1
|
Fang Q, Liu J, Chen L, Chen Q, Wang Y, Li Z, Fu W, Liu Y. Taurine supplementation improves hippocampal metabolism in immature rats with intrauterine growth restriction (IUGR) through protecting neurons and reducing gliosis. Metab Brain Dis 2022; 37:2077-2088. [PMID: 35048325 DOI: 10.1007/s11011-021-00896-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
Taurine as an essential amino acid in the brain could play an important role in protecting the fetal brain of intrauterine growth restriction (IUGR). The hippocampus with IUGR showed neural metabolic disorder and structure changed that affected memory and learning ability. This study was aimed to identify the effect of taurine supplementation on the metabolism alterations and cellular composition changes of the hippocampus in IUGR immature rats. Metabolite concentrations were determined by magnetic resonance spectroscopy (MRS) in the hippocampus of juvenile rats with IUGR following taurine supplementation with antenatal or postnatal supply. The composition of neural cells in the hippocampus was observed by immunohistochemical staining (IHC) and western blotting (WB). Antenatal taurine supplementation increased the ratios of N-acetylaspartate (NAA) /creatine (Cr) and glutamate (Glu) /Cr of the hippocampus in the IUGR immature rats, but reduced the ratios of choline (Cho) /Cr and myoinositol (mI) /Cr. At the same time, the protein expression of NeuN in the IUGR rats was increased through intrauterine taurine supplementation, and the GFAP expression was reduced. Especially the effect of antenatal taurine was better than postpartum. Furthermore, there existed a positive correlation between the NAA/Cr ratio and the NeuN protein expression (R = 0.496 p < 0.001 IHC; R = 0.568 p < 0.001 WB), the same results existed in the relationship between the mI/Cr ratio and the GFAP protein expression (R = 0.338 p = 0.019 IHC; R = 0.440 p = 0.002 WB). Prenatal taurine supplementation can better improve hippocampal neuronal metabolism by increasing NAA / Cr ratio related to the number of neurons and reducing Cho / Cr ratio related to the number of glial cells.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China.
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun district, Guangzhou, 510515, Guangdong Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yan Wang
- Neonatal Intensive Care Unit of Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, Fujian Province, China
| | - Wei Fu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| | - Ying Liu
- Department of Neonatology and Neonatal Intensive Care Unit, Beijing Chaoyang District Maternal and Child Healthcare Hospital, No. 25 Huaweili, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
2
|
Valenzuela I, Kinoshita M, van der Merwe J, Maršál K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta 2022; 126:90-113. [PMID: 35796064 DOI: 10.1016/j.placenta.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/20/2022] [Accepted: 06/17/2022] [Indexed: 12/09/2022]
Abstract
Fetal growth restriction (FGR) in human pregnancy is associated with perinatal mortality, short- and long-term morbidities. No prenatal therapy is currently established despite decades of research. We aimed to review interventions in animal models for prenatal FGR treatment, and to seek the next steps for an effective clinical therapy. We registered our protocol and searched MEDLINE, Embase, and The Cochrane Library with no language restrictions, in accordance with the PRISMA guideline. We included all studies that reported the effects of any prenatal intervention in animal models of induced FGR. From 3257 screened studies, 202 describing 237 interventions were included for the final synthesis. Mice and rats were the most used animals (79%) followed by sheep (16%). Antioxidants (23%), followed by vasodilators (18%), nutrients (14%), and immunomodulators (12%) were the most tested therapy. Two-thirds of studies only reported delivery or immediate neonatal outcomes. Adverse effects were rarely reported (11%). Most studies (73%), independent of the intervention, showed a benefit in fetal survival or birthweight. The risk of bias was high, mostly due to the lack of randomization, allocation concealment, and blinding. Future research should aim to describe both short- and long-term outcomes across various organ systems in well-characterized models. Further efforts must be made to reduce selection, performance, and detection bias.
Collapse
|
3
|
Fang Q, Liu J, Chen L, Chen Q, Ke J, Zhang J, Liu Y, Fu W. Taurine improves the differentiation of neural stem cells in fetal rats with intrauterine growth restriction via activation of the PKA-CREB-BDNF signaling pathway. Metab Brain Dis 2021; 36:969-981. [PMID: 33608831 DOI: 10.1007/s11011-021-00672-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/08/2021] [Indexed: 02/05/2023]
Abstract
Intrauterine growth restriction (IUGR) affects brain neural stem cell (NSC) differentiation. In the present study, we investigated whether taurine supplementation may improve NSC differentiation in IUGR fetal rats via the protein kinase A-cyclic adenosine monophosphate (cAMP) response element protein-brain derived neurotrophic factor (PKA-CREB-BDNF) signaling pathway. The IUGR fetal rat model was established with a low-protein diet. Fresh subventricular zone (SVZ) tissue from the fetuses on the 14th day of pregnancy was microdissected and dissociated into single-cell suspensions, then was cultured to form neurospheres. The neurospheres were divided into the control group, the IUGR group, the IUGR+taurine (taurine) group, the IUGR+H89 (H89) group and the IUGR+taurine+H89 (taurine+H89) group. The mRNA and protein expression levels of PKA, CREB and BDNF were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB). Tuj-1-positive neurons and GFAP-positive glial cells were detected by immunofluorescence. The total number of proliferating NSCs and the percentage of Tuj-1-positive neurons in the IUGR group were lower than those in the control group, but the percentage of GFAP-positive cells was higher in the IUGR group than in the control group. Taurine supplementation increased the total number of neural cells and the percentage of Tuj-1-positive neurons, and reduced the percentage of GFAP-positive cells among differentiated NSCs after IUGR. H89 reduced the total number and percentage of Tuj-1-positive neurons and increased the percentage of GFAP-positive cells. The mRNA and protein levels of PKA, CREB, and BDNF were lower in the IUGR group. The mRNA and protein expression levels of these factors were increased by taurine supplementation but reduced by the addition of H89. Taurine supplementation increased the ratio of neurons to glial cells and prevented gliosis in the differentiation of NSCs in IUGR fetal rats by activating the PKA-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
- Department of Neonatal Intensive Care Unit of Bayi Children's Hospital, Seventh Medical Center of PLA General Hospital affiliated to Southern Medical University, Beijing, 100700, China
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Liu
- Department of Pediatrics, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- Department of Neonatal Intensive Care Unit of Bayi Children's Hospital, Seventh Medical Center of PLA General Hospital affiliated to Southern Medical University, Beijing, 100700, China.
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College Affiliated to Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jun Ke
- Department of Emergency, Fujian Provincial Hospital, Provincial Clinical Medical College Affiliated to Fujian Medical University, Fujian Provincial Institute of Emergency Medicine, Fuzhou, 350001, China
| | - Jiuyun Zhang
- Department of Emergency, Fujian Provincial Hospital, Provincial Clinical Medical College Affiliated to Fujian Medical University, Fujian Provincial Institute of Emergency Medicine, Fuzhou, 350001, China
| | - Ying Liu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China
| | - Wei Fu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, 100021, China
| |
Collapse
|
4
|
Park E, Elidrissi A, Schuller-Levis G, Chadman KK. Taurine Partially Improves Abnormal Anxiety in Taurine-Deficient Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:905-921. [PMID: 31468456 DOI: 10.1007/978-981-13-8023-5_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Taurine is abundant in various tissues including the brain, muscle, heart, spleen, liver and kidney with various physiological functions. Since taurine is produced by cysteine sulfinic acid decarboxylase (CSAD) in the liver and kidney, taurine-deficient mice without CSAD have been investigated for abnormal physiological functions such as retinal development, immune, pancreatic and liver function. In this study, the behavioral effects and abnormal brain development caused by low taurine in the developing brain were examined. In neonatal brains of homozygous CSAD knockout mice (HO), taurine was reduced by 85%, compared to wild-type mice (WT). Taurine was reduced by 35% in the brains of 2 month-old HO, compared to WT. Anxiety, motor coordination and autistic-like behaviors were evaluated at 2 months of age using five behavioral tests: elevated plus maze, open field, social approach, marble burying and accelerating rotarod. Mice were tested from 3 groups including WT, HO and HO with oral treatment of 0.2% taurine in the drinking water (HOT). HOT were born from HO dams treated with taurine from before pregnancy and were continuously treated with taurine in the drinking water after weaning. The taurine levels in the brain and plasma of HOT were restored to WT at 2 months of age. Taurine-deficiency did not lead to changes in autistic-like behaviors as the HO were not significantly different from WT in marble burying and social approach. However, taurine-deficiency increased anxiety-like behavior in HO in the elevated plus maze and open field, compared to WT. Taurine treatment significantly restored the HOT to WT levels of anxiety-like behavior in the elevated plus maze. However, changes in exploratory activity in the open field were not improved with taurine treatment. There was a slight difference in motor ability as the WT mice stayed on the accelerating rotarod longer that the HO and HOT, but the difference was significant in the HOT during the first trial only, compared to WT.These data support hypothesis that taurine is essential for the emotional development of the brain. First, taurine is remarkably low in the neonatal brain of HO, compared to the adult brain of HO. Second, taurine treatment in HO partially improves anxiety-like behavior to WT.
Collapse
Affiliation(s)
- Eunkyue Park
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Abdeslem Elidrissi
- Department of Biological Science, College of Staten Island, Staten Island, NY, USA
| | - Georgia Schuller-Levis
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Kathryn K Chadman
- Department of Developmental Neurobiology, New York Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
5
|
Xu K, Bai M, Bin P, Duan Y, Wu X, Liu H, Yin Y. Negative effects on newborn piglets caused by excess dietary tryptophan in the morning in sows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3005-3016. [PMID: 30478950 DOI: 10.1002/jsfa.9514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND This study investigated the effect of dynamic feeding models of dietary tryptophan on sows' performance during late pregnancy. RESULTS The average piglet birth weight and live farrowing rate from sows consuming a high-low tryptophan diet (0.39% Trp in the morning and 0.13% Trp in the afternoon) were decreased compared with those fed a 2×tryptophan diet (0.26% Trp in the morning and afternoon). Compared with the 2×tryptophan group, sow serum kynurenic acid and the newborn liver n-6:n-3 polyunsaturated fatty acid ratio were significantly higher, and sow serum taurine and newborn serum taurine, phosphoserine, cysteine and proline were lower in the high-low tryptophan diet group. Eighty-eight genes were differentially expressed in newborn piglets' livers between the 2×tryptophan and high-low groups. Genes related to cytotoxic effector regulation (major histocompatibility complex class I proteins), NADH oxidation, reactive oxygen species (ROS) metabolism and tissue development were differentially expressed between these two groups. CONCLUSION Together, the results provide information on new biomarkers in serum or liver and provide novel insights into variations in the fetal liver during exogenous stimulus response and biological processes of ROS metabolism in fetuses during late pregnancy caused by a single excessive tryptophan ingestion daily in the morning. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Miaomiao Bai
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Yehui Duan
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Xin Wu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Hongnan Liu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Kondarl Agro-pastoral Technology Co., Ltd., Dongguan, China
- Academician Workstation of Changsha Medical University, Changsha, China
| |
Collapse
|
6
|
Li C, Liu X, Liu Q, Li S, Li Y, Hu H, Shao J. Protection of Taurine Against PFOS-Induced Neurotoxicity in PC12 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:907-916. [PMID: 28849510 DOI: 10.1007/978-94-024-1079-2_72] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
As a new member of persistent organic pollutants, the potent neurotoxicity of perfluorooctane sulfonates (PFOS) found in epidemiological studies and laboratory research has drawn increasing attention around the world. Previous studies showed that apoptosis driven by oxidative stress and autophagy were both observed in PFOS-induced toxicity. Taurine has been demonstrated to exert potent protections against oxidative stress as an efficient antioxidant. Whether taurine could protect against the PFOS neurotoxicity is not known. In the present study, PC12 cells were treated with several concentrations of PFOS (31.25, 250 μM) for 24 h. 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was applied to assess the cell viability. DCFH-DA detector was used to explore the production of ROS. Caspase 3 activity was used to reflect the possible apoptosis pathway. The lyso-tracker red dying was invited to evaluate the autophagy. Our data showed that taurine could significantly reverse the decreased viability and the increased ROS production in PC12 cells treated with PFOS. Moreover, the increased autophagy and apoptosis elicited by PFOS in PC12 cells could also be attenuated by taurine. Collectively, our results indicate that taurine may be an effective antioxidant in fighting against PFOS cytotoxicity and therefore could potentially serve as a preventative and therapeutic agent for environmental pollution-related toxicities.
Collapse
Affiliation(s)
- Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Qi Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Shuangyue Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Yachen Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Hong Hu
- Laboratory of Medicine, The Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
7
|
Characterization of Separation and Purification Technology and Identification of Taurine from the Bovine Liver. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1012-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Abstract
To compare differences in metabolites between newborns with intrauterine growth restriction (IUGR) and those who are appropriate for gestational age (AGA) in order to understand the changes in metabolites of newborns with IUGR and to explore the possible metabolic mechanism of tissue and organ damages in patients with IUGR, with the ultimate goal of providing the basis for clinical intervention.A total of 60 newborns with IUGR and 60 AGA newborns who were hospitalized in the neonatal intensive care unit of our hospital between January 2011 and December 2015 and who underwent metabolic disease screening were enrolled in this study. The differences in 21 amino acids and 55 carnitines in peripheral blood, as well as changes in the ratios of free carnitine and acylcarnitine to total carnitine, were compared.Metabolites, particularly alanine, homocysteine, leucine, methionine, ornithine, serine, tyrosine, isovaleryl carnitine, and eicosenoyl carnitine, differed according to newborns' birth weight (<3rd percentile, 3rd-5th percentiles, 5th-10th percentiles, and 10th-90th percentiles), with those with lower birth weight showing the greater difference (P < 0.05). Metabolites also differed by gestational age, and the differences observed were mainly as follows: preterm and full-term newborns showed differences in metabolites, mainly in alanine, proline, cerotoyl carnitine, and tetradecanedioyl carnitine (P < 0.05); preterm and full-term AGA newborns showed differences in metabolites, mainly in alanine, glutamine, homocysteine, pipecolic acid, proline, heptanoyl carnitine, and sebacoyl carnitine (P < 0.05); and preterm and full-term newborns with IUGR showed differences in metabolites, mainly in arginine, glutamic acid, homocysteine, histidine, leucine, isoleucine, ornithine, serine, threonine, tryptophan, valine, heptanoyl carnitine, decanoyl carnitine, linoleyl carnitine, methylmalonyl carnitine, glutarylcarnitine, sebacoyl carnitine, hydroxyacetyl carnitine, and hydroxyhexadecancenyl carnitine (P < 0.05). Among newborns with IUGR, metabolites differed among males and females, mainly in aspartic acid, glutamic acid, and hexacosenoic acid (P < 0.05). Birth weight had no significant effects on free carnitine concentration or on the ratios of free carnitine and acylcarnitine to total carnitine (P < 0.05).IUGR infants exhibit significant abnormalities in amino acid and acylcarnitine metabolism, especially those with birth weight below the third percentile. With increasing birth weight, amino acids and acylcarnitines showed compensatory increases or reductions, and when birth weight reached the 10th percentile, the newborns with IUGR resembled the AGA newborns.
Collapse
Affiliation(s)
- Jing Liu
- From the Department of Neonatology and NICU of Bayi Children's Hospital, The Army General Hospital of the Chinese PLA (JL, X-XC, X-WL, WF, W-QZ); Graduate School, The Chinese PLA Medical College (X-XC), Beijing; and Graduate School, Southern Medical University, Guangzhou (WF), China
| | | | | | | | | |
Collapse
|
9
|
Maliszewski-Hall AM, Alexander M, Tkáč I, Öz G, Rao R. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain. Neurochem Res 2015; 42:133-140. [PMID: 25972040 DOI: 10.1007/s11064-015-1609-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/24/2022]
Abstract
Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.
Collapse
Affiliation(s)
- Anne M Maliszewski-Hall
- Division of Neonatology, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Suite 13-227, MMC 391, Minneapolis, MN, 55455, USA.
| | - Michelle Alexander
- Division of Neonatology, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Suite 13-227, MMC 391, Minneapolis, MN, 55455, USA
| | - Ivan Tkáč
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, 420 Delaware Street SE, Suite 13-227, MMC 391, Minneapolis, MN, 55455, USA
| |
Collapse
|
10
|
Liu J, Wang HW, Liu F, Wang XF. Antenatal taurine improves neuronal regeneration in fetal rats with intrauterine growth restriction by inhibiting the Rho-ROCK signal pathway. Metab Brain Dis 2015; 30:67-73. [PMID: 24866462 DOI: 10.1007/s11011-014-9572-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 05/20/2014] [Indexed: 02/05/2023]
Abstract
The Rho-ROCK signal pathway is an important mediator of inhibitory signals that blocks central nervous cell regeneration. Here, we investigated whether antenatal taurine improved neuronal regeneration in fetal rats with intrauterine growth restriction (IUGR) by inhibiting this pathway. Thirty pregnant rats were randomly divided into three groups: control, IUGR, and IUGR + antenatal taurine supplementation (taurine group). The mRNA levels of Ras homolog gene A (Rho A), Rho-associated coiled-coil forming protein kinase 2 (ROCK2), and proliferating cell nuclear antigen (PCNA) were detected using real-time quantitative PCR. RhoA, ROCK2 and PCNA-positive cells were counted using immunohistochemistry. Antenatal taurine supplementation decreased RhoA and Rock2 mRNA expression, increased PCNA mRNA expression, and significantly decreased RhoA, ROCK2-positive and increased PCNA-positive cell counts in IUGR fetal rat brain tissues (p < 0.05). Thus, antenatal taurine supplementation inhibited the expression of key Rho-ROCK signal molecules and improved IUGR fetal brain development.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neonatology and NICU, Bayi Children's Hospital Affiliated to Beijing Military General Hospital, 5 Nanmen Cang, Dongcheng District, Beijing, 100700, China,
| | | | | | | |
Collapse
|