, is of particular signification in the immune surveillance in the glioma management and may be useful in glioma patient’s therapy plan verification.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | | | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089 Bialystok, Poland; (R.C.); (K.B.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland;
| |
Collapse
|
12
|
Martins TA, Schmassmann P, Shekarian T, Boulay JL, Ritz MF, Zanganeh S, Vom Berg J, Hutter G. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Front Immunol 2020; 11:571951. [PMID: 33117364 PMCID: PMC7552736 DOI: 10.3389/fimmu.2020.571951] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated microglia (MG) and macrophages (MΦ) are important components of the glioblastoma (GBM) immune tumor microenvironment (iTME). From the recent advances in understanding how MG and GBM cells evolve and interact during tumorigenesis, we emphasize the cooperation of MG with other immune cell types of the GBM-iTME, mainly MΦ and T cells. We provide a comprehensive overview of current immunotherapeutic clinical trials and approaches for the treatment of GBM, which in general, underestimate the counteracting contribution of immunosuppressive MG as a main factor for treatment failure. Furthermore, we summarize new developments and strategies in MG reprogramming/re-education in the GBM context, with a focus on ways to boost MG-mediated tumor cell phagocytosis and associated experimental models and methods. This ultimately converges in our proposal of novel combinatorial regimens that locally modulate MG as a central paradigm, and therefore may lead to additional, long-lasting, and effective tumoricidal responses.
Collapse
Affiliation(s)
- Tomás A Martins
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Tala Shekarian
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jean-Louis Boulay
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Marie-Françoise Ritz
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| | - Steven Zanganeh
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Chemical and Biomolecular Engineering, New York University, New York, NY, United States
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Schlieren, Switzerland
| | - Gregor Hutter
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Organic electrochemical transistor for sensing of sialic acid in serum samples. Anal Chim Acta 2020; 1128:231-237. [DOI: 10.1016/j.aca.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
|
14
|
Wielgat P, Rogowski K, Niemirowicz-Laskowska K, Car H. Sialic Acid-Siglec Axis as Molecular Checkpoints Targeting of Immune System: Smart Players in Pathology and Conventional Therapy. Int J Mol Sci 2020; 21:ijms21124361. [PMID: 32575400 PMCID: PMC7352527 DOI: 10.3390/ijms21124361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sialic acid-based molecular mimicry in pathogens and malignant cells is a regulatory mechanism that leads to cross-reactivity with host antigens resulting in suppression and tolerance in the immune system. The interplay between sialoglycans and immunoregulatory Siglec receptors promotes foreign antigens hiding and immunosurveillance impairment. Therefore, molecular targeting of immune checkpoints, including sialic acid-Siglec axis, is a promising new field of inflammatory disorders and cancer therapy. However, the conventional drugs used in regular management can interfere with glycome machinery and exert a divergent effect on immune controlling systems. Here, we focus on the known effects of standard therapies on the sialoglycan-Siglec checkpoint and their importance in diagnosis, prediction, and clinical outcomes.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-7450-647
| | - Karol Rogowski
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland;
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.R.); (K.N.-L.)
| |
Collapse
|
15
|
The sialoglycan-Siglec-E checkpoint axis in dexamethasone-induced immune subversion in glioma-microglia transwell co-culture system. Immunol Res 2020; 67:348-357. [PMID: 31741237 DOI: 10.1007/s12026-019-09106-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dexamethasone (Dex) is considered as the main steroid routinely used in the standard therapy of brain tumor-induced edema. Strong immunosuppressive effects of Dex on effector systems of the immune system affect the patients' antitumor immunity and may thereby worsen the prognosis. Siglecs and their interacting sialoglycans have been described as a novel glyco-immune checkpoint axis that promotes cancer immune evasion. Despite the aberrant glycosylation in cancer is described, mechanisms involved in regulation of immune checkpoints in gliomas are not fully understood. The aim of this study was to investigate the effect of Dex on the Siglec-sialic acid interplay and determine its significance in immune inversion in monocultured and co-cultured microglia and glioma cells. Both monocultured and co-cultured in transwell system embryonic stem cell-derived microglia (ESdM) and glioma GL261 cells were exposed to Dex. Cell viability, immune inversion markers, and interaction between sialic acid and Siglec-E were detected by flow cytometry. Cell invasion was analyzed by scratch-wound migration assay using inverted phase-contrast microscopy. Exposure to Dex led to significant changes in IL-1β, IL-10, Iba-1, and Siglec-E in co-cultured microglia compared to naïve or monocultured cells. These alterations were accompanied by increased α2.8-sialylation and Siglec-E fusion protein binding to co-cultured glioma cell membranes. This study suggests that the interplay between sialic acids and Siglecs is a sensitive immune checkpoint axis and may be crucial for Dex-induced dampening of antitumor immunity. The targeting of sialic acid-Siglec glyco-immune checkpoint can be a novel therapeutic method in glioma therapy.
Collapse
|