1
|
Wang Z, Liu C, Wei J, Yuan H, Shi M, Zhang F, Zeng Q, Huang A, Du L, Li Y, Guo Z. Network and Experimental Pharmacology on Mechanism of Yixintai Regulates the TMAO/PKC/NF-κB Signaling Pathway in Treating Heart Failure. Drug Des Devel Ther 2024; 18:1415-1438. [PMID: 38707614 PMCID: PMC11069381 DOI: 10.2147/dddt.s448140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This study aims to explore the mechanism of action of Yixintai in treating chronic ischemic heart failure by combining bioinformatics and experimental validation. Materials and Methods Five potential drugs for treating heart failure were obtained from Yixintai (YXT) through early mass spectrometry detection. The targets of YXT for treating heart failure were obtained by a search of online databases. Gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were conducted on the common targets using the DAVID database. A rat heart failure model was established by ligating the anterior descending branch of the left coronary artery. A small animal color Doppler ultrasound imaging system detected cardiac function indicators. Hematoxylin-eosin (HE), Masson's, and electron microscopy were used to observe the pathological morphology of the myocardium in rats with heart failure. The network pharmacology analysis results were validated by ELISA, qPCR, and Western blotting. Results A total of 107 effective targets were obtained by combining compound targets and eliminating duplicate values. PPI analysis showed that inflammation-related proteins (TNF and IL1B) were key targets for treating heart failure, and KEGG enrichment suggested that NF-κB signaling pathway was a key pathway for YXT treatment of heart failure. Animal model validation results indicated the following: YXT can significantly reduce the content of intestinal microbiota metabolites such as trimethylamine oxide (TMAO) and improve heart failure by improving the EF and FS values of heart ultrasound in rats and reducing the levels of serum NT-proBNP, ANP, and BNP to improve heart failure. Together, YXT can inhibit cardiac muscle hypertrophy and fibrosis in rats and improve myocardial ultrastructure and serum IL-1β, IL-6, and TNF-α levels. These effects are achieved by inhibiting the expressions of NF-κB and PKC. Conclusion YXT regulates the TMAO/PKC/NF-κB signaling pathway in heart failure.
Collapse
Affiliation(s)
- Ziyan Wang
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Chengxin Liu
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiaming Wei
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Hui Yuan
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Min Shi
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Fei Zhang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qinghua Zeng
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Aisi Huang
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent Traditional Chinese Medicine Diagnosis and Preventive Treatment of Chronic Diseases of Hunan Universities of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
2
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
3
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
4
|
Fang L, Tao Y, Che G, Yun Y, Ren M, Liu Y. WSB1, as an E3 ligase, restrains myocardial ischemia-reperfusion injury by activating β-catenin signaling via promoting GSK3β ubiquitination. Mol Med 2024; 30:31. [PMID: 38395742 PMCID: PMC10893653 DOI: 10.1186/s10020-024-00800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Reperfusion is the most effective strategy for myocardial infarct, but induces additional injury. WD repeat and SOCS box containing protein 1 (WSB1) plays a protective role in ischemic cells. This study aims to investigate the effects of WSB1 on myocardial ischemia-reperfusion (IR) injury. METHODS The myocardial IR was induced by left anterior descending (LAD) ligation for 45 min and subsequent reperfusion. The overexpression of WSB1 was mediated by tail vein injection of AAV9 loaded with WSB1 encoding sequence two weeks before IR surgery. H9c2 myocardial cells underwent oxygen-sugar deprivation/reperfusion (OGD/R) to mimic IR, and transfected with WSB1 overexpression or silencing plasmid to alter the expression of WSB1. RESULTS WSB1 was found highly expressed in penumbra of myocardial IR rats, and the WSB1 overexpression relieved IR-induced cardio dysfunction, myocardial infarct and pathological damage, and cardiomyocyte death in penumbra. The ectopic expression of WSB1 in H9c2 myocardial cells mitigated OGD/R-caused apoptosis, and silencing of WSB1 exacerbated the apoptosis. In addition, WSB1 activated β-catenin signaling, which was deactivated under the ischemic condition. The co-immunoprecipitation results revealed that WSB1 mediated ubiquitination and degradation of glycogen synthase kinase 3 beta (GSK3β) as an E3 ligase in myocardial cells. The effects of WSB1 on myocardial cells under ischemic conditions were abolished by an inhibitor of β-catenin signaling. CONCLUSION WSB1 activated β-catenin pathway by promoting the ubiquitination of GSK3β, and restrained IR-induced myocardial injury. These findings might provide novel insights for clinical treatment of myocardial ischemic patients.
Collapse
Affiliation(s)
- Lini Fang
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Yang Tao
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Guoying Che
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yongzi Yun
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China
| | - Min Ren
- Ultrasound Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 536# Changle Road, Shanghai, China.
| | - Yujie Liu
- Department of Function, Sanya Central Hospital (Hainan Third People's Hospital), 1154# Jiefang Fourth Road, Sanya, Hainan Province, China.
| |
Collapse
|
5
|
Feng Y, Dai L, Zhang Y, Sun S, Cong S, Ling S, Zhang H. Buyang Huanwu Decoction alleviates blood stasis, platelet activation, and inflammation and regulates the HMGB1/NF-κB pathway in rats with pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117088. [PMID: 37652195 DOI: 10.1016/j.jep.2023.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi deficiency and blood stasis are identified to be pathological factors of pulmonary fibrosis (PF) in traditional Chinese medicine (TCM) theory. Buyang Huanwu Decoction (BYHWD) is a traditional Chinese prescription ameliorating Qi deficiency and blood stasis. AIM OF THE STUDY The objective of this study was to investigate the anti-fibrosis effect of BYHWD and the potential molecular mechanism in rats. MATERIALS AND METHODS Bleomycin was used to construct PF rat models. 27 PF rats were randomly divided into three groups based on treatments: model group (saline solution, n = 9), low-dose BYHWD group (3.5 g/kg, n = 9), and high-dose BYHWD group (14.0 g/kg, n = 9). Moreover, 9 normal rats were used as the blank group. The blood viscosity, coagulation indexes (APTT, TT, PT, and FIB), platelet-related parameters (PLT, PDW, MPV, PCT, and PLCR), platelet microparticles (PMPs), and inflammatory factors (IL-2, IL-10, IL-1β, IL-6, IL-8, IL-17, IFN-γ, TNF-α, PAC-1, HMGB1, NF-κB, and TF) were determined. The lung tissue samples of rats were observed after hematoxylin-eosin (HE) staining. The full component analysis of the BYHWD extract was performed using the ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The signaling pathway included into the study was selected on the basis of bioinformatics analysis and the results of the phytochemical analysis. The expression levels of genes and proteins involved in the selected signaling pathway were detected. RESULTS Compared to the blank group, the whole blood viscosity, PLR, PDW, MPV, PCT, PLCR, PMPs, and the levels of IL-1β, IL-6, IL-8, IL-17, TNF-α, PAC-1, HMGB1, NF-κB, and TF were increased, while the levels of IL-2 and IL-10 were decreased in the model group. Both low-dose BYHWD and high-dose BYHWD reversed these PF-induced effects in spite of the fact that low-dose BYHWD had no significant effect on the level of NF-κB. In addition, BYHWD ameliorated PF-induced inflammation in the rat lung tissue. The phytochemical analysis of the BYHWD extract combined with the bioinformatics analysis suggested that the therapeutical effect of BYHWD on PF was related to the HMGB1/NF-κB pathway, which consisted of NF-κB, IKBKB, ICAM1, VCAM1, HMGB1, and TLR4. Both RT-qPCR and western blot analyses showed that PF induced increases in the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, and TLR4, but a decrease in the expression level of IKBKB. Moreover, both low-dose BYHWD and high-dose BYHWD exerted the opposite effects, and recovered the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, TLR4, and IKBKB, despite the fact that low-dose BYHWD had no effects on the mRNA expression levels of NF-κB or TLR4. CONCLUSIONS In summary, BYHWD alleviated PF-induced blood stasis, platelet activation, and inflammation in the rats. Our study suggested BYHWD had a therapeutic effect on PF and was a good alternative for the complementary therapy of PF, and the potential molecular mechanism was modulation of HMGB1/NF-κB signaling pathway, and it needs further study.
Collapse
Affiliation(s)
- Yuenan Feng
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Linfeng Dai
- Xiangfang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No.82 Zhongshan Road, Xiangfang District, Harbin, 150036, Heilongjiang Province, China.
| | - Yanli Zhang
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Simiao Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Shan Cong
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, No.64 Zhonghua West Road, Jianhua District, Qiqihar, 161006, Heilongjiang Province, China.
| | - Shuang Ling
- Jiamusi College, Heilongjiang University of Chinese Medicine, No.53 Guanghua Street, Jiamusi, 154007, China.
| | - Huan Zhang
- Nangang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No. 405 Gogol Street, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
6
|
Hao Y, Fu J, Zhang J, Du N, Ta H, Zhu TT, Wang H, Lou HX, Cheng AX. Identification and Functional Characterization of UDP-Glycosyltransferases Involved in Isoflavone Biosynthesis in Astragalus membranaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12775-12784. [PMID: 37604680 DOI: 10.1021/acs.jafc.3c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Isoflavones are rich natural compounds present in legumes and are essential for plant growth and development. Moreover, they are beneficial for animals and humans. Isoflavones are primarily found as glycoconjugates, including calycosin-7-O-β-d-glucoside (CG) in Astragalus membranaceus, a legume. However, the glycosylation mechanism of isoflavones in A. membranaceus remains unclear. In the present study, three uridine diphosphate (UDP)-glycosyltransferases (UGTs) that may be involved in the biosynthesis of isoflavone were identified in the transcriptome of A. membranaceus. Enzymatic analysis revealed that AmUGT88E29 and AmUGT88E30 had high catalytic activity toward isoflavones in vitro. In addition, AmUGT88E29 and AmUGT88E30 could accept various flavones, flavanones, flavonols, dihydroflavonols, and dihydrochalcones as substrates. AmUGT71G10 was only active against phloretin and dihydroresveratrol. Overexpression of AmUGT88E29 significantly increased the contents of CG, an isoflavone glucoside, in the hairy roots of A. membranaceus. This study provided candidate AmUGT genes for the potential metabolic engineering of flavonoid compounds in plants and a valuable resource for studying the calycosin glycosides biosynthesis pathway.
Collapse
Affiliation(s)
- Yue Hao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jie Fu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Jiaozhen Zhang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Nihong Du
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - He Ta
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, People's Republic of China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| |
Collapse
|
7
|
Wang P, Wang Z, Zhang Z, Cao H, Kong L, Ma W, Ren W. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus. Front Pharmacol 2023; 14:1242318. [PMID: 37680711 PMCID: PMC10482111 DOI: 10.3389/fphar.2023.1242318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Astragali Radix (Huangqi) is mainly distributed in the Northern Hemisphere, South America, and Africa and rarely in North America and Oceania. It has long been used as an ethnomedicine in the Russian Federation, Mongolia, Korea, Kazakhstan, and China. It was first recorded in the Shennong Ben Cao Jing and includes the effects of reinforcing healthy qi, dispelling pathogenic factors, promoting diuresis, reducing swelling, activating blood circulation, and dredging collaterals. This review systematically summarizes the botanical characteristics, phytochemistry, traditional uses, pharmacology, and toxicology of Astragalus to explore the potential of Huangqi and expand its applications. Data were obtained from databases such as PubMed, CNKI, Wan Fang Data, Baidu Scholar, and Google Scholar. The collected material also includes classic works of Chinese herbal medicine, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and PhD and Master's theses. The pharmacological effects of the isoflavone fraction in Huangqi have been studied extensively; The pharmacological effects of Huangqi isoflavone are mainly reflected in its anti-inflammatory, anti-tumor, anti-oxidant, anti-allergic, and anti-diabetic properties and its ability to treat several related diseases. Additionally, the medicinal uses, chemical composition, pharmacological activity, toxicology, and quality control of Huangqi require further elucidation. Here, we provide a comprehensive review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of Astragalus to assist future innovative research and to identify and develop new drugs involving Huangqi.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Zhu X, Liu Y, Xu N, Ai X, Yang Y. Molecular Characterization and Expression Analysis of IL-10 and IL-6 in Channel Catfish ( Ictalurus punctatus). Pathogens 2023; 12:886. [PMID: 37513733 PMCID: PMC10384647 DOI: 10.3390/pathogens12070886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
IL-10 and IL-6 play important roles in protecting against inflammation and clearing pathogens from the body. In this study, homologous compounds of IL-10 and IL-6 were identified in channel catfish, and their immune responses were analyzed. The CDS sequences of IL-10 and IL-6 were 549 bp and 642 bp, respectively, and showed the highest homology with Ameiurus melas. In addition, the expression of the IL-10 and IL-6 genes was ubiquitous in 10 tissues examined. IL-10 is highly expressed in the liver and slightly expressed in the gill. The high expression of the IL-6 gene was observed in the spleen, heart, and gonad, with the lowest levels in the liver. LPS, Poly(I:C), PHA, and PMA showed a highly significant increase in IL-10 and IL-6 expression 48 h after CCK stimulation (p < 0.01). Otherwise, Yersinia ruckeri, Streptococcus iniae, channel catfish virus, and deltamethrin induced IL-10 and IL-6 expression, varying in intensity between different organs. Our results suggest that IL-10 and IL-6 are involved in the immune response of the host against the pathogen.
Collapse
Affiliation(s)
- Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
9
|
Chen J, Ma H, Meng Y, Liu Q, Wang Y, Lin Y, Yang D, Yao W, Wang Y, He X, Li P. Analysis of the mechanism underlying diabetic wound healing acceleration by Calycosin-7-glycoside using network pharmacology and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154773. [PMID: 36990011 DOI: 10.1016/j.phymed.2023.154773] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Diabetic wounds represent a severe clinical challenge in which impaired M2 macrophage polarization and continuous macrophage glycolysis play crucial roles. Calycosin-7-glucoside (CG) is an isoflavone component in Astragali Radix (AR), which has become a research focus for treating diabetic wounds following reports indicating that it has anti-inflammatory effects. However, the mechanism through which CG can treat diabetic wounds is yet to be deciphered. PURPOSE This study aimed to evaluate the therapeutic effect of CG on diabetic wounds and its underlying mechanism. METHODS The potential mechanism underlying the treatment of diabetic wounds by CG was screened using bioinformatics. The therapeutic effects of CG were then investigated using a db/db diabetic wound model. Moreover, an LPS- and IFN-γ-induced RAW264.7 cell inflammation model was used to elucidate the mechanism underlying the therapeutic effects of CG against diabetic wounds. RESULTS Network pharmacology predicted that the AMPK pathway could be the main target through which CG treats diabetic wounds. In db/db diabetic mice, CG could accelerate wound healing and promote granulation tissue regeneration. Protein chip technology revealed that CG increased the production of M-CSF, G-CSF, GM-CSF, IL-10, IL-13, and IL-4 but not that of MCP-1, IL-1β, IL-1α, TNF-α, and TNF-RII. Moreover, CG elevated the proportion of Ly6CLo/- anti-inflammatory monocytes in peripheral blood and M2 macrophages in the wound. The ELISA and flow cytometry analyses revealed that CG enhanced the levels of IL-10, VEGF, CD206, and Arg-1 expression whereas it considerably reduced the levels of IL-1, IL-6, IL-12, TNF-α, CD86, and iNOS expression. Meanwhile, CG increased the macrophage mitochondrial membrane potential and decreased the mitochondrial ADP/ATP ratio and glycolysis rate of M1 macrophages through the ROS/AMPK/STAT6 pathway. CONCLUSIONS The network pharmacology and molecular dockin identified the AMPK pathway as a critical pathway for treating diabetic wounds using topical CG application. CG was found to promote anti-inflammatory monocyte recruitment and decrease the mitochondrial glycolysis rate to induce M2 macrophage polarization via the ROS/AMPK/STAT6 pathway. These results suggest that CG might be a promising therapeutic agent for diabetic wounds.
Collapse
Affiliation(s)
- Jia Chen
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Qingwu Liu
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Wentao Yao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Xiujuan He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| |
Collapse
|
10
|
Xu S, Huang P, Yang J, Du H, Wan H, He Y. Calycosin alleviates cerebral ischemia/reperfusion injury by repressing autophagy via STAT3/FOXO3a signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154845. [PMID: 37148714 DOI: 10.1016/j.phymed.2023.154845] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND As a common cerebrovascular disease (CVD) of the elderly, ischemic stroke (IS) is characterized by high disability and mortality. Excessive autophagy induced by IS is implicated in neuronal death, therefore, the inhibition of immoderate autophagy is viewed as a potential therapeutic avenue to treat IS. Calysoin (CA) is a bioactive component of Radix Astragali, which has been widely used to treat CVDs. However, the mechanism of the treatment of IS by CA is still problematic. PURPOSE Based on the result of network pharmacology, whether CA inhibited autophagy by regulating the STAT3/FOXO3a pathway to alleviate cerebral ischemia-reperfusion injury (CIRI) was investigated in vivo and in vitro for the first time. STUDY DESIGN Integrate computational prediction and experimental validation based on network pharmacology. METHODS In current study, network pharmacology was applied to predict the mechanism of the treatment of IS by CA, and it was shown that CA alleviated CIRI by inhibiting autophagy via STAT3/FOXO3a signaling pathway. One hundred and twenty adult male specific pathogen-free Sprague-Dawley rats in vivo and PC12 cells in vitro were used to verify the above prediction results. The rat middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by suture method, and oxygen glucose deprivation/re-oxygenation (OGD/R) model was used to simulate cerebral ischemia in vivo. The content of MDA, TNF-α, ROS and TGF-β1 in rat serum were detected by ELISA kits. The mRNA and protein expressions in brain tissue were detected by RT-PCR and Western Blotting. The expressions of LC3 in brain were detected immunofluorescent staining. RESULTS The experimental results demonstrated that administration of CA dosage-dependently improved rat CIRI as evidenced by the reduction in the cerebral infarct volume, amelioration of the neurological deficits. HE staining and transmission electron microscopy results revealed that CA ameliorated cerebral histopathological damage, abnormal mitochondrial morphology, and damaged mitochondrial cristae structure in MCAO/R rats. CA treatment exerted protective effects in CIRI by inhibiting inflammation response, oxidative stress injury, and cell apoptosis in rat and PC12 cells. CA relieved excessive autophagy induced by MCAO/R or OGD/R through downregulating the LC3Ⅱ/LC3Ⅰ ratio and upregulating the SQSTM1 expression. CA treatment also decreased p-STAT3/STAT3 and p-FOXO3a/FOXO3a ratio in the cytoplasm and modulated the autophagy-related gene expression both in vivo and in vitro. CONCLUSION Treatment with CA attenuated CIRI by reducing excessive autophagy via STAT3/FOXO3a signal pathway in rat and PC12 cells.
Collapse
Affiliation(s)
- Shouchao Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haixia Du
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
11
|
Chen M, Zhong G, Liu M, He H, Zhou J, Chen J, Zhang M, Liu Q, Tong G, Luan J, Zhou H. Integrating network analysis and experimental validation to reveal the mitophagy-associated mechanism of Yiqi Huoxue (YQHX) prescription in the treatment of myocardial ischemia/reperfusion injury. Pharmacol Res 2023; 189:106682. [PMID: 36736970 DOI: 10.1016/j.phrs.2023.106682] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is the main cause of increasing postischemic heart failure and currently there is no definite treatment for myocardial I/R injury. It has been suggested that oxidative stress-induced mitochondrial dysfunction plays an important role in the pathological development of myocardial I/R. In this study, Yiqi Huoxue (YQHX) prescription, as a kind of Chinese herbal formula, was developed and shown to alleviate I/R injury. Network analysis combined with ultrahigh-performance liquid chromatography-high resolution mass spectrometry expounded the active components of YQHX and revealed the mitophagy-regulation mechanism of YQHX treating I/R injury. In vivo experiments confirmed YQHX significantly alleviated I/R myocardial injury and relieved oxidative stress. In vitro experiments validated that YQHX could relieve hypoxia/reoxygenation injury and attenuate oxidative stress via improving the structure and function of mitochondria, which was strongly related to regulating mitophagy. In summary, this study demonstrated that YQHX, which could alleviate I/R injury via targeting mitophagy, might be a potential therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Mingtai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao.
| | - Guofu Zhong
- Intensive Care Unit, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou university of Chinese Medicine, Shenzhen, PR China
| | - Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, PR China
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, Macao
| | - Jie Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Mingsheng Zhang
- School of Public Health, Guangdong Medical University, Dongguan, PR China
| | - Qiang Liu
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Guangdong Tong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
| | - Jienan Luan
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China.
| |
Collapse
|
12
|
Xia S, Chen L, Li Z, Li Y, Zhou Y, Sun S, Su Y, Xu X, Shao J, Zhang Z, Kong D, Zhang F, Zheng S. Qingchang Wenzhong Decoction reduce ulcerative colitis in mice by inhibiting Th17 lymphocyte differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154460. [PMID: 36182798 DOI: 10.1016/j.phymed.2022.154460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Qingchang Wenzhong Decoction (QCWZD), a chinese herbal prescription, is widely used for ulcerative colitis (UC). Nevertheless, the active ingredients and mechanism of QCWZD in UC have not yet been explained clearly. PURPOSE This research focuses on the identification of the effective ingredients of QCWZD and the prediction and verification of their potential targets. METHODS The UC mice were established by adding 3.0% dextran sulfate sodium (DSS) to sterile water for one week. Concurrently, mice in the treatment group were gavage QCWZD or mesalazine. LC-MS analyzed the main components absorbed after QCWZD treatment, and network pharmacology predicted their possible targets. ELISA, qPCR, immunohistochemistry and immunofluorescence experiments were used to evaluate the colonic inflammation level and the intestinal barrier completeness. The percentage of Th17 and Treg lymphocytes was detected by flow cytometry. RESULTS After QCWZD treatment, twenty-seven compounds were identified from the serum. In addition, QCWZD treatment significantly reduced the increased myeloperoxidase (MPO) and inflammatory cell infiltration caused by DSS in the colonic. In addition, QCWZD can reduce the secretion of inflammatory factors in serum and promote the expression of mRNAs and proteins of occludin and ZO-1. Network pharmacology analysis indicated that inhibiting IL-6-STAT3 pathway may be necessary for QCWZD to treat UC. Flow cytometry analysis showed that QCWZD can restore the normal proportion of Th17 lymphocytes in UC mice. Mechanistically, QCWZD inhibited the phosphorylation of JAK2-STAT3 pathway, reducing the transcriptional activation of RORγT and IL-17A. CONCLUSIONS Overall, for the first time, our work revealed the components of QCWZD absorbed into blood, indicated that the effective ingredients of QCWZD may inhibit IL-6-STAT3 pathway and inhibit the differentiation of Th17 lymphocytes to reduce colon inflammation.
Collapse
Affiliation(s)
- Siwei Xia
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 210022, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yuanyuan Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Sumin Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Ying Su
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 210022, China.
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Wang J, Chen Z, Li M, Song Y, Xu W, Wang L, Chen S. Genome-wide identification, immune response profile and functional characterization of IL-10 from spotted knifejaw (Oplegnathus punctatus) during host defense against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:513-524. [PMID: 35472402 DOI: 10.1016/j.fsi.2022.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Interleukin 10 (IL-10), a pleiotropic cytokine, plays an essential role in multiple immunity responses. In the current study, the sequences of IL-10 family were identified from spotted knifejaw (Oplegnathus punctatus) whole genome, and O. punctatus IL-10 (OpIL-10) was cloned and characterized. OpIL-10 encodes 187 amino acids with a typical IL-10 family signature motif and predicted α-helices. It shared high identities with Notolabrus celidotus IL-10 and Epinephelus Lanceolatus IL-10. OpIL-10 was widely detected in healthy tissues, with the abundant expression in liver and skin. It was significantly up-regulated in the six immune-related tissues (liver, spleen, kidney, intestine, gill and skin) after infection against Vibrio harveyi and spotted knifejaw iridovirus (SKIV). Dual-luciferase analysis showed that OpIL-10 overexpression could suppress the activity of NF-κB. Meanwhile, OpIL-10 knockdown caused the down-regulation of five immune-related genes in JAK2/STAT3 signaling pathway and NF-κB signaling pathway, including IL-10R2, TYK2, STAT3, NOD2, and IκB. In addition, LPS and poly I:C stimulated expression of pro-inflammatory cytokines, including IL-6, IL-1β, IL-8, and IL-12, were lower with recombinant OpIL-10 (rOp IL-10) than the control group, indicating the anti-inflammatory roles of rOpIL-10. Taken together, these results indicated OpIL-10 as a negative regulator in the inflammatory responses of spotted knifejaw against bacterial and viral infection, which would help us better understand the role of IL-10 in teleost immunity.
Collapse
Affiliation(s)
- Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| | - Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
14
|
Calycosin-7-O-β-D-glucoside attenuates palmitate-induced lipid accumulation in hepatocytes through AMPK activation. Eur J Pharmacol 2022; 925:174988. [PMID: 35490724 DOI: 10.1016/j.ejphar.2022.174988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
Calycosin-7-O-β-D-glucoside (CG) is the major component of Astragali Radix (AR), a traditional Chinese drug. As reported, CG could attenuate cerebral ischemia/reperfusion injury, protect blood-brain barrier integrity, and ameliorate myocardial infarction. To date, whether CG has a protective effect on metabolic diseases remains to be elucidated. In the present study, CG could attenuate palmitate-induced lipid accumulation in hepatocytes in a dose-dependent manner, with down-regulation of lipogenesis related genes expression and up-regulation of lipids β-oxidation related genes expression. CG could decrease the triglyceride (TG) content from 0.30 mmol/g protein to 0.21 mmol/g protein and reduce the total cholesterol (TC) content from 0.39 mmol/g protein to 0.26 mmol/g protein. Moreover, CG stimulated the phosphorylation of AMP-activated protein kinase (AMPK), and the protective effect of CG on hepatocytes was partially reversed both by the inhibitor of AMPK signaling pathway and overexpression of AMPK-DN. Our findings revealed that CG could ameliorate palmitate-induced lipids accumulation in hepatocytes via AMPK activation and it may be a promising therapeutic medicine for hepatic steatosis.
Collapse
|
15
|
Li L, Gao J, Gao L, Li L, Zhang H, Zhao W, Xu S. Bilateral Superior Cervical Sympathectomy Activates Signal Transducer and Activator of Transcription 3 Signal to Alleviate Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med 2022; 9:807298. [PMID: 35433880 PMCID: PMC9010611 DOI: 10.3389/fcvm.2022.807298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background There is growing evidence about the effect of bilateral superior cervical sympathectomy on myocardial ischemia-reperfusion (I/R) injury. Studies have increasingly found that the signal transducer and activator of transcription 3 (STAT3) plays a protective role in myocardial I/R injury. However, the precise mechanism is unknown. The present study explored the bilateral superior cervical sympathectomy’s effect and potential mechanism in mice myocardial I/R injury. Methods The left heart I/R injury model was created by ligating the anterior descending branch of the coronary artery for 30 min followed by reperfusion. Bilateral superior cervical sympathectomy was performed before myocardial I/R injury. To evaluate the effect of bilateral superior cervical sympathectomy on the myocardium, we examined the myocardial infarct size and cardiac function. Then, myocardial apoptosis, inflammation, and oxidative stress were detected on the myocardium. Furthermore, the expression of STAT3 signal in myocardial tissue was measured by western blotting. To further examine the cardioprotective effect of STAT3 after bilateral superior cervical sympathectomy, the STAT3 inhibitor (static) was utilized to inhibit the phosphorylation of STAT3. Results The results showed that the myocardial I/R injury decreased and the cardiac function recovered in the myocardial I/R injury after cervical sympathectomy. Meanwhile, cervical sympathectomy reduced the myocardial distribution of the sympathetic marker tyrosine hydroxylase (TH) and systemic sympathetic tone. And levels of oxidative stress, inflammatory markers, and apoptosis were reduced in myocardial tissue. We also found that the STAT3 signal was activated in myocardial tissue after cervical sympathectomy. STAT3 inhibitor can partially reverse the myocardial protective effect of cervical sympathectomy. Conclusion Bilateral superior cervical sympathectomy significantly alleviated myocardial I/R injury in mice. And activation of the STAT3 signal may play an essential role in this.
Collapse
|
16
|
Wang X, Li W, Zhang Y, Sun Q, Cao J, Tan N, Yang S, Lu L, Zhang Q, Wei P, Ma X, Wang W, Wang Y. Calycosin as a Novel PI3K Activator Reduces Inflammation and Fibrosis in Heart Failure Through AKT-IKK/STAT3 Axis. Front Pharmacol 2022; 13:828061. [PMID: 35264961 PMCID: PMC8899514 DOI: 10.3389/fphar.2022.828061] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 01/20/2023] Open
Abstract
Aim: Inflammation and fibrosis have been shown to be critical factors in heart failure (HF) progression. Calycosin (Cal) is the major active component of Astragalus mongholicus Bunge and has been reported to have therapeutic effects on the cardiac dysfunction after myocardial infarction. However, whether Cal could ameliorate myocardial infarction (MI)-induced inflammation and fibrosis and precise mechanisms remain uncertain. The aim of this study is to explore the role of Cal in HF and to clarify the underlying mechanisms. Methods: For in vivo experiments, rats underwent left anterior descending artery ligation for heart failure model, and the cardioprotective effects of Cal were measured by echocardiographic assessment and histological examination. RNA-seq approach was applied to explore potential differential genes and pathways. For further mechanistic study, proinflammatory-conditioned media (conditioned media)-induced H9C2 cell injury model and TGFβ-stimulated cardiac fibroblast model were applied to determine the regulatory mechanisms of Cal. Results: In the in vivo experiments, echocardiography results showed that Cal significantly improved heart function. GO and reactome enrichment revealed that inflammation and fibrosis pathways are involved in the Cal-treated group. KEGG enrichment indicated that the PI3K–AKT pathway is enriched in the Cal-treated group. Further experiments proved that Cal alleviated cardiomyocyte inflammatory responses evidenced by downregulating the expressions of phosphorylated IκB kinase α/β (p-IKKα/β), phosphorylated nuclear factor kapa B (p-NFκB), and tumor necrosis factor α (TNFα). Besides, Cal effectively attenuated cardiac fibrosis through the inhibitions of expressions and depositions of collagen I and collagen III. In the in vitro experiments, the phosphatidylinositol three kinase (PI3K) inhibitor LY294002 could abrogate the anti-inflammation and antifibrosis therapeutic effects of Cal, demonstrating that the cardioprotective effects of Cal were mediated through upregulations of PI3K and serine/threonine kinase (AKT). Conclusion: Cal inhibited inflammation and fibrosis via activation of the PI3K–AKT pathway in H9C2 cells, fibroblasts, and heart failure in postacute myocardial infarction rats.
Collapse
Affiliation(s)
- Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianbin Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Cao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - NanNan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangjie Yang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Lu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Wei Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China.,Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Beijing Key Laboratory of TCM Syndrome and Formula, Beijing, China.,Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
18
|
Cui HR, Zhang JY, Cheng XH, Zheng JX, Zhang Q, Zheng R, You LZ, Han DR, Shang HC. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res 2022; 176:106081. [PMID: 35033650 DOI: 10.1016/j.phrs.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.
Collapse
Affiliation(s)
- He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia-Xin Zheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dong-Ran Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
19
|
Li X, Guo X, Sha M, Gao W, Li X. Combining network pharmacology with chromatographic fingerprinting and multi-component quantitative analysis for the quality evaluation of Astragali Radix. Biomed Chromatogr 2022; 36:e5319. [PMID: 34984720 DOI: 10.1002/bmc.5319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022]
Abstract
Nowadays, the cultivated variant and adulterant of Astragali Radix (AR) have flooded the market, causing the quality of AR to be challenging to distinguish. To address this issue, we combined network pharmacology with chromatographic fingerprinting and multi-component quantitative analysis for the quality evaluation of AR. Specifically, through network pharmacology, a complete understanding of the active components and pharmacological activities of AR was established. In addition, the establishment of the fingerprint profiles and multi-component quantitation by high-performance liquid chromatography (HPLC) is convenient and comprehensive, which can more fully reflect the overall situation of the distribution of various chemical components. To evaluate and differentiate AR from different origins, hierarchical cluster analysis (HCA) and principal component analysis (PCA) were performed. The result showed that AR acts synergistically through multiple targets and pathways. And the content of chemical components in AR from different origins varied significantly. Combining network pharmacology and multi-component quantification results, astragaloside II, astragaloside IV and formononetin can be used as quality markers for quality control of AR. This study provides a comprehensive and reliable strategy for the quality evaluation of AR and identifies its quality markers to ensure the quality of the herb.
Collapse
Affiliation(s)
- Xiaohuan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinhua Guo
- Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, Zhuhai Campus, Jinan University, Zhuhai, China
| | - Miao Sha
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
20
|
Study of quality markers of antiuric acid formula by grey relational analysis. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractGout has become a global problem, antiuric acid formula (AAF) is a clinical prescription highly effective in reducing uric acid levels. In order to find its quality control standards and contribute to the treatment of gout in the future, we adopted high-performance liquid chromatography and orbitrap liquid chromatography–mass spectrometry to establish fingerprints of 13 batches of AAF. The different batches of AAF were tested the activity of inhibit uric acid by the xanthine oxidase inhibition experiment. Grey relational analysis and bio-activity validation to assess the spectrum–effect relationship. Finally, we choose puerarin, calycosin-7-O-beta-d-glucoside and puerarin apioside as the AAF quality control component, and its average content is 6036.006 μg/g, 296.113 μg/g and 878.285 μg/g. As the quality control components of AAF, puerarin, calycosin-7-O-beta-d-glucoside and puerarin apioside can be of great significance for the treatment of gout and gout related research.
Collapse
|
21
|
Calycosin-triblock copolymer nanomicelles attenuate doxorubicin-induced cardiotoxicity through upregulation of ERp57. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Liu CJ, Yao L, Hu YM, Zhao BT. Effect of Quercetin-Loaded Mesoporous Silica Nanoparticles on Myocardial Ischemia-Reperfusion Injury in Rats and Its Mechanism. Int J Nanomedicine 2021; 16:741-752. [PMID: 33564233 PMCID: PMC7866914 DOI: 10.2147/ijn.s277377] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Quercetin has potential value in treating cardiovascular diseases, but it is not suitable for clinical application due to its own water solubility. The limitation of quercetin can be distinctly ameliorated by delivering it with nanocarriers. OBJECTIVE To determine the effect of quercetin-loaded mesoporous silica nanoparticles (Q-MSNs) on myocardial ischemia-reperfusion injury in rats and its mechanism. METHODS Q-MSNs were synthesized, and the morphology of Q-MSNs and MSNs was characterized by transmission electron microscopy and dynamic light scattering technique, respectively. Healthy rats were enrolled and randomly divided into a sham operation control group, an ischemia-reperfusion (IR) group, an IR+Q group, an IR+Q-MSNs group, and an MSNs group (each n = 10). Rats in the sham operation group were not treated with ischemia reperfusion, but given normal perfusion meantime. Rats in the sham operation control group, IR group, and MSNs group were given normal saline for 10 days before ischemia reperfusion, and rats in the IR+Q group and IR+Q-MSNs group were given drugs by gavage for 10 days before ischemia reperfusion. Primary myocardial cells were sampled from SD neonatal rats to construct hypoxia/reoxygenation myocardial cell models. The myocardial cells were assigned to a control group, IR group, quercetin (Q) group, Q-MSNs group, and MSNs group. Except for the control group, all the other groups were treated with hypoxia/reoxygenation. Cells in the Q group were treated with quercetin (10 μM, 20 μM, 40 μM) for 24 h in advance and then treated with measures to cause hypoxia-reoxygenation injury. Cells in the Q-MSNs group were treated with the same concentration of loaded quercetin and the same method used for the Q group. The myocardial apoptosis, myocardial infarction, ventricular remodeling, hemodynamic indexes, physiological and biochemical indexes, and JAK2/STAT3 pathway expression of each group were detected, and the apoptosis, viability, oxidative stress, and JAK2/STAT3 pathway expression of primary myocardial cells in each group were also detected. RESULTS Quercetin significantly activated the JAK2/STAT3 pathway in vivo and in vitro, and MSNs intensified the activation. Compared with quercetin, Q-MSNs were more effective in inhibiting cell apoptosis and oxidative stress, reducing myocardial infarction size, improving ventricular remodeling and cardiac function-related biochemical indexes, and promoting the recovery of cardiac blood flow. CONCLUSION Q-MSNs can significantly enhance the activation effect of quercetin on JAK2/STAT3 pathway, thus enhancing its protection on the heart of MIRI rats.
Collapse
Affiliation(s)
- Chen-Jie Liu
- ECG Room of Physical Examination Center of Cangzhou Central Hospital, Cangzhou, Hebei, 061001, People’s Republic of China
| | - Li Yao
- Six Cardiovascular Departments of Cangzhou Central Hospital, Cangzhou, Hebei, 061001, People’s Republic of China
| | - Ya-Min Hu
- Six Cardiovascular Departments of Cangzhou Central Hospital, Cangzhou, Hebei, 061001, People’s Republic of China
| | - Bo-Tao Zhao
- Six Cardiovascular Departments of Cangzhou Central Hospital, Cangzhou, Hebei, 061001, People’s Republic of China
| |
Collapse
|
23
|
Tian W, Wang ZW, Yuan BM, Bao YG. Calycosin induces apoptosis via p38‑MAPK pathway‑mediated activation of the mitochondrial apoptotic pathway in human osteosarcoma 143B cells. Mol Med Rep 2020; 22:3962-3968. [PMID: 32901836 PMCID: PMC7533496 DOI: 10.3892/mmr.2020.11471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have demonstrated that calycosin is a natural phytoestrogen with a similar structure to estrogen, which can inhibit cell proliferation and induce apoptosis in a variety of tumors. Calycosin exerts potential pharmacological effects on osteosarcoma cells by inducing apoptosis. The aim of the present study was to elucidate the specific molecular mechanism of calycosin-induced apoptosis in osteosarcoma cells. Cell proliferation was determined by an MTT assay. Annexin V/PI and JC-1 staining were used to detect apoptosis and mitochondrial dysfunction, respectively, by flow cytometry. Western blot analysis was used to detect the expression of caspases or mitochondrial proteins. The results revealed that calycosin reduced the cell viability of human osteosarcoma 143B cells, induced apoptosis and increased the loss of mitochondrial membrane potential (MMP). In addition, calycosin increased the expression of the proapoptotic antiapoptotic proteins cleaved caspase-3, cleaved caspase-9, cleaved poly(ADP-ribose) polymerase and Bcl-2-associated X protein (Bax), and decreased the expression of the antiapoptotic proapoptotic protein B-cell lymphoma-2 (Bcl-2), thus altering the Bax/Bcl-2 ratio. In addition, the expression levels of cytochrome c were markedly decreased in the mitochondria and increased in the cytoplasm following calycosin treatment. Furthermore, calycosin treatment induced p38-mitogen-activated protein kinase (MAPK) phosphorylation, whereas the p38-MAPK inhibitor BIRB 796 markedly reversed cell viability, apoptosis and loss of MMP in 143B cells. These results suggested that calycosin inhibited osteosarcoma 143B cell growth via p38-MAPK regulation of mitochondrial-dependent intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Wei Tian
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Zhi-Wei Wang
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Bao-Ming Yuan
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Yong-Ge Bao
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| |
Collapse
|