1
|
Guo Z, Lin Y, Liu H, Guo J, Hou L, Zhang X, Xu J, Ruan Z, Li M, Sun K, Guo F. Deferoxamine alleviates chondrocyte senescence and osteoarthritis progression by maintaining iron homeostasis. Int Immunopharmacol 2024; 139:112619. [PMID: 39024748 DOI: 10.1016/j.intimp.2024.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent age-related disease characterized by the gradual deterioration of cartilage. The involvement of chondrocyte senescence is crucial in the pathogenesis of OA. Desferoxamine (DFO) is an iron chelator with therapeutic potential in various diseases. However, the relationship of chondrocyte senescence and iron homeostasis is largely unknown. METHODS Chondrocyte senescence was induced using tert-butyl hydroperoxide (TBHP), and the impact of DFO on chondrocyte senescence and iron metabolism was assessed through techniques such as western blotting, qRT-PCR, and β-Galactosidase staining. To assess the impact of DFO on chondrocyte senescence and the progression of osteoarthritis (OA), the surgical destabilization of the medial meniscus model was established. RESULTS In chondrocytes, TBHP administration resulted in elevated expression of P16, P21, and P53, as well as alterations in SA-β-gal staining. Nevertheless, DFO effectively mitigated chondrocyte senescence induced by TBHP, and reversed the decrease in collagen II expression and increase in MMP13 expression caused by TBHP. Mechanismly, TBHP induced NCOA4 expression and iron release in chondrocytes. Excessive iron could induce chondrocyte senescence, whereas, DFO could inhibit NCOA4 expression and restore ferritin level, and chelate excessive iron. Importantly, intra-articular injection of DFO enhanced collagen II expression and reduced expression of P16, P21, and MMP13 of cartilage in OA mice, and delayed cartilage degeneration. CONCLUSIONS Overall, this study provides evidence that DFO has the potential to alleviate chondrocyte senescence induced by TBHP and slow down the progression of osteoarthritis (OA) by effectively chelating excessive iron. These findings suggest that iron chelation could be a promising therapeutic strategy for treating OA.
Collapse
Affiliation(s)
- Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yang Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Li Y, You L, Nepovimova E, Adam V, Heger Z, Jomova K, Valko M, Wu Q, Kuca K. c-Jun N-terminal kinase signaling in aging. Front Aging Neurosci 2024; 16:1453710. [PMID: 39267721 PMCID: PMC11390425 DOI: 10.3389/fnagi.2024.1453710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate β-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
4
|
Shi P, Gao H, Cheng Z, Zhao K, Chen Y, Chen X, Gan W, Zhang A, Yang C, Zhang Y. Static magnetic field-modulated mesenchymal stem cell-derived mitochondria-containing microvesicles for enhanced intervertebral disc degeneration therapy. J Nanobiotechnology 2024; 22:457. [PMID: 39085827 PMCID: PMC11290117 DOI: 10.1186/s12951-024-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is characterized by the senescence and declining vitality of nucleus pulposus cells (NPCs), often driven by mitochondrial dysfunction. This study elucidates that mesenchymal stem cells (MSCs) play a crucial role in attenuating NPC senescence by secreting mitochondria-containing microvesicles (mitoMVs). Moreover, it demonstrates that static magnetic fields (SMF) enhance the secretion of mitoMVs by MSCs. By distinguishing mitoMV generation from exosomes, this study shifts focus to understanding the molecular mechanisms of SMF intervention, emphasizing cargo transport and plasma membrane budding processes, with RNA sequencing indicating the potential involvement of the microtubule-based transport protein Kif5b. The study further confirms the interaction between Rab22a and Kif5b, revealing Rab22a's role in sorting mitoMVs into microvesicles (MVs) and potentially mediating subsequent plasma membrane budding. Subsequent construction of a gelatin methacrylate (GelMA) hydrogel delivery system further addresses the challenges of in vivo application and verifies the substantial potential of mitoMVs in delaying IVDD. This research not only sheds light on the molecular intricacies of SMF-enhanced mitoMV secretion but also provides innovative perspectives for future IVDD therapeutic strategies.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
6
|
Ma T, Liu C, Zhao Q, Zhang Y, Xiao L. Decellularized nucleus pulposus matrix/chitosan hybrid hydrogel combined with nucleus pulposus stem cells and GDF5-loaded microspheres for intervertebral disc degeneration prevention. Mol Med 2024; 30:7. [PMID: 38200442 PMCID: PMC10782726 DOI: 10.1186/s10020-024-00777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is considered an important pathological basis for spinal degenerative diseases. Tissue engineering is a powerful therapeutic strategy that can effectively restore the normal biological properties of disc units. In this study, hydrogels loaded with growth/differentiation factor 5 (GDF5) and stem cells were combined to provide an effective strategy for nucleus pulposus regeneration. METHODS Nucleus pulposus stem cells (NPSCs) were obtained by low-density inoculation and culture, and their stem cell characteristics were verified by flow cytometry and a tri-lineage-induced differentiation experiment. A decellularized nucleus pulposus matrix (DNPM) and chitosan hybrid hydrogel was prepared, and GDF5-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the hydrogels to obtain a composite hydrogels with GDF5-loaded microspheres. Taking bone marrow mesenchymal stem cells (BMSCs) as a reference, the effect of composite hydrogels with GDF5-loaded microspheres on the chondrogenic differentiation of NPSCs was evaluated. A model of intervertebral disc degeneration induced by acupuncture on the tail of rats was constructed, and the repair effect of composite hydrogels with GDF5-loaded microspheres combined with NPSCs on IDD was observed. RESULTS Stem cell phenotype identification, stemness gene expression and tri-lineage-induced differentiation confirmed that NPSCs had characteristics similar to those of BMSCs. The rat DNPM and chitosan hybrid hydrogels had good mechanical properties, and the GDF5-loaded microspheres sustainably released GDF5. NPSCs grew normally in the composite hydrogels and gradually expressed a chondrocyte phenotype. Animal experiments showed that the composite hydrogels with GDF5-loaded microspheres combined with NPSCs effectively promoted nucleus pulposus regeneration and that the effect of the hydrogels on the repair of IDD was significantly better than that of BMSCs. CONCLUSION GDF5-loaded microspheres combined with DNPM/chitosan composite hydrogels can effectively promote the differentiation of NPSCs into nucleus pulposus-like cells and effectively preventIDD.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hand and Foot Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Chen Liu
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Quanlai Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Yu Zhang
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Liang Xiao
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China.
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, 241001, China.
| |
Collapse
|
7
|
Zhou M, Ma X, Gao M, Wu H, Liu Y, Shi X, Dai M. Paeonol Attenuates Atherosclerosis by Inhibiting Vascular Smooth Muscle Cells Senescence via SIRT1/P53/TRF2 Signaling Pathway. Molecules 2024; 29:261. [PMID: 38202844 PMCID: PMC10780795 DOI: 10.3390/molecules29010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.
Collapse
Affiliation(s)
- Min Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Xiaolin Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Menglong Gao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.Z.); (X.M.); (M.G.); (H.W.); (Y.L.)
- Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei 230012, China
| |
Collapse
|
8
|
Du X, Liang K, Ding S, Shi H. Signaling Mechanisms of Stem Cell Therapy for Intervertebral Disc Degeneration. Biomedicines 2023; 11:2467. [PMID: 37760908 PMCID: PMC10525468 DOI: 10.3390/biomedicines11092467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Low back pain is the leading cause of disability worldwide. Intervertebral disc degeneration (IDD) is the primary clinical risk factor for low back pain and the pathological cause of disc herniation, spinal stenosis, and spinal deformity. A possible approach to improve the clinical practice of IDD-related diseases is to incorporate biomarkers in diagnosis, therapeutic intervention, and prognosis prediction. IDD pathology is still unclear. Regarding molecular mechanisms, cellular signaling pathways constitute a complex network of signaling pathways that coordinate cell survival, proliferation, differentiation, and metabolism. Recently, stem cells have shown great potential in clinical applications for IDD. In this review, the roles of multiple signaling pathways and related stem cell treatment in IDD are summarized and described. This review seeks to investigate the mechanisms and potential therapeutic effects of stem cells in IDD and identify new therapeutic treatments for IDD-related disorders.
Collapse
Affiliation(s)
| | | | | | - Haifei Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (X.D.); (K.L.); (S.D.)
| |
Collapse
|
9
|
Peng Y, Chen X, Liu S, Wu W, Shu H, Tian S, Xiao Y, Li K, Wang B, Lin H, Qing X, Shao Z. Extracellular Vesicle-Conjugated Functional Matrix Hydrogels Prevent Senescence by Exosomal miR-3594-5p-Targeted HIPK2/p53 Pathway for Disc Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206888. [PMID: 37165721 DOI: 10.1002/smll.202206888] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Indexed: 05/12/2023]
Abstract
Nucleus pulposus stem cells (NPSCs) senescence plays a critical role in the progression of intervertebral disc degeneration (IDD). Stem cell-derived extracellular vesicles (EV) alleviate cellular senescence. Whereas, the underlying mechanism remains unclear. Low stability largely limited the administration of EV in vivo. RGD, an arginine-glycine-aspartic acid tripeptide, strongly binds integrins expressed on the EV membranes, allowing RGD to anchor EV and prolong their bioavailability. An RGD-complexed nucleus pulposus matrix hydrogel (RGD-DNP) is developed to enhance the therapeutic effects of small EV (sEV). RGD-DNP prolonged sEV retention in vitro and ex vivo. sEV-RGD-DNP promoted NPSCs migration, decreased the number of SA-β-gal-positive cells, alleviated cell cycle arrest, and reduced p16, p21, and p53 activation. Small RNA-seq showed that miR-3594-5p is enriched in sEV, and targets the homeodomain-interacting protein kinase 2 (HIPK2)/p53 pathway. The HIPK2 knockdown rescues the impaired therapeutic effects of sEV with downregulated miR-3594-5p. RGD-DNP conjugate with lower amounts of sEV achieved similar disc regeneration with free sEV of higher concentrations in DNP. In conclusion, sEV-RGD-DNP increases sEV bioavailability and relieves NPSCs senescence by targeting the HIPK2/p53 pathway, thereby alleviating IDD. This work achieves better regenerative effects with fewer sEV and consolidates the theoretical basis for sEV application for IDD treatment.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuanzuo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Departments of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yan Xiao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - BaiChuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
10
|
Deng Y, Adam V, Nepovimova E, Heger Z, Valko M, Wu Q, Wei W, Kuca K. c-Jun N-terminal kinase signaling in cellular senescence. Arch Toxicol 2023; 97:2089-2109. [PMID: 37335314 DOI: 10.1007/s00204-023-03540-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Cellular senescence leads to decreased tissue regeneration and inflammation and is associated with diabetes, neurodegenerative diseases, and tumorigenesis. However, the mechanisms of cellular senescence are not fully understood. Emerging evidence has indicated that c-Jun N-terminal kinase (JNK) signaling is involved in the regulation of cellular senescence. JNK can downregulate hypoxia inducible factor-1α to accelerate hypoxia-induced neuronal cell senescence. The activation of JNK inhibits mTOR activity and triggers autophagy, which promotes cellular senescence. JNK can upregulate the expression of p53 and Bcl-2 and accelerates cancer cell senescence; however, this signaling also mediates the expression of amphiregulin and PD-LI to achieve cancer cell immune evasion and prevents their senescence. The activation of JNK further triggers forkhead box O expression and its target gene Jafrac1 to extend the lifespan of Drosophila. JNK can also upregulate the expression of DNA repair protein poly ADP-ribose polymerase 1 and heat shock protein to delay cellular senescence. This review discusses recent advances in understanding the function of JNK signaling in cellular senescence and includes a comprehensive analysis of the molecular mechanisms underlying JNK-mediated senescence evasion and oncogene-induced cellular senescence. We also summarize the research progress in anti-aging agents that target JNK signaling. This study will contribute to a better understanding of the molecular targets of cellular senescence and provides insights into anti-aging, which may be used to develop drugs for the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
11
|
Hebishy M, Shintouo CM, Dufait I, Debacq-Chainiaux F, Bautmans I, Njemini R. Heat shock proteins and cellular senescence in humans: A systematic review. Arch Gerontol Geriatr 2023; 113:105057. [PMID: 37207540 DOI: 10.1016/j.archger.2023.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Cellular senescence (CS) is a permanent arrest of cell growth and exit of the cell cycle. It is an important tumor suppression mechanism and has a key role in wound healing, tissue regeneration, and prevention of tissue fibrosis. Despite the short-term benefits of CS, accumulation of senescent cells has deleterious effects and is associated with several pathological age-related phenotypes. As Heat Shock Proteins (HSP) are associated with cyto-protection, their role in longevity and CS became a research interest. However, an overview of the relationship between HSP and CS in humans still lacks in the literature. To provide an overview of the current state of the literature, this systematic review focused on the role of HSP in the development of CS in humans. PubMed, Web of Science and Embase were systematically screened for studies on the relationship between HSP and CS in humans. A total of 14 articles were eligible for inclusion. The heterogeneity and lack of numerical reporting of outcomes obstructed the conduction of a meta-analysis. The results consistently show that HSP depletion results in increased CS, while overexpression of HSP decreases CS, whether in cancer, fibroblasts, or stem cell lines. This systematic review summarized the literature on the prospective role of HSP in the development of CS in humans.
Collapse
Affiliation(s)
- Mariam Hebishy
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Cabirou Mounchili Shintouo
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
| | - Ines Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Florence Debacq-Chainiaux
- Research Unit on Cellular Biology (URBC), Department of Biology, University of Namur, Rue de Bruxelles, 61, Namur B-5000, Belgium
| | - Ivan Bautmans
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Rose Njemini
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|
12
|
Xu J, Shao T, Lou J, Zhang J, Xia C. Aging, cell senescence, the pathogenesis and targeted therapies of intervertebral disc degeneration. Front Pharmacol 2023; 14:1172920. [PMID: 37214476 PMCID: PMC10196014 DOI: 10.3389/fphar.2023.1172920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) refers to the aging and degenerative diseases of intervertebral disc components such as nucleus pulposus, annulus fibrosus, and cartilage endplate, and is the main cause of chronic low back pain. Over the past few years, many researchers around the world concerned that the degeneration of nucleus pulposus (NP) cells plays the main role in IVDD. The degeneration of NP cells is caused by a series of pathological processes, including oxidative stress, inflammatory response, apoptosis, abnormal proliferation, and autophagy. Interestingly, many studies have found a close relationship between the senescence of NP cells and the progression of NP degeneration. The classical aging pathways also have been confirmed to be involved in the pathological process of IVDD. Moreover, several anti-aging drugs have been used to treat IVDD by inhibiting NP cells senescence, such as proanthocyanidins, resveratrol and bone morphogenetic protein 2. Therefore, this article will systematically list and discuss aging, cell senescence, the pathogenesis and targeted therapies of IVDD, in order to provide new ideas for the treatment of IVDD in the future.
Collapse
Affiliation(s)
- Jiongnan Xu
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Shao
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jianfen Lou
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| | - Chen Xia
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
13
|
Zhang X, Zhai Y, Zhang D, Che C, Zhang Y, Li Q, Zhang X, Zhao L. RNAseq analysis of the drug jian-yan-ling (JYL) using both in vivo and in vitro models. Heliyon 2023; 9:e16143. [PMID: 37251843 PMCID: PMC10213199 DOI: 10.1016/j.heliyon.2023.e16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Ethnopharmacological relevance Jian-yan-ling (JYL) is a drug used in traditional Chinese medicine (TCM) prescriptions for the treatment of tumors after radiotherapy and chemotherapy, to effectively alleviate leukocytopenia. However, the genetic mechanisms underlying the function of JYL remain unclear. Aim of the study This study aimed to explore the RNA changes and potential biological processes related to the anti-aging or life-extending effects of JYL treatments. Materials and methods In vivo treatments were performed using Canton-S Drosophila corresponding to three groups: control, low-concentration (low-conc.), and high-concentration (high-conc.) groups. The low-conc. And the high-conc. Groups were treated with 4 mg/mL JYL and 8 mg/mL JYL, respectively. Thirty Drosophila eggs were placed in each vial, and the third instar larvae and adults 7 and 21 days post-eclosion were collected for RNA sequencing, irrespective of the gender.In vitro treatments were conducted using humanized immune cell lines HL60 and Jurkat, which were divided into 3 groups: control (0 μg/mL JYL), low-concentration (40 μg/mL JYL), and high-concentration (80 μg/mL JYL). The cells were collected after 48 h of each JYL drug treatment. Both the Drosophila and cell samples were analyzed using RNA sequencing. Results The in vivo experiments revealed 74 upregulated genes in the low-concentration group, and CG13078 was a commonly downregulated differential gene, which is involved in ascorbate iron reductase activity. Further analysis of the co-expression map identified the key genes: regulatory particle non-ATPase (RPN), regulatory particle triple-A ATPase (RPT), and tripeptidyl-peptidase II (TPP II). For the in vitro experiments, 19 co-differential genes were compared between different concentrations of the HL 60 cell line, of which three genes were upregulated: LOC107987457 (phostensin-like gene), HSPA1A (heat shock protein family A member 1 A), and H2AC19 (H2A clustered histone 19). In the HL 60 cell line, JYL activated proteasome-related functions. In the Jurkat cell line, there were no common differential genes despite the presence of a dosage-dependent trend. Conclusions The RNA-seq results showed that the traditional Chinese medicine JYL has longevity and anti-aging effects, indicating that further investigation is required.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yunliang Zhai
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Dandan Zhang
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Chang Che
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Yayun Zhang
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Quan Li
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Xue Zhang
- Lei Yun Shang Pharmaceutical Group Co.,Ltd., Suzhou, 215009, China
| | - Lingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| |
Collapse
|
14
|
Silwal P, Nguyen-Thai AM, Mohammad HA, Wang Y, Robbins PD, Lee JY, Vo NV. Cellular Senescence in Intervertebral Disc Aging and Degeneration: Molecular Mechanisms and Potential Therapeutic Opportunities. Biomolecules 2023; 13:686. [PMID: 37189433 PMCID: PMC10135543 DOI: 10.3390/biom13040686] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Closely associated with aging and age-related disorders, cellular senescence (CS) is the inability of cells to proliferate due to accumulated unrepaired cellular damage and irreversible cell cycle arrest. Senescent cells are characterized by their senescence-associated secretory phenotype that overproduces inflammatory and catabolic factors that hamper normal tissue homeostasis. Chronic accumulation of senescent cells is thought to be associated with intervertebral disc degeneration (IDD) in an aging population. This IDD is one of the largest age-dependent chronic disorders, often associated with neurological dysfunctions such as, low back pain, radiculopathy, and myelopathy. Senescent cells (SnCs) increase in number in the aged, degenerated discs, and have a causative role in driving age-related IDD. This review summarizes current evidence supporting the role of CS on onset and progression of age-related IDD. The discussion includes molecular pathways involved in CS such as p53-p21CIP1, p16INK4a, NF-κB, and MAPK, and the potential therapeutic value of targeting these pathways. We propose several mechanisms of CS in IDD including mechanical stress, oxidative stress, genotoxic stress, nutritional deprivation, and inflammatory stress. There are still large knowledge gaps in disc CS research, an understanding of which will provide opportunities to develop therapeutic interventions to treat age-related IDD.
Collapse
Affiliation(s)
- Prashanta Silwal
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Allison M. Nguyen-Thai
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Haneef Ahamed Mohammad
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yanshan Wang
- Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul D. Robbins
- Institute of the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joon Y. Lee
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nam V. Vo
- Ferguson Laboratory for Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Current Progress and Outlook for Agrimonolide: A Promising Bioactive Compound from Agrimonia pilosa Ledeb. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Agrimonolide (AM), which is a derivative of isocoumarins, is found mainly in the herb Agrimonia pilosa Ledeb. This compound is highly lipophilic and readily crosses the blood–brain barrier. In recent years, interest has grown in the use of AM as a multitarget natural treatment for various diseases, such as cancer, inflammation, hepatic injury, myocardial damage, and diabetes mellitus. The potential mechanisms of these pharmacological effects have been clarified at cellular and molecular levels. AM shows no cytotoxicity over a range of concentrations in different types of cells, providing evidence for its good safety profile in vitro. These findings indicate that AM is a promising medicinal agent. However, most studies on AM’s pharmacological activities, mechanisms of action, and safety lack substantial animal or human data. Additionally, the pharmacokinetics, metabolism, and disposition of this compound have received little attention. This review highlights the status of current information regarding the sources, properties, pharmacological effects, and safety of AM. Furthermore, potential strategies to resolve problematic issues identified in previous studies are fully discussed. This summary and analysis of the research progress of AM may inspire deeper investigations and more extensive applications of AM in the future.
Collapse
|
16
|
Li H, He W, Yue D, Wang M, Yuan X, Huang K. Low doses of fumonisin B1 exacerbate ochratoxin A-induced renal injury in mice and the protective roles of heat shock protein 70. Chem Biol Interact 2023; 369:110240. [PMID: 36397609 DOI: 10.1016/j.cbi.2022.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Fumonisin B1 (FB1) and ochratoxin A (OTA) possess nephrotoxicity to animals and widely co-exist in food and feedstuffs. FB1 rarely, while OTA often, causes toxicosis in animals. Heat shock protein 70 (Hsp70) resists lung injury induced by pneumolysin, but whether Hsp70 could remission mycotoxins-induced renal injury is still unknown. The present study aims to explore the impacts of nontoxic doses of FB1 on OTA-induced nephrotoxicity and the protective roles of Hsp70. In the mycotoxins-challenge experiment, ICR mice were co-exposed to nontoxic doses of FB1 (0, 0.2, 0.5, 1.0 mg/kg bw, IP) and toxic dose of OTA (0.4 mg/kg bw, IP) for 16 d. The results showed that the levels of BUN, Cr, MDA in serum, the Cyto C in renal tubes or glomerulus, pro-apoptosis genes and p-JNK protein expression in kidney were significantly increased. Histopathological results revealed the glomerular swelling. The above all indexes were dose-dependent. In the protection experiment, the mice were pretreated with the eukaryotic plasmid of pEGFP-C3-Hsp70, these increasing parameters in the mycotoxins-challenge experiment were reversed. In vitro, after pK-15 cells were treated with 8 μM FB1 and 5 μM OTA for 48 h, the mitochondrial membrane potential was significantly reduced, mitochondrial ROS was remarkably increased, more Cyto C was leaked from mitochondria into cytoplasm, and pro-apoptosis genes were significantly up-regulated. After the Hsp70 level was up-regulated by pEGFP-C3-Hsp70 or ML346 in pK-15 cells, these above indexes were reversed. However, activation of JNK by anisomycin significantly suppressed the protective effects of Hsp70. Our results demonstrate that the nontoxic doses of FB1 exacerbate the toxic dose of OTA-induced renal injury, while Hsp70 alleviates renal injury by inhibiting the JNK/MAPK signaling pathway. Hsp70 up-regulation may be an efficient strategy for protecting against tissue damage and bio-function impairment induced by co-exposure to FB1 and OTA.
Collapse
Affiliation(s)
- Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wenmiao He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dongmei Yue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xin Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
17
|
Nong W, Huang F, Mao F, Lao D, Gong Z, Huang W. DCAF12 and HSPA1A May Serve as Potential Diagnostic Biomarkers for Myasthenia Gravis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8587273. [PMID: 35655486 PMCID: PMC9155969 DOI: 10.1155/2022/8587273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease that severely affects the life quality of patients. This study explores the differences in immune cell types between MG and healthy control and the role of immune-related genes in the diagnosis of MG. Methods The GSE85452 dataset was downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma package to determine differentially expressed genes (DEGs) between patients with MG and the control group. Differentially expressed immune cells were analyzed using single-sample gene set enrichment analysis (GSEA), while immune cell-associated modules were identified by weighted gene coexpression network analysis (WGCNA). Then, the expression of the identified hub genes was confirmed by RT-PCR in peripheral blood mononuclear cells (PBMCs) of MG patients. The R package pROC was used to plot the receiver operating characteristics (ROC) curves. Results The modules related to CD56bright natural killer cells were identified by GSEA and WGCNA. The proportion of CD56bright natural killer cells in the peripheral blood of MG patients is low. The results of RT-PCR showed that the levels of DDB1- and CUL4-associated factor 12 (DCAF12) and heat shock protein family A member 1A (HSPA1A) were significantly decreased in peripheral blood mononuclear cells of MG patients compared with healthy controls. The ROC curve results of DCAF12 and HSPA1A mRNA in MG diagnosis were 0.780 and 0.830, respectively. Conclusions CD56bright NK cell is lower in MG patients and may affect MG occurrence. DCAF12 and HSPA1A are lowly expressed in PBMCs of MG patients and may serve as the diagnostic biomarkers of MG.
Collapse
Affiliation(s)
- Weidong Nong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fang Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fengping Mao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Dayuan Lao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Zhuowei Gong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Wen Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| |
Collapse
|
18
|
Wang Q, Xie L, Wang Y, Jin B, Ren J, Dong Z, Chen G, Liu D. Djhsp70s, especially Djhsp70c, play a key role in planarian regeneration and tissue homeostasis by regulating cell proliferation and apoptosis. Gene 2022; 820:146215. [PMID: 35122923 DOI: 10.1016/j.gene.2022.146215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 family (HSP70s) is one of the most conserved and important group of HSPs as molecular chaperones, which plays an important role in cytoprotection, anti-apoptosis and so on. However, the molecular mechanism of HSP70s in animal regeneration remains to be delineated. In this study, we investigate the roles of HSP70s in regeneration of planarian. The four genes, Djhsp70a, Djhsp70b, Djhsp70c, and Djhsp70d of the HSP70s, are selected from the transcriptome database, because of their high expression levels in planarians. We then study the biological roles of each gene by conducting various experimental techniques, including RNAi, RT-PCR, WISH, Whole-mount immunostaining and TUNEL. The results show: (1) External stressors, such as temperature, tissue damage and ionic liquid upregulate the expression of Djhsp70s significantly. (2) The gene expression of Djhsp70s in planarians exhibits dynamic patterns. According to the result of WISH, the Djhsp70s are mainly expressed in parenchymal tissues on both sides of the body as well as blastema. It is consistent with the data of qRT-PCR. (3) After RNA interference of Djhsp70s, the worms experience cephalic regression and lysis, body curling, stagnant regeneration and death. (4) Knockdown of Djhsp70s affect the cell proliferation and apoptosis. These results suggest that Djhsp70s are not only conserved in cytoprotection, but involved in homeostasis maintenance and regeneration process by regulating coordination of cell proliferation and apoptosis in planarians.
Collapse
Affiliation(s)
- Qinghua Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lijuan Xie
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yixuan Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Jing Ren
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
19
|
Utami SB, Endo R, Hamada T, Notsu T, Minato H, Komatsu K, Nakayama Y, Shirayoshi Y, Yamamoto K, Okada S, Ninomiya H, Otuki A, Hisatome I. Hsp70 promotes maturation of uromodulin mutants that cause familial juvenile hyperuricemic nephropathy and suppresses cellular damage. Clin Exp Nephrol 2022; 26:522-529. [PMID: 35212881 DOI: 10.1007/s10157-022-02196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Familial juvenile hyperuricemic nephropathy (FJHN) is an autosomal dominant disorder caused by mutations in UMOD. Here we studied effects of genetic expression and pharmacological induction of Hsp70 on the UMOD mutants C112Y and C217G. METHODS We expressed wild type (WT), C112Y and C217G in HEK293 cells and studied their maturation and cellular damage using western blot and flow cytometry. RESULTS Expression of C112Y or C217G increased pro-apoptotic proteins, decreased anti-apoptotic proteins, and induced cellular apoptosis as examined by annexin V staining and flow cytometry. Overexpression of Hsp70 or administration of an Hsp70 inducer geranylgeranylacetone (GGA) promoted maturation of the mutant proteins, increased their secreted forms, normalized the levels of pro- and anti-apoptotic proteins and suppressed apoptosis. CONCLUSION These findings indicated that Hsp70 enhanced maturation of C112Y and C217G and reduced cellular apoptosis, suggesting that Hsp70 induction might be of a therapeutic value for treatment of FJHN.
Collapse
Affiliation(s)
- Sulistiyati Bayu Utami
- Department of Genetic Medicine and Regenerative Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan.,Department of Cardiology and Vascular Medicine, Diponegoro University, Semarang, Indonesia
| | - Ryo Endo
- Department of Anesthesiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Toshihiro Hamada
- Department of Community-Based Family Medicine, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Tomomi Notsu
- Department of Genetic Medicine and Regenerative Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Minato
- Department of Anesthesiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Koji Komatsu
- Department of Psychiatry, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yuji Nakayama
- Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Yasuaki Shirayoshi
- Department of Genetic Medicine and Regenerative Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Shinichi Okada
- Department of Pediatrics, Yonago Medical Center, Yonago, Japan
| | - Haruaki Ninomiya
- Department of Biological Regulation, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akihiro Otuki
- Department of Anesthesiology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Faculty of Medicine, Tottori University, Yonago, Japan.,Department of Cardiovascular Medicine, Yonago Medical Center, Yonago, Japan
| |
Collapse
|
20
|
Zhang S, Wang P, Hu B, Liu W, Lv X, Chen S, Shao Z. HSP90 Inhibitor 17-AAG Attenuates Nucleus Pulposus Inflammation and Catabolism Induced by M1-Polarized Macrophages. Front Cell Dev Biol 2022; 9:796974. [PMID: 35059401 PMCID: PMC8763810 DOI: 10.3389/fcell.2021.796974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Overactivated inflammation and catabolism induced by proinflammatory macrophages are involved in the pathological processes of intervertebral disc (IVD) degeneration (IVDD). Our previous study suggested the protective role of inhibiting heat shock protein 90 (HSP90) in IVDD, while the underlying mechanisms need advanced research. The current study investigated the effects of HSP90 inhibitor 17-AAG on nucleus pulposus (NP) inflammation and catabolism induced by M1-polarized macrophages. Immunohistochemical staining of degenerated human IVD samples showed massive infiltration of macrophages, especially M1 phenotype, as well as elevated levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)13. The conditioned medium (CM) of inflamed NP cells (NPCs) enhanced M1 polarization of macrophages, while the CM of M1 macrophages but not M2 macrophages promoted the expression of inflammatory factors and matrix proteases in NPCs. Additionally, we found that 17-AAG could represent anti-inflammatory and anti-catabolic effects by modulating both macrophages and NPCs. On the one hand, 17-AAG attenuated the pro-inflammatory activity of M1 macrophages via inhibiting nuclear factor-κB (NF-κB) pathway and mitogen-activated protein kinase (MAPK) pathways. On the other hand, 17-AAG dampened M1-CM-induced inflammation and catabolism in NPCs by upregulating HSP70 and suppressing the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, both in vitro IVD culture models and murine disc puncture models supported that 17-AAG treatment decreased the levels of inflammatory factors and matrix proteases in IVD tissues. In conclusion, HSP90 inhibitor 17-AAG attenuates NP inflammation and catabolism induced by M1 macrophages, suggesting 17-AAG as a promising candidate for IVDD treatment.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songfeng Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Zhou J, Liu Q, Yang Z, Xie C, Ling L, Hu H, Cao Y, Huang Y, Hua Y. Rutin maintains redox balance to relieve oxidative stress induced by TBHP in nucleus pulposus cells. In Vitro Cell Dev Biol Anim 2021; 57:448-456. [PMID: 33909255 DOI: 10.1007/s11626-021-00581-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Rutin is well known for its anti-inflammatory and antioxidant properties against oxidative stress. However, its protective function in nucleus pulposus cells (NPCs) remains unclear. This study was aimed to explore the effects of rutin on oxidative stress in NPCs. Primary NPCs were obtained from 1-mo-old SD rats. The NPCs were treated with tert-butyl hydrogen peroxide (TBHP) to obtain the oxidative stress, and different concentrations of rutin were used to observe its influence on the oxidative stress in NPCs. Fluorescent probe DCFH-DA was used to detect reactive oxide species (ROS). The antioxidant proteins and genes of heat shock protein 70 (HSP70), manganese superoxide dismutase (Mn-SOD), catalase, aggrecan and collagen II in NPCs were measured by western blot and real-time PCR. With the stimulation of TBHP, the content of ROS in NPCs increased significantly and showed solubility correlation. Rutin effectively reduced the accumulation of ROS in a dose-dependent manner. The antioxidant proteins of HSP70, Mn-SOD, and catalase and the matrix proteins of aggrecan and collagen II decreased remarkably with the stimulation of TBHP, while the matrix metalloproteinase-13 (MMP-13) significantly increased after TBHP intervention. Rutin boosted the expressions of the HSP70, Mn-SOD, and catalase, elevated the contents of aggrecan and collagen II, and inhibited the expression of MMP-13 in NPCs. The findings of this study suggested that rutin is able to reverse oxidative stress and maintain cellular function of NPCs, and it was indicated that rutin could be a possible therapeutic option for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Spine and Joint Surgery, Nanchang Hongdu Hospital of TCM, Nanchang, Jiangxi, China
| | - Qi Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, 510260, Guangdong, China.
| | - Zhou Yang
- Department of Orthopaedic Surgery, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Chuhai Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, 510260, Guangdong, China
| | - Long Ling
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, 510260, Guangdong, China
| | - Hailan Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, 510260, Guangdong, China
| | - Yanming Cao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, 510260, Guangdong, China
| | - Yan Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, 250 Chang-gang-dong Road, Guangzhou, 510260, Guangdong, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, 1063 Shatai Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|