1
|
McWilliams MM, Koohestani F, Jefferson WN, Gunewardena S, Shivashankar K, Wertenberger RA, Williams CJ, Kumar TR, Chennathukuzhi VM. Estrogen receptor alpha mediated repression of PRICKLE1 destabilizes REST and promotes uterine fibroid pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612036. [PMID: 39314474 PMCID: PMC11419101 DOI: 10.1101/2024.09.09.612036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Uterine fibroids (leiomyomas), benign tumors of the myometrial smooth muscle layer, are present in over 75% of women, often causing severe pain, menorrhagia and reproductive dysfunction. The molecular pathogenesis of fibroids is poorly understood. We previously showed that the loss of REST (RE-1 Silencing Transcription factor), a tumor suppressor, in fibroids leads to activation of PI3K/AKT-mTOR pathway. We report here a critical link between estrogen receptor alpha (ERα) and the loss of REST, via PRICKLE1. PRICKLE1 expression is markedly lower in leiomyomas, and the suppression of PRICKLE1 significantly down regulates REST protein levels. Conversely, overexpression of PRICKLE1 resulted in the restoration of REST in cultured primary leiomyoma smooth muscle cells (LSMCs). Crucially, mice exposed neonatally to environmental estrogens, proven risk factors for fibroids, expressed lower levels of PRICKLE1 and REST in the myometrium. Using mice that lack either endogenous estrogen (Lhb -/- mice) or ERα (Esr1 -/- mice), we demonstrate that Prickle1 expression in the myometrium is suppressed by estrogen through ERα. Enhancer of zeste homolog 2 (EZH2) is known to participate in the repression of specific ERα target genes. Uterine leiomyomas express increased levels of EZH2 that inversely correlate with the expression of PRICKLE1. Using chromatin immunoprecipitation, we provide evidence for association of EZH2 with the PRICKLE1 promoter and for hypermethylation of H3K27 within the regulatory region of PRICKLE1 in leiomyomas. Additionally, siRNA mediated knockdown of EZH2 leads to restoration of PRICKLE1 in LSMCs. Collectively, our results identify a novel link between estrogen exposure and PRICKLE1/REST-regulated tumorigenic pathways in leiomyomas.
Collapse
Affiliation(s)
- Michelle M McWilliams
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Faezeh Koohestani
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Kavya Shivashankar
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Riley A Wertenberger
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045
| | - Vargheese M Chennathukuzhi
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
2
|
Olson SL, Akbar RJ, Gorniak A, Fuhr LI, Borahay MA. Hypoxia in uterine fibroids: role in pathobiology and therapeutic opportunities. OXYGEN (BASEL, SWITZERLAND) 2024; 4:236-252. [PMID: 38957794 PMCID: PMC11218552 DOI: 10.3390/oxygen4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Uterine fibroids are the most common tumors in females affecting up to 70% of women world-wide, yet targeted therapeutic options are limited. Oxidative stress has recently surfaced as a key driver of fibroid pathogenesis and provides insights into hypoxia-induced cell transformation, extracellular matrix pathophysiology, hypoxic cell signaling cascades, and uterine biology. Hypoxia drives fibroid tumorigenesis through (1) promoting myometrial stem cell proliferation, (2) causing DNA damage propelling transformation of stem cells to tumor initiating cells, and (3) driving excess extracellular matrix (ECM) production. Common fibroid-associated DNA mutations include MED12 mutations, HMGA2 overexpression, and Fumarate hydratase loss of function. Evidence suggests an interaction between hypoxia signaling and these mutations. Fibroid development and growth are promoted by hypoxia-triggered cell signaling via various pathways including HIF-1, TGFβ, and Wnt/β-catenin. Fibroid-associated hypoxia persists due to antioxidant imbalance, ECM accumulation, and growth beyond adequate vascular supply. Current clinically available fibroid treatments do not take advantage of hypoxia-targeting therapies. Growing pre-clinical and clinical studies identify ROS inhibitors, anti-HIF-1 agents, Wnt/β-catenin inhibition, and TGFβ cascade inhibitors as agents that may reduce fibroid development and growth through targeting hypoxia.
Collapse
Affiliation(s)
- Sydney L. Olson
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | | | - Adrianna Gorniak
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Laura I. Fuhr
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mostafa A. Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
3
|
Ramaiyer MS, Saad E, Kurt I, Borahay MA. Genetic Mechanisms Driving Uterine Leiomyoma Pathobiology, Epidemiology, and Treatment. Genes (Basel) 2024; 15:558. [PMID: 38790186 PMCID: PMC11121260 DOI: 10.3390/genes15050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine leiomyomas (ULs) are the most common benign tumor of the uterus. They can be associated with symptoms including abnormal uterine bleeding, pelvic pain, urinary frequency, and pregnancy complications. Despite the high prevalence of UL, its underlying pathophysiology mechanisms have historically been poorly understood. Several mechanisms of pathogenesis have been suggested, implicating various genes, growth factors, cytokines, chemokines, and microRNA aberrations. The purpose of this study is to summarize the current research on the relationship of genetics with UL. Specifically, we performed a literature review of published studies to identify how genetic aberrations drive pathophysiology, epidemiology, and therapeutic approaches of UL. With regards to pathophysiology, research has identified MED12 mutations, HMGA2 overexpression, fumarate hydratase deficiency, and cytogenetic abnormalities as contributors to the development of UL. Additionally, epigenetic modifications, such as histone acetylation and DNA methylation, have been identified as contributing to UL tumorigenesis. Specifically, UL stem cells have been found to contain a unique DNA methylation pattern compared to more differentiated UL cells, suggesting that DNA methylation has a role in tumorigenesis. On a population level, genome-wide association studies (GWASs) and epidemiologic analyses have identified 23 genetic loci associated with younger age at menarche and UL growth. Additionally, various GWASs have investigated genetic loci as potential drivers of racial disparities in UL incidence. For example, decreased expression of Cytohesin 4 in African Americans has been associated with increased UL risk. Recent studies have investigated various therapeutic options, including ten-eleven translocation proteins mediating DNA methylation, adenovirus vectors for drug delivery, and "suicide gene therapy" to induce apoptosis. Overall, improved understanding of the genetic and epigenetic drivers of UL on an individual and population level can propel the discovery of novel therapeutic options.
Collapse
Affiliation(s)
| | - Eslam Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| | - Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
- Faculty of Medicine, Selcuk University, 42000 Konya, Turkey
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| |
Collapse
|
4
|
Ali M, Stone D, Laknaur A, Yang Q, Al-Hendy A. EZH2 activates Wnt/β-catenin signaling in human uterine fibroids, which is inhibited by the natural compound methyl jasmonate. F&S SCIENCE 2023; 4:239-256. [PMID: 37182601 PMCID: PMC10527015 DOI: 10.1016/j.xfss.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To investigate the link between EZH2 and Wnt/β-catenin signaling and its role in uterine fibroids (UFs) pathogenesis and explore the potential effect of natural compound methyl jasmonate (MJ) against UFs. DESIGN EZH2 overexpression or inhibition was achieved in human uterine leiomyoma (HuLM) cells using EZH2-expressing adenovirus or chemical EZH2 inhibitor (DZNep), respectively. The HuLM and normal uterine smooth muscle cells were treated with 0.1-3 mM of MJ, and several experiments were employed. SETTING Laboratory study. PATIENTS(S) None. INTERVENTION(S) Methyl jasmonate. MAIN OUTCOME MEASURE(S) Protein expression of EZH2, β-catenin, and proliferating cell nuclear antigen (PCNA) was measured by Western blot as well as gene expression alterations of Wnt ligands (Wnt5A, Wnt5b, and Wnt9A), WISP1, CTNNB1, and its responsive gene PITX2 using quantitative real-time polymerase chain reaction. The protein and ribonucleic acid (RNA) levels of several markers were measured in MJ-treated or untreated HuLM cells, including EZH2 and β-catenin, extracellular matrix markers collagen type 1 (COL1A1) and fibronectin (FN), proliferation markers cyclin D1 (CCND1) and PCNA, tumor suppressor marker p21, and apoptotic markers (BAX, cytochrome c, and cleaved caspase 3). RESULT(S) EZH2 overexpression significantly increased the gene expression of several Wnt ligands (PITX2, WISP1, WNT5A, WNT5B, and WNT9A), which increased nuclear translocation of β-catenin and PCNA and eventually HuLM cell proliferation. EZH2 inhibition blocked Wnt/β-catenin signaling activation where the aforementioned genes significantly decreased as well as PCNA, cyclin D1, and PITX2 protein expression compared with those in untreated HuLM. Methyl jasmonate showed a potent antiproliferative effect on HuLM cells in a dose- and time-dependent manner. Interestingly, the dose range (0.1-0.5 mM) showed a selective growth inhibitory effect on HuLM cells, not on normal uterine smooth muscle cells. Methyl jasmonate treatment at 0.5 mM for 24 hours significantly decreased both protein and RNA levels of EZH2, β-catenin, COL1A1, FN, CCND1, PCNA, WISP1, and PITX2 but increased the protein levels of p21, BAX, cytochrome, c and cleaved caspase 3 compared with untreated HuLM. Methyl jasmonate-treated cells exhibited down-regulation in the RNA expression of 36 genes, including CTNNB1, CCND1, Wnt5A, Wnt5B, and Wnt9A, and up-regulation in the expression of 34 genes, including Wnt antagonist genes WIF1, PRICKlE1, and DKK1 compared with control, confirming the quantitative real-time polymerase chain reaction results. CONCLUSION(S) Our studies provide a novel link between EZH2 and the Wnt/β-catenin signaling pathway in UFs. Targeting EZH2 with MJ interferes with the activation of wnt/β-catenin signaling in our model. Methyl jasmonate may offer a promising therapeutic option as a nonhormonal and cost-effective treatment against UFs with favorable clinical utility, pending proven safe and efficient in human clinical trials.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois; Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - David Stone
- Department of hospital medicine, university of Colorado, Colorado Springs, Colorado
| | - Archana Laknaur
- Division of Translation Research, Augusta University, Augusta, Georgia
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Islam MS, Parish M, Brennan JT, Winer BL, Segars JH. Targeting fibrotic signaling pathways by EGCG as a therapeutic strategy for uterine fibroids. Sci Rep 2023; 13:8492. [PMID: 37231028 DOI: 10.1038/s41598-023-35212-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix, which is a key feature of uterine fibroids. Our prior research supports the tenet that inhibition of fibrotic processes may restrict fibroid growth. Epigallocatechin gallate (EGCG), a green tea compound with powerful antioxidant properties, is an investigational drug for uterine fibroids. An early phase clinical trial showed that EGCG was effective in reducing fibroid size and its associated symptoms; however, its mechanism of action(s) has not been completely elucidated. Here, we probed effects of EGCG on key signaling pathways involved in fibroid cell fibrosis. Viability of myometrial and fibroid cells was not greatly affected by EGCG treatment (1-200 µM). Cyclin D1, a protein involved in cell cycle progression, was increased in fibroid cells and was significantly reduced by EGCG. EGCG treatment significantly reduced mRNA or protein levels of key fibrotic proteins, including fibronectin (FN1), collagen (COL1A1), plasminogen activator inhibitor-1 (PAI-1), connective tissue growth factor (CTGF), and actin alpha 2, smooth muscle (ACTA2) in fibroid cells, suggesting antifibrotic effects. EGCG treatment altered the activation of YAP, β-catenin, JNK and AKT, but not Smad 2/3 signaling pathways involved in mediating fibrotic process. Finally, we conducted a comparative study to evaluate the ability of EGCG to regulate fibrosis with synthetic inhibitors. We observed that EGCG displayed greater efficacy than ICG-001 (β-catenin), SP600125 (JNK) and MK-2206 (AKT) inhibitors, and its effects were equivalent to verteporfin (YAP) or SB525334 (Smad) for regulating expression of key fibrotic mediators. These data indicate that EGCG exhibits anti-fibrotic effects in fibroid cells. These results provide insight into mechanisms behind the observed clinical efficacy of EGCG against uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA.
| | - Maclaine Parish
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA
| | - Joshua T Brennan
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA
| | - Briana L Winer
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA
| | - James H Segars
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Saboori-Darabi S, Carrera P, Akbari A, Amiri-Yekta A, Almadani N, Battista Pipitone G, Shahrokh-Tehraninejad E, Lotfi M, Mazaheri M, Totonchi M. A heterozygous missense variant in DLX3 leads to uterine leiomyomas and pregnancy losses in a consanguineous Iranian family. Gene 2023; 865:147292. [PMID: 36854347 DOI: 10.1016/j.gene.2023.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Uterine leiomyomas (ULs) are benign solid tumors arising from the uterine myometrium. They are the most common pelvic tumors among females of reproductive age. Despite the universal prevalence of ULs and its huge impact on women's lives, the exact etiology and pathophysiologic mechanisms have not been fully understood. Numerous studies indicate that genetic factors play a crucial role in ULs development. This study aims to identify the probable genetic causes of ULs in a consanguineous Iranian family. Whole-exome sequencing (WES) on five family members with ULs revealed a likely pathogenic missense variant encoding for Y88C in the transactivation (TA) domain of DLX3 gene (c.263A > G; p.Y88C). Sanger sequencing of a total of 9 affected and non-affected family members indicated a segregation with disease with autosomal dominant inheritance. Moreover, targeted Sanger sequencing on 32 additional non-related patients with ULs showed none was heterozygous for this variant. MutPred2 predicted the pathogenicity of candidate variant by both phosphorylation and sulfation loss as actionable hypotheses. Project HOPE revealed that the identified variant residue is smaller and more hydrophobic comparing to the wild-type residue. I-TASSER and UCSF Chimera were also used for modeling and visualizing the predicted variant, respectively. This WES analysis is the first to report a variant in DLX3 variation associated with ULs pathogenicity in Iranian population highlighting the effectiveness of WES as a strong diagnostic method. However, further functional studies on this variant are needed to confirm the potential pathogenicity of this mutation.
Collapse
Affiliation(s)
- Samaneh Saboori-Darabi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Arvand Akbari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Ensieh Shahrokh-Tehraninejad
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Mother & Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
7
|
Gene Expression Profile of Uterine Leiomyoma from Women Exposed to Different Air Pollution Levels in Metropolitan Cities of Sao Paulo, Brazil. Int J Mol Sci 2023; 24:ijms24032431. [PMID: 36768749 PMCID: PMC9917088 DOI: 10.3390/ijms24032431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Leiomyomas (LMs) are the most frequent uterine benign tumors, representing the leading cause of hysterectomy indications worldwide. They are highly associated with women's reproductive complications, and endocrine disruptors may influence their etiology. In this sense, air pollution represents a relevant hormonal disruptor that acts on key signaling pathways, resulting in tumor development and infertility. Our goal was to evaluate submucosal LM samples from patients living in the metropolitan and Sao Paulo city regions, focusing on genes involved in tumor development and infertility features. Twenty-four patients were selected based on their region of residence and clinical information availability. Several genes were differentially expressed between women living in metropolitan areas and Sao Paulo city. Significant associations were observed between BCL-2, DVL1, FGFR3, and WNT5b downregulation and contraceptive use in the samples from women living in Sao Paulo city. ESR1 and HHAT downregulation was associated with ethnicity. WNT5b and GREM were associated with LM treatment and related pathologies, respectively. In the samples from women living in other cities of the metropolitan region, abortion occurrence was associated with BMP4 upregulation. Although further studies may be necessary, our results showed that air pollution exposure influences the expression of genes related to LM development and female reproductive features.
Collapse
|
8
|
Carbajo-García MC, Juarez-Barber E, Segura-Benítez M, Faus A, Trelis A, Monleón J, Carmona-Antoñanzas G, Pellicer A, Flanagan JM, Ferrero H. H3K4me3 mediates uterine leiomyoma pathogenesis via neuronal processes, synapsis components, proliferation, and Wnt/β-catenin and TGF-β pathways. Reprod Biol Endocrinol 2023; 21:9. [PMID: 36703136 PMCID: PMC9878797 DOI: 10.1186/s12958-023-01060-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Uterine leiomyomas (UL) are the most common benign tumor in women of reproductive age. Their pathology remains unclear, which hampers the development of safe and effective treatments. Raising evidence suggests epigenetics as a main mechanism involved in tumor development. Histone modification is a key component in the epigenetic regulation of gene expression. Specifically, the histone mark H3K4me3, which promotes gene expression, is altered in many tumors. In this study, we aimed to identify if the histone modification H3K4me3 regulates the expression of genes involved in uterine leiomyoma pathogenesis. METHODS Prospective study integrating RNA-seq (n = 48) and H3K4me3 CHIP-seq (n = 19) data of uterine leiomyomas versus their adjacent myometrium. Differentially expressed genes (FDR < 0.01, log2FC > 1 or < - 1) were selected following DESeq2, edgeR, and limma analysis. Their differential methylation and functional enrichment (FDR < 0.05) were respectively analyzed with limma and ShinyGO. RESULTS CHIP-seq data showed a global suppression of H3K4me3 in uterine leiomyomas versus their adjacent myometrial tissue (p-value< 2.2e-16). Integrating CHIP-seq and RNA-seq data highlighted that transcription of 696/922 uterine leiomyoma-related differentially expressed genes (DEG) (FDR < 0.01, log2FC > 1 or < - 1) was epigenetically mediated by H3K4me3. Further, 50 genes were differentially trimethylated (FDR < 0.05), including 33 hypertrimethylated/upregulated, and 17 hypotrimethylated/downregulated genes. Functional enrichment analysis of the latter showed dysregulation of neuron-related processes and synapsis-related cellular components in uterine leiomyomas, and a literature review study of these DEG found additional implications with tumorigenesis (i.e. aberrant proliferation, invasion, and dysregulation of Wnt/β-catenin, and TGF-β pathways). Finally, SATB2, DCX, SHOX2, ST8SIA2, CAPN6, and NPTX2 proto-oncogenes were identified among the hypertrimethylated/upregulated DEG, while KRT19, ABCA8, and HOXB4 tumor suppressor genes were identified among hypotrimethylated/downregulated DEG. CONCLUSIONS H3K4me3 instabilities alter the expression of oncogenes and tumor suppressor genes, inducing aberrant proliferation, and dysregulated Wnt/β-catenin, and TGF-β pathways, that ultimately promote uterine leiomyoma progression. The reversal of these histone modifications may be a promising new therapeutic alternative for uterine leiomyoma patients.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Elena Juarez-Barber
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | - Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | | | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - James M Flanagan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| |
Collapse
|
9
|
Meng F, Ji Y, Chen X, Wang Y, Hua M. An integrative analysis of an lncRNA-mRNA competing endogenous RNA network to identify functional lncRNAs in uterine leiomyomas with RNA sequencing. Front Genet 2023; 13:1053845. [PMID: 36685910 PMCID: PMC9845257 DOI: 10.3389/fgene.2022.1053845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 01/06/2023] Open
Abstract
Objective: To explore the functions of mRNAs and lncRNAs in the occurrence of uterine leiomyomas (ULs) and further clarify the pathogenesis of UL by detecting the differential expression of mRNAs and lncRNAs in 10 cases of UL tissues and surrounding normal myometrial tissues by high-throughput RNA sequencing. Methods: The tissue samples of 10 patients who underwent hysterectomy for UL in Lianyungang Maternal and Child Health Hospital from January 2016 to December 2021 were collected. The differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified and further analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The protein-protein interaction network (PPI) was constructed in Cytoscape software. Functional annotation of the nearby target cis-DEmRNAs of DElncRNAs was performed with the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/). Meanwhile, the co-expression network of DElncRNA-DEmRNA was constructed in Cytoscape software. Results: A total of 553 DElncRNAs (283 upregulated DElncRNAs and 270 downregulated DElncRNAs) and 3,293 DEmRNAs (1,632 upregulated DEmRNAs and 1,661 downregulated DEmRNAs) were obtained. GO pathway enrichment analysis revealed that several important pathways were significantly enriched in UL such as blood vessel development, regulation of ion transport, and external encapsulating structure organization. In addition, cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and complement and coagulation cascades were significantly enriched in KEGG pathway enrichment analysis. A total of 409 DElncRNAs-nearby-targeted DEmRNA pairs were detected, which included 118 DElncRNAs and 136 DEmRNAs. Finally, we found that the top two DElncRNAs with the most nearby DEmRNAs were BISPR and AC012531.1. Conclusion: These results suggested that 3,293 DEmRNAs and 553 DElncRNAs were differentially expressed in UL tissue and normal myometrium tissue, which might be candidate-identified therapeutic and prognostic targets for UL and be considered as offering several possible mechanisms and pathogenesis of UL in the future.
Collapse
|
10
|
Yuan J, Zhou M, Xin X, Yao J, Chang J. Comparison of the efficacy of gossypol acetate enantiomers in rats with uterine leiomyoma. J Nat Med 2023; 77:41-52. [PMID: 35984592 DOI: 10.1007/s11418-022-01644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Gossypol acetate (GA), as the product of racemic gossypol and acetic acid conjugated by hydrogen bond, is hydrolyzed into gossypol to exert its effect on treating uterine leiomyoma (UL), which has been listed in China. But hypokalemia and mild changes of liver function limit its clinical application. It had been reported that the biological activities of gossypol optical isomers were different. In this study, we aimed to clarify whether there were differences in the efficacy of gossypol enantiomers and whether a single gossypol optical isomer could alleviate adverse reactions in the treatment of UL. The results indicated that (-)-GA and (+)-GA had significant therapeutic effect on rats with UL. Interestingly, (-)-GA could better significantly ameliorate the pathological structure, inhibit the secretion of estrogen, and downregulate the expression of estrogen receptor-alpha (ER-α) and progesterone receptor (PR) than (+)-GA. Additionally, (-)-GA could better evidently decrease the symptoms of abnormally elevated inflammatory factors caused by UL. In contrast, (-)-GA and (+)-GA had certain effects on potassium ion concentration in serum, liver and kidney function, and the effects of (+)-GA on liver function were more obvious than (-)-GA. These findings will be of great significance to the drug development of gossypol optical isomers.
Collapse
Affiliation(s)
- Jie Yuan
- School of Pharmacy, Xinjiang Second Medical College, Karamay, 834000, China
| | - Mengyu Zhou
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Xiaobing Xin
- School of Pharmacy, Xinjiang Second Medical College, Karamay, 834000, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| | - Junmin Chang
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
11
|
Evangelisti G, Barra F, Perrone U, Di Donato N, Bogliolo S, Ceccaroni M, Ferrero S. Comparing the pharmacokinetic and pharmacodynamic qualities of current and future therapies for uterine fibroids. Expert Opin Drug Metab Toxicol 2022; 18:441-457. [DOI: 10.1080/17425255.2022.2113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Giulio Evangelisti
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Southern Endometriosis Centre, Queen Alexandra Hospital, Portsmouth, UK
- Department of Obstetrics and Gynecology, Gynecology Oncology and Minimally-Invasive Pelvic Surgery, International School of Surgical Anatomy (ISSA), IRCCS Ospedale Sacro Cuore - Don Calabria, Via Don A. Sempreboni, 5, 37024, Negrar (Verona), Italy
| | - Umberto Perrone
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nadine Di Donato
- Southern Endometriosis Centre, Queen Alexandra Hospital, Portsmouth, UK
| | - Stefano Bogliolo
- Department of Obstetrics and Gynecology, “P.O del Tigullio” Hospital-ASL4, Metropolitan Area of Genoa, Genoa, Italy
| | - Marcello Ceccaroni
- Department of Obstetrics and Gynecology, Gynecology Oncology and Minimally-Invasive Pelvic Surgery, International School of Surgical Anatomy (ISSA), IRCCS Ospedale Sacro Cuore - Don Calabria, Via Don A. Sempreboni, 5, 37024, Negrar (Verona), Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
12
|
Carbajo-García MC, Corachán A, Juárez-Barber E, Monleón J, Payá V, Trelis A, Quiñonero A, Pellicer A, Ferrero H. Integrative analysis of the DNA methylome and transcriptome in uterine leiomyoma shows altered regulation of genes involved in metabolism, proliferation, extracellular matrix and vesicles. J Pathol 2022; 257:663-673. [PMID: 35472162 DOI: 10.1002/path.5920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Uterine leiomyomas are the most common benign tumors in women of reproductive age. Despite the high prevalence, tumor pathology remains unclear, which hampers development of safe and effective treatments. Epigenetic mechanisms appear to be involved in uterine leiomyoma development, particularly via DNA methylation that regulates gene expression. We aimed to determine the relationship between DNA methylation and gene expression in uterine leiomyoma compared to adjacent myometrium to identify molecular mechanisms involved in uterine leiomyoma formation that are under epigenetic control. Our results showed a different DNA methylation profile between uterine leiomyoma and myometrium, leading to hypermethylation of uterine leiomyoma, and a different global transcriptome profile. Integration of DNA methylation and whole-transcriptome RNA-sequencing data identified 93 genes regulated by methylation, with 22 hypomethylated/upregulated and 71 hypermethylated/downregulated. Functional enrichment analysis showed dysregulated biological processes and molecular functions involved in metabolism and cell physiology, response to extracellular signals, invasion, and proliferation, as well as pathways related to uterine biology and cancer. Cellular components such as cell membranes, vesicles, extracellular matrix, and cell junctions were dysregulated in uterine leiomyoma. In addition, we found hypomethylation/upregulation of oncogenes (PRL, ATP8B4, CEMIP, ZPMS2-AS1, RIMS2, TFAP2C) and hypermethylation/downregulation of tumor suppressor genes (EFEMP1, FBLN2, ARHGAP10, HTATIP2), which are related to proliferation, invasion, altered metabolism, deposition of extracellular matrix, and Wnt/β-catenin pathway dysregulation. This confirms that key processes of uterine leiomyoma development are under DNA methylation control. Finally, inhibition of DNA methyltransferases by 5-aza-2'-deoxycitidine increased expression of hypermethylated/downregulated genes in uterine leiomyoma cells in vitro. In conclusion, gene regulation by DNA methylation is implicated in uterine leiomyoma pathogenesis, and reversion of this methylation could offer a therapeutic option for uterine leiomyoma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | | | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Vicente Payá
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,IVIRMA, Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
13
|
Distinctive Roles of Wnt Signaling in Chondrogenic Differentiation of BMSCs under Coupling of Pressure and Platelet-Rich Fibrin. Tissue Eng Regen Med 2022; 19:823-837. [PMID: 35467329 PMCID: PMC9294129 DOI: 10.1007/s13770-022-00456-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Although newly formed constructs of feasible pressure-preadjusted bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) showed biomechanical flexibility and superior capacity for cartilage regeneration, it is still not very clear how BMSCs and seed cells feel mechanical stimuli and convert them into biological signals, and the difference in signal transduction underlying mechanical and chemical cues is also unclear. METHODS To determine whether mechanical stimulation (hydrostatic pressure) and chemical cues (platelet-rich fibrin, PRF) activate canonical or noncanonical Wnt signaling in BMSCs, BMSCs cocultured with PRF were subjected to hydrostatic pressure loading, and the activation of the Wnt signaling molecules and expression of cartilage-associated proteins and genes were determined by western blotting and polymerase chain reaction (PCR). Inhibitors of canonical or noncanonical Wnt signaling, XVX-939 or L690,330, were adopted to investigate the role of Wnt signaling molecules in mechanically promoted chondrogenic differentiation of BMSCs. RESULTS Hydrostatic pressure of 120 kPa activated both Wnt/β-catenin signaling and Wnt/Ca2+ signaling, with the the maximum promotion effect at 60 min. PRF exerted no synergistic effect on Wnt/β-catenin signaling activation. However, the growth factors released by PRF might reverse the promotion effects of pressure on Wnt/Ca2+ signaling. Real-time PCR and Western blotting results showed that pressure could activate the expression of Col-II, Sox9, and aggrecan in BMSCs cocultured with PRF. Blocking experiment found a positive role of Wnt/β-catenin signaling, and a negative role of Wnt/Ca2+ signaling in chondrogenic differentiation of the BMSCs. Mutual inhibition exists between canonical and noncanonical Wnt signaling in BMSCs under pressure. CONCLUSION Wnt signaling participates in the pressure-promoted chondrogenesis of the BMSCs co-cultured with PRF, with canonical and noncanonical pathways playing distinct roles during the process.
Collapse
|
14
|
Afrin S, Ali M, El Sabeh M, Yang Q, Al‐Hendy A, Borahay MA. Simvastatin inhibits stem cell proliferation in human leiomyoma via TGF-β3 and Wnt/β-Catenin pathways. J Cell Mol Med 2022; 26:1684-1698. [PMID: 35118811 PMCID: PMC8899165 DOI: 10.1111/jcmm.17211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 01/06/2023] Open
Abstract
Uterine leiomyoma (UL) is the most common gynaecologic tumour, affecting an estimated 70 to 80% of women. Leiomyomas develop from the transformation of myometrial stem cells into leiomyoma stem (or tumour-initiating) cells. These cells undergo self-renewal and differentiation to mature cells, both are necessary for the maintenance of tumour stem cell niche and tumour growth, respectively. Wnt/β-catenin and TGF-β/SMAD pathways, both overactive in UL, promote stem cell self-renewal, crosstalk between stem and mature cells, cellular proliferation, extracellular matrix (ECM) accumulation and drive overall UL growth. Recent evidence suggests that simvastatin, an antihyperlipidemic drug, may have anti-leiomyoma properties. Herein, we investigated the effects of simvastatin on UL stem cells. We isolated leiomyoma stem cells by flow cytometry using DyeCycle Violet staining and Stro-1/CD44 surface markers. We found that simvastatin inhibits proliferation and induces apoptosis in UL stem cells. In addition, it also suppressed the expression of the stemness markers Nanog, Oct4 and Sox2. Simvastatin significantly decreased the production of the key ECM proteins, collagen 1 and fibronectin. Finally, it inhibited genes and/or proteins expression of TGF-β1, 2 and 3, SMAD2, SMAD4, Wnt4, β-Catenin, LRP6, AXIN2 and Cyclin D1 in UL stem cells, all are key drivers of the TGF-β3/SMAD2 and Wnt4/β-Catenin pathways. Thus, we have identified a novel stem cell-targeting anti-leiomyoma simvastatin effect. Further studies are needed to replicate these findings in vivo.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mohamed Ali
- Clinical Pharmacy DepartmentFaculty of PharmacyAin Shams UniversityCairoEgypt
| | - Malak El Sabeh
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Qiwei Yang
- Department of Gynecology and ObstetricsUniversity of Chicago School of MedicineChicagoIllinoisUSA
| | - Ayman Al‐Hendy
- Department of Gynecology and ObstetricsUniversity of Chicago School of MedicineChicagoIllinoisUSA
| | - Mostafa A. Borahay
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
15
|
MacLean JA, Hayashi K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022; 11:647. [PMID: 35203298 PMCID: PMC8870180 DOI: 10.3390/cells11040647] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.
Collapse
Affiliation(s)
- James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
16
|
Miyashita-Ishiwata M, El Sabeh M, Reschke LD, Afrin S, Borahay MA. Differential response to hypoxia in leiomyoma and myometrial cells. Life Sci 2022; 290:120238. [PMID: 34942165 PMCID: PMC8757389 DOI: 10.1016/j.lfs.2021.120238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 02/03/2023]
Abstract
AIMS Recent evidence suggests that repetitive hypoxia occurs during menstrual cycles due to vasoconstriction and myometrial contraction. It is unknown if hypoxia contributes to the development of uterine leiomyoma, the most common tumor of the female reproductive system. This study aims to characterize the response to hypoxia in leiomyoma and myometrial cells; and determine if an aberrant leiomyoma response to hypoxia may contribute to leiomyomatogenesis. MAIN METHODS Primary and immortalized leiomyoma and myometrial cells were cultured under normoxic and hypoxic conditions. Expression levels of vascular endothelial growth factor-A (VEGF-A), adrenomedullin (ADM), endothelin-1 (ET-1), and hypoxia-inducible factor-1 alpha (HIF-1α) were measured by qRT-PCR, western blotting and ELISA. Cell proliferation was assessed using MTT assay and proliferating-cell-nuclear-antigen (PCNA) expression. KC7F2 (HIF-1α inhibitor) was used to examine the regulating mechanisms. KEY FINDINGS As expected, hypoxia induced HIF-1α expression in both leiomyoma and myometrial cells. However, hypoxia induced VEGF-A, ET-1 and ADM expression and VEGF-A secretion into the culture media in leiomyoma but not myometrial cells. MTT assay and PCNA expression showed that hypoxia induces proliferation in leiomyoma, but not myometrial cells. HIF-1α inhibitor abrogated the hypoxia-induced VEGF-A, ET-1, ADM, and PCNA expression in leiomyoma cells. SIGNIFICANCE This study suggests an aberrant leiomyoma cellular response to hypoxia compared to myometrium. This differential response to menstruation-related repetitive hypoxia episodes may lead to selective proliferation of hypoxia-adaptive leiomyoma cells and contribute to leiomyoma growth. Thus, in addition to adding to our understanding of leiomyoma pathobiology, the study proposes angiogenic factors as a potential leiomyoma therapeutic target.
Collapse
Affiliation(s)
- Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Lauren D Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780,Correspondence address: Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA,
| |
Collapse
|
17
|
Li K, Diakite D, Austin J, Lee J, Lantvit DD, Murphy BT, Burdette JE. The Flavonoid Baicalein Negatively Regulates Progesterone Target Genes in the Uterus in Vivo. JOURNAL OF NATURAL PRODUCTS 2022; 85:237-247. [PMID: 34935393 PMCID: PMC9164990 DOI: 10.1021/acs.jnatprod.1c01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Djeneba Diakite
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Julia Austin
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jeongho Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D. Lantvit
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
18
|
El Sabeh M, Saha SK, Afrin S, Borahay MA. Simvastatin Inhibits Wnt/β-Catenin Pathway in Uterine Leiomyoma. Endocrinology 2021; 162:6382454. [PMID: 34614511 PMCID: PMC8557633 DOI: 10.1210/endocr/bqab211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin pathway is upregulated in uterine leiomyomas, the most common benign tumors in the female reproductive tract. Simvastatin is an antihyperlipidemic drug, and previous in vitro and in vivo reports showed that it may have therapeutic effects in treating leiomyomas. The objective of this study was to examine the effects of simvastatin on the Wnt/β-catenin signaling pathway in leiomyoma. We treated primary and immortalized human leiomyoma cells with simvastatin and examined its effects using quantitative real-time polymerase chain reaction, Western blotting, and immunocytochemistry. We also examined the effects using human leiomyoma tissues from an ongoing randomized controlled trial in which women with symptomatic leiomyoma received simvastatin (40 mg) or placebo for 3 months prior to their surgery. The results of this study revealed that simvastatin significantly reduced the expression of Wnt4 and its co-receptor LRP5. After simvastatin treatment, levels of total β-catenin and its active form, nonphosphorylated β-catenin, were reduced in both cell types. Additionally, simvastatin reduced the expression of Wnt4 and total β-catenin, as well as nonphosphorylated β-catenin protein expression in response to estrogen and progesterone. Simvastatin also inhibited the expression of c-Myc, a downstream target of the Wnt/β-catenin pathway. The effect of simvastatin on nonphosphorylated-β-catenin, the key regulator of the Wnt/β-catenin pathway, was recapitulated in human leiomyoma tissue. These results suggest that simvastatin may have a beneficial effect on uterine leiomyoma through suppressing the overactive Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: Mostafa A. Borahay, M.D., Ph.D., Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|