1
|
Wang T, Wu H, Shi X, Dai M, Liu Y. Aminoadipic acid aggravates atherosclerotic vascular inflammation through ROS/TXNIP/NLRP3 pathway, a harmful microbial metabolite reduced by paeonol. Int J Biochem Cell Biol 2024; 177:106678. [PMID: 39490917 DOI: 10.1016/j.biocel.2024.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
AIM Our previous study has found a differential microbial metabolite in atherosclerosis (AS) mice, aminoadipic acid (AAA), which was considered as a potential harmful metabolite. However, whether it can promote AS vascular inflammation and its mechanisms remain unclear. Paeonol (Pae) plays an anti-AS role by regulating the metabolic profile, but whether Pae exerts its antiatherogenic effect by reducing serum AAA levels is unknown. RESULTS The clinical trial results showed that the AS patients' serum AAA levels were higher than those healthy people'. Besides, AAA supplementation could increase aortic plaque size, serum inflammatory cytokines levels and liver malondialdehyde, superoxide dismutase levels in AS mice. Moreover, after AAA stimulation, the ROS levels and ASC, TXNIP, NLRP3 and caspase-1 proteins levels were increased in HUVECs, which could be reversed by antioxidant NAC and NLRP3 inhibitor. Pae significantly reduced the plaque size in the aorta, improved blood lipid levels and decreased serum inflammation factor levels in AS mice. Simultaneously, Pae could reduce the serum AAA levels of AS mice through the gut microbiota transmission. Finally, Pae inhibited NLRP3 inflammasome activation in aortas of AS mice. Broad-spectrum antibiotics could weaken the inhibitory effect of Pae on NLRP3 inflammasome. CONCLUSION Our study clarified that AAA could promote AS vascular inflammation via activating the ROS/TXNIP/NLRP3 pathway. Pae could inhibit AS development by reducing serum AAA levels in a microbiota-dependent manner. Taken together, we proposed that AAA could be served as a potential biomarker for AS clinical diagnosis and provided a new treatment strategy for AS.
Collapse
Affiliation(s)
- Tian Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China
| | - Hongfei Wu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China
| | - Xiaoyan Shi
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China
| | - Min Dai
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China
| | - Yarong Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China.
| |
Collapse
|
2
|
Dinh P, Tran C, Dinh T, Ali A, Pan S. Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. J Biomol Struct Dyn 2024; 42:5114-5127. [PMID: 37334706 DOI: 10.1080/07391102.2023.2225109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Coronary heart disease (CHD) is a prevalent global cause of death. Research suggests that circular RNAs (circRNAs) play a role in the development of CHD. In this study, we investigated the expression of hsa_circRNA_0000284 in peripheral blood leukocytes (PBLs) obtained from a cohort of 94 CHD patients aged over 50 years, as well as 126 age-matched healthy controls (HC). An in vitro inflammatory and oxidative injury cell model that simulates CHD was used to evaluate changes in hsa_ circRNA _0000284 under stress. CRISPR/Cas9 technology was used to evaluate changes in hsa_circRNA_0000284 expression. An hsa_ circRNA_0000284 overexpression and silencing cell model was used to analyze the biological functions of hsa_circRNA_0000284. Bioinformatics, qRT-PCR, viral transfection technology, and luciferase assays were used to evaluate the potential hsa_circRNA_0000284/miRNA-338-3p/ETS1 axis. Western blotting analysis was performed to detect protein expression. Herein, PBLs from CHD patients exhibited downregulation of hsa_circRNA_0000284 expression. Exposure to oxidative stress and inflammation can induce damage to human umbilical endothelial cells, resulting in the downregulation of hsa_circRNA_0000284 expression. The expression of hsa_circRNA_0000284 in EA-hy926 cells was significantly reduced after the AluSq2 element of hsa_circRNA_0000284 had been knocked out. The expression of hsa_circRNA_0000284 affected proliferation, cycle distribution, aging, and apoptosis in EA-hy926 cells. Consistent with the results of cell transfection experiments and luciferase assays, Western blotting showed that hsa_circRNA_0000284 plays a role in the regulation of hsa-miRNA-338-3p expression. Subsequently, hsa-miRNA-338-3p was found to be involved in the regulation of ETS1 expression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- PhongSon Dinh
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ThiPhuongHoai Dinh
- Department of Neurosurgery, Hue University Hospital, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - ShangLing Pan
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Lin L, Wang L, Li A, Li Y, Gu X. CircDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through miR-338-3p/SRSF1 axis. J Bioenerg Biomembr 2024; 56:235-245. [PMID: 38613636 PMCID: PMC11116235 DOI: 10.1007/s10863-023-09992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/24/2023] [Indexed: 04/15/2024]
Abstract
Acute myocardial infarction (AMI) is one of the most prevalent cardiovascular diseases, accounting for a high incidence rate and high mortality worldwide. Hypoxia/reoxygenation (H/R)-induced myocardial cell injury is the main cause of AMI. Several studies have shown that circular RNA contributes significantly to the pathogenesis of AMI. Here, we established an AMI mouse model to investigate the effect of circDiaph3 in cardiac function and explore the functional role of circDiaph3 in H/R-induced cardiomyocyte injury and its molecular mechanism. Bioinformatics tool and RT-qPCR techniques were applied to detect circDiaph3 expression in human patient samples, heart tissues of AMI mice, and H/R-induced H9C2 cells. CCK-8 was used to examine cell viability, while annexin-V/PI staining was used to assess cell apoptosis. Myocardial reactive oxygen species (ROS) levels were detected by immunofluorescence. Western blot was used to detect the protein expression of anti-apoptotic Bcl-2 while pro-apoptotic Bax and cleaved-Caspase-3. Furthermore, ELISA was used to detect inflammatory cytokines production. While bioinformatics tool and RNA pull-down assay were used to verify the interaction between circDiaph3 and miR-338-3p. We found that circDiaph3 expression was high in AMI patients and mice, as well as in H/R-treated H9C2 cells. CircDiaph3 silencing ameliorated apoptosis and inflammatory response of cardiomyocytes in vivo. Moreover, the knockdown of cirDiaph3 mitigated H/R-induced apoptosis and the release of inflammatory mediators like IL-1β, IL-6, and TNF-α in H9C2 cells. Mechanistically, circDiaph3 induced cell apoptosis and inflammatory responses in H/R-treated H9C2 cells by sponging miR-338-3p. Overexpressing miR-338-3p in H/R-treated cells prominently reversed circDiaph3-induced effects. Notably, miR-338-3p inhibited SRSF1 expression in H/R-treated H9C2 cells. While overexpressing SRSF1 abrogated miR-338-3p-mediated alleviation of apoptosis and inflammation after H/R treatment. To summarize, circDiaph3 aggravates H/R-induced cardiomyocyte apoptosis and inflammation through the miR-338-3p/SRSF1 axis. These findings suggest that the circDiaph3/miR-338-3pp/SRSF1 axis could be a potential therapeutic target for treating H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Lin Lin
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Li Wang
- Department of Emergency, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Aimin Li
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Yanzhuo Li
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China
| | - Xiaolong Gu
- Department of Cardiovascular Medicine, PLA Southern Theater Command General Hospital, 11 Liuhua Road, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Wu R, Liu Y, Zhang F, Dai S, Xue X, Peng C, Li Y, Li Y. Protective mechanism of Paeonol on central nervous system. Phytother Res 2024; 38:470-488. [PMID: 37872838 DOI: 10.1002/ptr.8049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Cerebrovascular diseases involve neuronal damage, resulting in degenerative neuropathy and posing a serious threat to human health. The discovery of effective drug components from natural plants and the study of their mechanism are a research idea different from chemical synthetic medicines. Paeonol is the main active component of traditional Chinese medicine Paeonia lactiflora Pall. It widely exists in many medicinal plants and has pharmacological effects such as anti-atherosclerosis, antiplatelet aggregation, anti-oxidation, and anti-inflammatory, which keeps generally used in the treatment of cardiovascular and cerebrovascular diseases. Based on the therapeutic effects of Paeonol for cardiovascular and cerebrovascular diseases, this article reviewed the pharmacological effects of Paeonol in Alzheimer's disease, Parkinson's disease, stroke, epilepsy, diabetes encephalopathy, and other neurological diseases, providing a reference for the research of the mechanism of Paeonol in central nervous system diseases.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Luo H, Zhao L, Dong B, Liu Y. MiR-375 Inhibitor Alleviates Inflammation and Oxidative Stress by Upregulating the GPR39 Expression in Atherosclerosis. Int Heart J 2024; 65:135-145. [PMID: 38296567 DOI: 10.1536/ihj.23-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Atherosclerosis may be caused or developed by an immune response and antioxidation imbalance. MicroRNA-375 (miR-375) or G-protein-coupled receptor 39 (GPR39) is involved in vascular endothelial cell injury, but their role in atherosclerosis is unknown. This experiment aimed to determine the action of the miR-375/GPR39 axis in atherosclerosis.Human aortic endothelial cells (HAECs) were treated with 10 ng/mL of oxidised low-density lipoprotein (ox-LDL) for 24 hours to induce HAEC injury, which was treated by the miR-375 inhibitor, GPR39 inhibitor, or agonist. High-fat diet (HFD) -induced ApoE-/- mice were made as an atherosclerosis model for miR-375 inhibitor treatment. Cell Counting Kit-8 was applied to detect HAEC viability. HAEC apoptosis and ROS levels were measured using flow cytometry. Vascular histopathology and the GPR39 expression were detected using hematoxylin-eosin and immunohistochemistry. The expressions of interleukin (IL) -6, IL-1β, and tumour necrosis factor-α (TNF-α) were assessed using an enzyme-linked immunosorbent assay. The miR-375, GPR39, NOX-4, and p-IκBα/IκBα levels were measured using quantitative reverse transcription polymerase chain reaction or western blot.MiR-375 and GPR39 levels increased and decreased in ox-LDL-treated HAECs, respectively. The miR-375 inhibitor or GPR39 agonist promoted cell viability and inhibited apoptosis in ox-LDL-induced HAEC injury. The miR-375 inhibitor also significantly downregulated the IL-6, IL-1β, TNF-α, p-IκBα/IκBα, ROS, and NOX-4 expressions to alleviate oxidative stress and inflammation, which were reversed by the GPR39 inhibitor. An in vivo experiment proved that the miR-375 inhibitor upregulated the GPR39 expression and improved inflammation, oxidative stress, and endothelial cell damage associated with atherosclerosis.The miR-375 inhibitor improved inflammation, oxidative stress, and cell damage in ox-LDL-induced HAECs and HFD-induced ApoE-/- mice by promoting the GPR39 expression, which provided a new theoretical basis for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hui Luo
- Department of Cardiology, The First Hospital of Changsha
| | - Lin Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University
| | - Bo Dong
- Department of Cardiology, The First Hospital of Changsha
| | - Yanghong Liu
- Center for Reproductive Medicine, The Third Xiangya Hospital, Central South University
| |
Collapse
|
6
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
7
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Xiong Y, Huang H, Chen F, Tang Y. CircDLGAP4 induces autophagy and improves endothelial cell dysfunction in atherosclerosis by targeting PTPN4 with miR-134-5p. ENVIRONMENTAL TOXICOLOGY 2023; 38:2952-2966. [PMID: 37615249 DOI: 10.1002/tox.23930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Circular RNAs (circRNAs), a new subgroup of non-coding RNAs in the human transcriptome, are crucial in atherosclerosis (AS). Here, a newly identified circRNA circDLGAP4 was demonstrated to be downregulated in oxidized forms of low-density lipoprotein (ox-LDL)-induced HUVECs. METHODS This research adopted ox-LDL to stimulate human umbilical vein endothelial cells (HUVECs) to mimic AS in vitro. To further validate the protective action of circDLGAP4 in AS, a mouse model of AS was constructed with a high-fat diet. Functional assays evaluated circDLGAP4 role in AS in vitro and in vivo. Moreover, mechanism assays evaluated association of circDLGAP4/miR-134-5p/PTPN4. RESULTS CircDLGAP4 was induced to promote cell proliferative behavior and autophagy, inhibit apoptotic and inflammatory activities in ox-LDL-treated HUVECs, and attenuated endothelial barrier function. CircDLGAP4 regulated PTPN4 by directly targeting miR-134-5p. Meanwhile, inhibiting miR-134-5p reduced ox-LDL-induced cell dysfunction. Knockout of PTPN4 reversed circDLGAP4 overexpression or miR-134-5p downregulation in vitro. In addition, reducing circDLGAP4 or overexpressing miR-134-5p increased the red atherosclerotic plaque and lesion area of AS mice, reduced autophagy level, and promoted the release of inflammatory cytokines. CONCLUSION This study extends the role of circRNA in AS by inducing autophagy and improving endothelial dysfunction in AS via the circDLGAP4/miR-134-5p/PTPN4 axis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Cardiology and Cardiovascular Disease Research Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Hui Huang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Fuli Chen
- Department of Cardiology and Cardiovascular Disease Research Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yijia Tang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
10
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Yang C, Cheng J, Zhu Q, Pan Q, Ji K, Li J. Review of the Protective Mechanism of Paeonol on Cardiovascular Disease. Drug Des Devel Ther 2023; 17:2193-2208. [PMID: 37525853 PMCID: PMC10387245 DOI: 10.2147/dddt.s414752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death in the world. Paeonol(Pae) is a phenolic component extracted from peony bark, peony root and Xu Changqing. Studies have shown that Pae can protect cardiomyocytes by inhibiting oxidative stress, promoting mitochondrial fusion, regulating mitochondrial autophagy and inhibiting inflammation. In addition, Pae improves ventricular remodeling by inhibiting myocardial apoptosis, hypertrophy and fibrosis. Pae also has a good protective effect on blood vessels by inhibiting vascular inflammation, reducing the expression of adhesion molecules, inhibiting vascular proliferation, and inhibiting oxidative stress and endoplasmic reticulum stress(ERS). Pae also has the effect of anti-endothelial cell senescence, promoting thrombus recanalization and vasodilating. In conclusion, the molecular targets of Pae are very complex, and the relationship between different targets and signaling pathways cannot be clearly explained, which requires us to use systems biology methods to further study specific molecular targets of Pae. It has to be mentioned that the bioavailability of Pae is poor, and some nanotechnology-assisted drug delivery systems improve the therapeutic effect of Pae. We reviewed the protective mechanism of paeonol on the cardiovascular system, hoping to provide help for drug development in the treatment of CVD.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jiawen Cheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, People's Republic of China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
12
|
Fang X, Mei W, Zeng R, Zou L, Zeng X, Tang S. CIRC_0012535 CONTRIBUTES TO LIPOPOLYSACCHARIDE-INDUCED FETAL LUNG FIBROBLAST APOPTOSIS AND INFLAMMATION TO REGULATE INFANTILE PNEUMONIA DEVELOPMENT BY MODULATING THE MIR-338-3P/IL6R SIGNALING. Shock 2023; 59:820-828. [PMID: 36870073 DOI: 10.1097/shk.0000000000002111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
ABSTRACT Background: Infantile pneumonia is a respiratory infection disease, seriously threatening the life of neonatal patients. Circular RNA (circRNA) dysregulation is reported to be involved in pneumonia pathogenesis. Circ_0012535 was previously displayed to be upregulated in blood samples of patients with community-acquired pneumonia. However, circ_0012535's role in this disorder remains unclear. We thus aim to unveil the functions of circ_0012535 in infantile pneumonia. Methods: Fetal lung fibroblasts (WI38) treated with LPS were used as pneumonia cell models. Expression analysis for circ_0012535, miR-338-3p and IL6R was performed using quantitative real-time polymerase chain reaction. Cell counting kit 88), 5-ethynyl-2'-deoxyuridine, and flow cytometry assays were implemented for cell function detection. The release of inflammatory factors, and superoxide dismutase activity and malonaldehyde content were ascertained using commercial kits. The putative binding between miR-338-3p and circ_0012535 or IL6R was validated by dual-luciferase analysis, RIP analysis, and pull-down analysis. Results: Circ_0012535 was highly expressed in LPS-treated WI38 cells. Knockdown of circ_0012535 recovered LPS-inhibited cell viability and proliferation and attenuated LPS-induced cell apoptosis, cell cycle arrest, inflammation, and oxidative stress. Circ_0012535 bound to miR-338-3p and negatively regulated miR-338-3p expression. Inhibition of miR-338-3p reversed the role of circ_0012535 knockdown, thereby recovering LPS-induced WI38 cell apoptosis and inflammation. MiR-338-3p bound to IL6R 3'UTR, and circ_0012535 shared miR-338-3p binding site with IL6R. IL6R overexpression reversed the role of miR-338-3p, thereby recovering LPS-induced WI38 cell apoptosis and inflammation. Conclusion: Circ_0012535 supported LPS-induced WI38 cell apoptosis and inflammation to promote the progression of infantile pneumonia, and circ_0012535 functioned partly by targeting the miR-338-3p/IL6R signaling.
Collapse
Affiliation(s)
- Xing Fang
- Department of PICU, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
13
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
14
|
Xu N, Ijaz M, Shi H, Shahbaz M, Cai M, Wang P, Guo X, Ma L. Screening of Active Ingredients from Wendan Decoction in Alleviating Palmitic Acid-Induced Endothelial Cell Injury. Molecules 2023; 28:molecules28031328. [PMID: 36770995 PMCID: PMC9919343 DOI: 10.3390/molecules28031328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Objective: Traditional Chinese medicine (TCM) plays an important role in the treatment of numerous illnesses. As a classic Chinese medicine, Wendan Decoction (WDD) encompasses a marvelous impact on the remedy of hyperlipidemia. It is known that hyperlipidemia leads to cardiovascular injury, therefore anti-vascular endothelial cell injury (AVECI) may be an underlying molecular mechanism of WDD in the cure of hyperlipidemia. However, there is no relevant research on the effect of WDD on vascular endothelial cells and its pharmacodynamic substances. Therefore, the purpose of this study was to investigate the protective effect of WDD on vascular endothelial cells. (2) Methods: The chemical constituents of WDD were determined by LC-MS/MS technology. The protective effects of 16 batches of WDD on samples from human umbilical vein endothelial cells (HUVECs) were evaluated. Finally, gray relation analysis (GRA) and partial least squares regression (PLSR) were used to analyze the potential correlation between chemical ingredients and AVECI. (3) Results: The results indicated that WDD had apparent protective effect on endothelial cells, and pharmacological properties in 16 batches of WDD tests were apparently discrepant. The GRA and PLSR showed that trigonelline, liquiritin, hesperidin, hesperetin, scopoletin, morin, quercetin, isoliquiritigenin, liquiritigenin and formononetin may be the active ingredients of AVECI in WDD. (4) Conclusions: WDD has a protective effect on endothelial cell injury induced by palmitic acid, which may be related to its component content. This method was suitable for the search of active components in classical TCM.
Collapse
Affiliation(s)
- Nan Xu
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Muhammad Ijaz
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Haiyan Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Muhammad Shahbaz
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
- Department of Radiology, Qilu Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Meichao Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ping Wang
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiuli Guo
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
- Correspondence: (X.G.); (L.M.)
| | - Lei Ma
- Laboratory of Chinese Medicine Preparation, Shandong Academy of Chinese Medicine, Jinan 250014, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (X.G.); (L.M.)
| |
Collapse
|
15
|
Qi J, Han W, Zhong N, Gou Q, Sun C. Integrated analysis of miRNA-mRNA regulatory network and functional verification of miR-338-3p in coronary heart disease. Funct Integr Genomics 2022; 23:16. [PMID: 36562844 DOI: 10.1007/s10142-022-00941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Coronary heart disease is a cardiovascular disease with high morbidity and mortality. Although great progress has been made in treatment, the prognosis is still very poor. Therefore, this project aims to screen potential diagnostic markers and therapeutic targets related to the progression of coronary heart disease. A total of 94 overlapping differentially expressed mRNAs and 70 differentially expressed miRNAs were identified from GSE20681, GSE12288, GSE49823, and GSE105449. Through a series of bioinformatics methods and experiment, we obtained 5 core miRNA-mRNA regulatory pairs, and selected miR-338-3p/RPS23 for functional analysis. Moreover, we found that RPS23 directly targets miR-338-3p by dual luciferase assay, western, and qPCR. And the expression of miR-338-3p and RPS23 is negatively correlated. The AUC value of miR-338-3p is 0.847. Downregulation of miR-338-3p can significantly inhibit the proliferation and migration of HUVEC. On the contrary, overexpression of miR-338-3p promoted the proliferation and migration of HUVEC. In addition, the interference of RPS23 expression can reverse the regulation of miR-338-3p on HUVEC proliferation. In conclusion, miR-338-3p/RPS23 may be involved in the progression of coronary heart disease, and miR-338-3p may be a diagnostic biomarker and therapeutic target for coronary heart disease.
Collapse
Affiliation(s)
- Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China.,Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenqi Han
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Nier Zhong
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Qiling Gou
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, People's Republic of China
| | - Chaofeng Sun
- Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
16
|
Sun Y, Liu Y, Cai Y, Han P, Hu S, Cao L. Atractylenolide I inhibited the development of malignant colorectal cancer cells and enhanced oxaliplatin sensitivity through the PDK1-FoxO1 axis. J Gastrointest Oncol 2022; 13:2382-2392. [PMID: 36388699 PMCID: PMC9660064 DOI: 10.21037/jgo-22-910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a type of ordinary malignancy of the gastrointestinal tract. Atractylenolide I (AT-I) has been shown to inhibit the process of CRC. However, the specific mechanism by which AT-I inhibits CRC is not yet well understood. METHODS Cell Counting Kit-8 and colony formation assays were conducted to examine cell proliferation. The cell apoptosis was detected by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL). Cell invasion and migration were evaluated by wound-healing and Transwell assay. The angiogenesis capabilities of the cells were examined by tube formation experiments. Western blot was conducted to examine the apoptosis and angiogenesis-associated proteins, pyruvate dehydrogenase kinase 1 (PDK1), and Forkhead box protein O1 (FoxO1) expression. RESULTS We found that AT-I inhibited the proliferative, migratory and invasive abilities of Human colorectal cancer cell line HCT116 cells but stimulated cell death by promoting cell apoptosis via the PDK1/FoxO1 axis. In addition, the upregulation of PDK1 decreased the inhibitory effect of AT-I on HCT116 angiogenesis, and AT-I increased oxaliplatin sensitivity via the PDK1/FoxO1 axis. CONCLUSIONS Collectively, AT-I inhibited the malignant development of CRC cells and increased oxaliplatin sensitivity by decreasing PDK1 and inhibiting FoxO1 phosphorylation. Thus, AT-I has protective potential and could be a promising agent for CRC treatment.
Collapse
Affiliation(s)
- Ye Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yun Cai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pingping Han
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Yu W, Ilyas I, Aktar N, Xu S. A review on therapeutical potential of paeonol in atherosclerosis. Front Pharmacol 2022; 13:950337. [PMID: 35991897 PMCID: PMC9385965 DOI: 10.3389/fphar.2022.950337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The morbidity and mortality of atherosclerotic cardiovascular disease (ASCVD) is increasing year by year. Cortex Moutan is a traditional Chinese medicinal herb that has been widely used for thousands of years to treat a wide variety of diseases in Eastern countries due to its heat-clearing and detoxifying effects. Paeonol is a bioactive monomer extracted from Cortex Moutan, which has anti-atherosclerotic effects. In this article, we reviewed the pharmacological effects of paeonol against experimental atherosclerosis, as well as its protective effects on vascular endothelial cells, smooth muscle cells, macrophages, platelets, and other important cell types. The pleiotropic effects of paeonol in atherosclerosis suggest that it can be a promising therapeutic agent for atherosclerosis and its complications. Large-scale randomized clinical trials are warranted to elucidate whether paeonol are effective in patients with ASCVD.
Collapse
Affiliation(s)
- Wei Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
- Anhui Renovo Pharmaceutical Co., Ltd., Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Nasrin Aktar
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Wei Yu, ; Suowen Xu,
| |
Collapse
|
18
|
Fang Z, Luo Z, Ji Y, Yang R, Gao J, Zhang N. A network pharmacology technique used to investigate the potential mechanism of Ligustilide's effect on atherosclerosis. J Food Biochem 2022; 46:e14146. [PMID: 35365921 DOI: 10.1111/jfbc.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Ligustilide (LIG) is a major active ingredient in traditional Chinese medicines that is also found in plant rhizomes such as carrot, coriander, and others, and it has been demonstrated to have cardiovascular preventive benefits. However, the mechanisms through which LIG protects the cardiovascular and cerebrovascular systems in atherosclerosis (AS) remain unknown. This study was aimed to investigate the mechanisms of LIG in AS utilizing the network pharmacology and molecular docking, and then to validate the putative mechanism through experiments. The network pharmacological analysis indicated that a total of 55 were performed on LIG and AS intersection targets. The genes of LIG and AS intersection targets enriched in the regulation of receptor and enzyme activity, cytokines-related, and transcription factors, indicating that these targets were primarily involved in cell proliferation and migration, regulating cell differentiation and skeletal activities in the development of AS. Finally, molecular docking was used to validate the major targets of LIG and AS intersection targets. Further experiments revealed that LIG may inhibit cell migration induced by AngII by reducing calcium influx, and regulating phenotypic translation-related proteins SM-22α and OPN. The present study investigated the potential targets and signaling pathways of LIG, which provides new insight into its anti-atherosclerosis actions in terms of reducing inflammation, cell proliferation, and migration, and may constitute a novel target for the treatment of AS. PRACTICAL APPLICATIONS: LIG has been shown to have cardiovascular protective benefits, the mechanism by which it protects the cardiovascular and cerebrovascular systems in AS remains unknown. This study uses a holistic network pharmacology strategy to investigate putative treatment pathways and conducts exploratory experimentation. The findings demonstrate that LIG reduces VSMC migration in the treatment of AS, acts as an anti-inflammatory agent, and prevents excessive cell proliferation and migration. Finally, the goal of our research is to uncover the molecular mechanism of LIG's influence on AS. The findings will provide a new research avenue for LIG as well as suggestions for the study of other herbal treatments. These research results will provide a new research direction for LIG and provide guidance for the research of other herbal medicines. This work revealed the multi-component, multi-target, multi-pathway, and multi-disease mechanism of LIG.
Collapse
Affiliation(s)
- Zicen Fang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhui Luo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanying Ji
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rihong Yang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jintian Gao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Zhou J, Sun C, Dong X, Wang H. A novel miR-338-3p/SLC1A5 axis reprograms retinal pigment epithelium to increases its resistance to high glucose-induced cell ferroptosis. J Mol Histol 2022; 53:561-571. [PMID: 35320491 DOI: 10.1007/s10735-022-10070-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oxidative stress-induced cell ferroptosis occurs during the pathogenesis of diabetic retinopathy (DR), but the detailed molecular mechanisms are still unclear. The present study aimed to investigate this issue. MATERIALS AND METHODS The retinal pigment epithelium (RPE) was treated with high glucose (30 mM) in vitro to mimic the realistic conditions of DR progression in vivo. Cell viability was determined by MTT assay and trypan blue staining assay. Gene expressions were examined by Real-Time qPCR and Western Blot analysis. FCM was used to detect cell apoptosis and ROS generation. Dual-luciferase reporter gene system assay was used to verify the targeting sites. RESULTS High glucose increased reactive oxygen species (ROS) levels, promoted cell ferroptosis, and suppressed cell proliferation and viability in RPE, which were reversed by co-treating cells with both a ferroptosis inhibitor ferrostatin-1 and an ROS scavenger, N-acetyl-L-Cysteine (NAC). In addition, we screened out a miR-338-3p/ASCT2 (SLC1A5) axis that played an important role in this process. Mechanistically, miR-338-3p targeted the 3' untranslated regions (3'UTR) of SLC1A5 for its inhibition and degradation, and high glucose downregulated SLC1A5 by upregulating miR-338-3p in RPE cells. Next, the miR-338-3p inhibitor and SLC1A5 overexpression vectors were delivered into the RPE cells, and the following gain- and loss-of-function experiments validated that both miR-338-3p ablation and SLC1A5 upregulation abrogated the regulating effects of high glucose on cell proliferation, viability, ferroptosis and ROS production in RPE cells. CONCLUSIONS Collectively, data in the present study indicated that targeting the miR-338-3p/SLC1A5 axis could block high glucose-induced ferroptosis in RPE cells.
Collapse
Affiliation(s)
- Jing Zhou
- The 4 th People's Hospital of Shenyang, Huanghe South Street No. 20, Huanggu District, 110031, Shenyang, Liaoning Province, China
| | - Caoyu Sun
- The 4 th People's Hospital of Shenyang, Huanghe South Street No. 20, Huanggu District, 110031, Shenyang, Liaoning Province, China
| | - Xu Dong
- The 4 th People's Hospital of Shenyang, Huanghe South Street No. 20, Huanggu District, 110031, Shenyang, Liaoning Province, China
| | - Hui Wang
- The 4 th People's Hospital of Shenyang, Huanghe South Street No. 20, Huanggu District, 110031, Shenyang, Liaoning Province, China.
| |
Collapse
|
20
|
Li J, Gu H. Paeonol suppresses lipid formation and promotes lipid degradation in adipocytes. Exp Ther Med 2021; 23:78. [PMID: 34938364 PMCID: PMC8688932 DOI: 10.3892/etm.2021.11001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Paeonol can regulate a variety of physiological and pathological processes such as thrombosis, oxidative stress, inflammation and atherosclerosis. However, its potential role and underlying mechanisms in obesity and lipid metabolism remain to be elucidated. In the present study, 3T3-L1 cells were differentiated and collected on days 4, 6 and 8. The expression levels of fatty-acid-binding protein 4 (FABP4) and microRNA (miR)-21 were detected using reverse transcription-quantitative PCR and western blot analyses. Cell viability was assessed using a Cell Counting Kit-8 assay. A miR-21 mimic was constructed and transfected into 3T3-L1 preadipocytes. Adipocyte differentiation was detected using Oil Red O staining. The proteins CD36, glucose transporter 4, peroxisome proliferator-activated receptor γ (PPAR-γ) and adipocyte protein 2 (Ap2) were detected using western blot analysis. The expression levels of FABP4 and miR-21 were increased in differentiated 3T3-L1 cells. Paeonol exhibited no effects on cell activity, whereas it inhibited the expression levels of miR-21 in the 3T3-L1 differentiated adipocytes. Paeonol suppressed the differentiation of 3T3-L1 adipocytes and its effect was partially reversed by the overexpression of miR-21. In addition, paeonol promoted the lipid degradation of 3T3-L1 adipocytes, increased the expression levels of PPAR-γ and Ap2, and suppressed triglyceride synthesis in these cells. These effects were partially reversed by the overexpression of miR-21. In conclusion, the findings of the present study indicated that paeonol may exert protective effects against lipid formation and promote lipid degradation in adipocytes. These data provide evidence of the regulatory effect of paeonol on adipocyte differentiation and highlight its pathological significance.
Collapse
Affiliation(s)
- Ji Li
- Department of Pediatrics, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, P.R. China
| | - Huan Gu
- Department of Cardiology of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
21
|
Qin K, Tian G, Zhou D, Chen G. Circular RNA circ-ARFIP2 regulates proliferation, migration and invasion in human vascular smooth muscle cells via miR-338-3p-dependent modulation of KDR. Metab Brain Dis 2021; 36:1277-1288. [PMID: 33837886 DOI: 10.1007/s11011-021-00726-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/28/2021] [Indexed: 12/24/2022]
Abstract
Dysfunction of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of intracranial aneurysm (IA). Circular RNAs (circRNAs) have been implicated in the pathogenesis of IA by reducing microRNA (miRNA) activity. In this paper, we investigated the precise roles of circRNA ADP ribosylation factor interacting protein 2 (circ-ARFIP2, circ_0021001) in VSMC dysfunction. The levels of circ-ARFIP2, miR-338-3p and kinase insert domain receptor (KDR) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Ribonuclease (RNase) R and subcellular fractionation assays were used to assess the stability and localization of circ-ARFIP2, respectively. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell invasion was measured by transwell assay. Cell proliferation was gauged by 5-Ethynyl-2'-Deoxyuridine (EdU) assay. Cell migration was evaluated by transwell and wound-healing assays. Targeted correlations among circ-ARFIP2, miR-338-3p and KDR were validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Circ-ARFIP2 and KDR were underexpressed and miR-338-3p was overexpressed in the arterial wall tissues of IA patients. Overexpression of circ-ARFIP2 in human umbilical artery smooth muscle cells (HUASMCs) showed a significant promotion in cell proliferation, migration and invasion. Mechanistically, circ-ARFIP2 targeted miR-338-3p, and circ-ARFIP2 regulated cell behaviors by miR-338-3p. KDR was a direct and functional target of miR-338-3p. Moreover, KDR was a downstream effector of circ-ARFIP2 function. Circ-ARFIP2 regulated KDR expression by targeting miR-338-3p. Our present findings demonstrated that the increased level of circ-ARFIP2 enhanced HUASMC proliferation, migration and invasion at least in part by the miR-338-3p/KDR axis.
Collapse
Affiliation(s)
- Kun Qin
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Second Road, Guangzhou, 510000, Guangdong, China
| | - Ge Tian
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Second Road, Guangzhou, 510000, Guangdong, China
| | - Guangzhong Chen
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Second Road, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
22
|
Circ_0003423 Alleviates ox-LDL-Induced Human Brain Microvascular Endothelial Cell Injury via the miR-589-5p/TET2 Network. Neurochem Res 2021; 46:2885-2896. [PMID: 34226983 DOI: 10.1007/s11064-021-03387-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Brain microvascular endothelial cells (BMECs) injury is one of the main causes of cerebrovascular diseases. Circular RNA (circRNA) has been found to be involved in the regulation of cerebrovascular diseases progression. However, the role and mechanism of circ_0003423 in cerebrovascular diseases is still unclear. In our study, oxidized low density lipoprotein (ox-LDL)-induced HBMEC-IM cells were used to construct cerebrovascular cell injury model in vitro. Quantitative real-time PCR was used to determine the expression levels of circ_0003423, miR-589-5p and Ten-eleven translocation 2 (TET2). The interactions between miR-589-5p and circ_0003423 or TET2 were confirmed by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. Cell viability, angiogenesis and apoptosis were measured using cell counting kit 8 assay, tube formation assay and flow cytometry. Cell oxidative stress was evaluated by detecting the levels of reactive oxygen species and lactate dehydrogenase. The protein levels were examined by western blot analysis. Our results showed that circ_0003423 was a downregulated circRNA in ox-LDL-induced HBMEC-IM cells. In the terms of mechanism, circ_0003423 was found to be a sponge of miR-589-5p. Function analysis showed that circ_0003423 overexpression could relieve ox-LDL-induced HBMEC-IM cell injury, and this effect could be reversed by miR-589-5p mimic. In addition, TET2 was confirmed to be a target of miR-589-5p, and its overexpression could alleviate ox-LDL-induced HBMEC-IM cell injury. Moreover, the rescue experiments also confirmed that TET2 silencing could abolish the inhibition effect of anti-miR-589-5p on ox-LDL-induced HBMEC-IM cell injury. In summary, our data showed that circ_0003423 alleviated ox-LDL-induced HBMEC-IM cells injury through regulating the miR-589-5p/TET2 axis.
Collapse
|
23
|
Yan S, Chen J, Zhang T, Zhou J, Wang G, Li Y. Micro-RNA-338-3p Promotes the Development of Atherosclerosis by Targeting Desmin and Promoting Proliferation. Mol Biotechnol 2021; 63:840-848. [PMID: 34100182 PMCID: PMC8316222 DOI: 10.1007/s12033-021-00341-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/15/2021] [Indexed: 12/21/2022]
Abstract
Atherosclerosis (AS) is a dynamic and multi-stage process that involves various cells types, such as vascular smooth muscle cells (VSMCs) and molecules such as microRNAs. In this study, we investigated how miR-338-3p works in the process of AS. To determine how miR-338-3p was expressed in AS, an AS rat model was established and primary rat VSMCs were cultured. Real-time polymerase chain reaction was performed to detect miR-338-3p expression. Markers of different VSMC phenotypes were tested by Western blot. Immunofluorescent staining was employed to observe the morphologic changes of VSMCs transfected with miR-338-3p mimics. A dual luciferase reporter assay system was used to verify that desmin was a target of miR-338-3p. To further identify the role of miR-338-3p in the development of AS, VSMC proliferation and migration were evaluated by EdU incorporation assay, MTT assay, and wound healing assay. miR-338-3p expression was upregulated in the aortic tissues of an AS rat model and in primary rat VSMCs from a later passage. The transfection of miR-338-3p mimics in VSMCs promoted the synthetic cell phenotype. Bioinformatics analysis proposed desmin as a candidate target for miR-338-3p and the dual luciferase reporter assay confirmed in vivo that desmin was a direct target of miR-338-3p. The MTT and EdU incorporation assay revealed increased cell viability when miR-338-3p mimics were transfected. The increased expression of PCNA was a consistent observation, although a positive result was not obtained with respect to VSMC mobility. In AS, miR-338-3p expression was elevated. Elevated miR-338-3p inhibited the expression of desmin, thus promoting the contractile-to-synthetic VSMC phenotypic transition. In addition to morphologic changes, miR-338-3p enhanced the proliferative but not mobile ability of VSMCs. In summary, miR-338-3p promotes the development of AS.
Collapse
Affiliation(s)
- Shiran Yan
- Department of Cardiology, Heze Municipal Hospital, No. 2888, Caozhou West Road, Heze, 274000, China
| | - Jing Chen
- Department of Cardiology, Heze Municipal Hospital, No. 2888, Caozhou West Road, Heze, 274000, China
| | - Teng Zhang
- Department of Internal Medicine, Licun Township Health Center, Heze, 274038, China
| | - Jian Zhou
- Gaozhuang Town Central Health Center, Heze, 274000, China
| | - Ge Wang
- Department of Central Laboratory, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, 100043, China
| | - Yanfen Li
- Department of Cardiology, Heze Municipal Hospital, No. 2888, Caozhou West Road, Heze, 274000, China.
| |
Collapse
|
24
|
The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268:119005. [PMID: 33421526 DOI: 10.1016/j.lfs.2020.119005] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Cancer still remains as one of the leading causes of death worldwide. Metastasis and proliferation are abnormally increased in cancer cells that subsequently, mediate resistance of cancer cells to different therapies such as radio-, chemo- and immune-therapy. MicroRNAs (miRNAs) are endogenous short non-coding RNAs that can regulate expression of target genes at post-transcriptional level and capable of interaction with mRNA-coding genes. Vital biological mechanisms including apoptosis, migration and differentiation are modulated by these small molecules. MiRNAs are key players in regulating cancer proliferation and metastasis as well as cancer therapy response. MiRNAs can function as both tumor-suppressing and tumor-promoting factors. In the present review, regulatory impact of miRNA-338-3p on cancer growth and migration is discussed. This new emerging miRNA can regulate response of cancer cells to chemotherapy and radiotherapy. It seems that miRNA-338-3p has dual role in cancer chemotherapy, acting as tumor-promoting or tumor-suppressor factor. Experiments reveal anti-tumor activity of miRNA-338-3p in cancer. Hence, increasing miRNA-338-3p expression is of importance in effective cancer therapy. Long non-coding RNAs, circular RNAs and hypoxia are potential upstream mediators of miRNA-338-3p in cancer. Anti-tumor agents including baicalin and arbutin can promote expression of miRNA-338-3p in suppressing cancer progression. These topics are discussed to shed some light on function of miRNA-338-3p in cancer cells.
Collapse
|
25
|
Jin ZL, Gao WY, Liao SJ, Yu T, Shi Q, Yu SZ, Cai YF. Paeonol inhibits the progression of intracerebral haemorrhage by mediating the HOTAIR/UPF1/ACSL4 axis. ASN Neuro 2021; 13:17590914211010647. [PMID: 33906483 PMCID: PMC8718120 DOI: 10.1177/17590914211010647] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 01/21/2023] Open
Abstract
Intracerebral haemorrhage (ICH) is a devastating subtype of stroke with high morbidity and mortality. It has been reported that paeonol (PAN) inhibits the progression of ICH. However, the mechanism by which paeonol mediates the progression of ICH remains unclear. To mimic ICH in vitro, neuronal cells were treated with hemin. An in vivo model of ICH was established to detect the effect of paeonol on ferroptosis in neurons during ICH. Cell viability was tested by MTT assay. Furthermore, cell injury was detected by GSH, MDA and ROS assays. Ferroptosis was examined by iron assay. RT-qPCR and western blotting were used to detect gene and protein expression, respectively. The correlation among HOTAIR, UPF1 and ACSL4 was explored by FISH, RNA pull-down and RIP assays. Paeonol significantly inhibited the ferroptosis of neurons in ICH mice. In addition, paeonol significantly reversed hemin-induced injury and ferroptosis in neurons, while this phenomenon was notably reversed by HOTAIR overexpression. Moreover, paeonol notably inhibited ferroptosis in hemin-treated neuronal cells via inhibition of ACSL4. Additionally, HOTAIR bound to UPF1, and UPF1 promoted the degradation of ACSL4 by binding to ACSL4. Furthermore, HOTAIR overexpression reversed paeonol-induced inhibition of ferroptosis by mediating the UPF1/ACSL4 axis. Paeonol inhibits the progression of ICH by mediating the HOTAIR/UPF1/ACSL4 axis. Therefore, paeonol might serve as a new agent for the treatment of ICH.
Collapse
Affiliation(s)
- Zheng-Long Jin
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Wen-Ying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen, P.R. China
| | - Shao-Jun Liao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Shang-Zhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji’nan University, Jiangmen, P.R. China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|