1
|
Ma XN, Shi MF, Feng W, Chen SL, Zhong XQ, Lin CS, Xu Q. Allopurinol is Associated with an Increased Risk of Cerebral Infarction: A Two-Sample Mendelian Randomization Study. ACS OMEGA 2024; 9:33826-33832. [PMID: 39130586 PMCID: PMC11308476 DOI: 10.1021/acsomega.4c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Previous studies have reported that the inappropriate use of allopurinol may increase the risk of cerebrovascular accidents, but some studies have also confirmed that allopurinol is a protective factor against stroke. To clarify whether there is a relevant causal relationship between allopurinol and cerebral infarction, we conducted a two-sample Mendelian randomization (MR) study. METHODS Data on single nucleotide polymorphisms (SNPs) associated with allopurinol and genome-wide association studies of cerebral infarction were obtained from the genome-wide association study (GWAS) web site. Five basic MR analyses were performed using MR-Egger regression, weighted median (WM1), inverse variance weighting (IVW), weighted mode (WM2), and simple mode. Sensitivity analysis was subsequently performed to detect horizontal pleiotropy, heterogeneity, and potential outliers. The final analysis results were mainly based on the IVW estimates. RESULTS A total of 10 SNPs were used as instrumental variables (IVs). MR analysis [(IVW: odds ratio (OR) = 1.053, 95% confidence interval (CI): 1.019-1.088, P = 0.002), (WM1: OR = 1.053, 95% CI: 1.009-1.098, P = 0.017), (WM2: OR = 1.050, 95% CI: 1.008-1.095, P = 0.044), (MR Egger: Q = 4.285, P = 0.830)] showed a positive causal association between allopurinol and the risk of cerebral infarction. Sensitivity analysis such as horizontal pleiotropy and heterogeneity increased the reliability of this result. CONCLUSION The results of this study provide direct evidence that there is a causal relationship between allopurinol and cerebral infarction and that allopurinol may increase the risk of cerebral infarction.
Collapse
Affiliation(s)
- Xiao-Na Ma
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
- Department
of Rheumatology, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Mei-Feng Shi
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
- Department
of Rheumatology, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wei Feng
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
- Department
of Rheumatology, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shu-Lin Chen
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
- Department
of Rheumatology, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiao-Qin Zhong
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
- Department
of Rheumatology, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chang-Song Lin
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
- Department
of Rheumatology, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiang Xu
- State
Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University
of Chinese Medicine, Guangzhou 510405, China
- Department
of Rheumatology, The First Affiliated Hospital
of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
2
|
McKay L, Petrelli B, Pind M, Reynolds JN, Wintle RF, Chudley AE, Drögemöller B, Fainsod A, Scherer SW, Hanlon-Dearman A, Hicks GG. Risk and Resilience Variants in the Retinoic Acid Metabolic and Developmental Pathways Associated with Risk of FASD Outcomes. Biomolecules 2024; 14:569. [PMID: 38785976 PMCID: PMC11117505 DOI: 10.3390/biom14050569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a common neurodevelopmental disorder that affects an estimated 2-5% of North Americans. FASD is induced by prenatal alcohol exposure (PAE) during pregnancy and while there is a clear genetic contribution, few genetic factors are currently identified or understood. In this study, using a candidate gene approach, we performed a genetic variant analysis of retinoic acid (RA) metabolic and developmental signaling pathway genes on whole exome sequencing data of 23 FASD-diagnosed individuals. We found risk and resilience alleles in ADH and ALDH genes known to normally be involved in alcohol detoxification at the expense of RA production, causing RA deficiency, following PAE. Risk and resilience variants were also identified in RA-regulated developmental pathway genes, especially in SHH and WNT pathways. Notably, we also identified significant variants in the causative genes of rare neurodevelopmental disorders sharing comorbidities with FASD, including STRA6 (Matthew-Wood), SOX9 (Campomelic Dysplasia), FDG1 (Aarskog), and 22q11.2 deletion syndrome (TBX1). Although this is a small exploratory study, the findings support PAE-induced RA deficiency as a major etiology underlying FASD and suggest risk and resilience variants may be suitable biomarkers to determine the risk of FASD outcomes following PAE.
Collapse
Affiliation(s)
- Leo McKay
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Berardino Petrelli
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Molly Pind
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - James N. Reynolds
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Richard F. Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Albert E. Chudley
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Britt Drögemöller
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12271, Jerusalem 9112102, Israel
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 1L7, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ana Hanlon-Dearman
- Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
3
|
Gao Y, Li ZA, Zhai XY, Han L, Zhang P, Cheng SJ, Yue JY, Cui HK. An interpretable machine learning model for stroke recurrence in patients with symptomatic intracranial atherosclerotic arterial stenosis. Front Neurosci 2024; 17:1323270. [PMID: 38260008 PMCID: PMC10800779 DOI: 10.3389/fnins.2023.1323270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background and objective Symptomatic intracranial atherosclerotic stenosis (SICAS) is the most common etiology of ischemic stroke and one of the main causes of high stroke recurrence. The recurrence of stroke is closely related to the prognosis of ischemic stroke. This study aims to develop a machine learning model based on high-resolution vessel wall imaging (HR-VWI) to predict the risk of stroke recurrence in SICAS. Methods This study retrospectively collected data from 180 SICAS stroke patients treated at the hospital between 2020.01 and 2022.01. Relevant imaging and clinical data were collected, and follow-up was conducted. The dataset was divided into a training set and a validation set in a ratio of 7:3. We employed the least absolute shrinkage and selection operator (LASSO) regression to perform a selection on the baseline data, laboratory tests, and neuroimaging data generated by HR-VWI scans collected from the training set. Finally, five machine learning techniques, including logistic regression model (LR), support vector machine (SVM), Gaussian naive Bayes (GNB), Complement naive Bayes (CNB), and k-nearest neighbors algorithm (kNN), were employed to develop a predictive model for stroke recurrence. Shapley Additive Explanation (SHAP) was used to provide visualization and interpretation for each patient. The model's effectiveness was evaluated using average accuracy, sensitivity, specificity, precision, f1 score, PR curve, calibration curve, and decision curve analysis. Results LASSO analysis revealed that "history of hypertension," "homocysteine level," "NWI value," "stenosis rate," "intracranial hemorrhage," "positive remodeling," and "enhancement grade" were independent risk factors for stroke recurrence in SICAS patients. In 10-fold cross-validation, the area under the curve (AUC) ranged from 0.813 to 0.912 in ROC curve analysis. The area under the precision-recall curve (AUPRC) ranged from 0.655 to 0.833, with the Gaussian Naive Bayes (GNB) model exhibiting the best ability to predict stroke recurrence in SICAS. SHAP analysis provided interpretability for the machine learning model and revealed essential factors related to the risk of stroke recurrence in SICAS. Conclusion A precise machine learning-based prediction model for stroke recurrence in SICAS has been established to assist clinical practitioners in making clinical decisions and implementing personalized treatment measures.
Collapse
Affiliation(s)
- Yu Gao
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| | - Zi-ang Li
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| | - Xiao-yang Zhai
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| | - Lin Han
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| | - Si-jia Cheng
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| | - Jun-yan Yue
- Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| | - Hong-kai Cui
- Department of Neurointerventional Center, The First Affiliated Hospital of Xinxiang Medical University, Xin Xiang, China
| |
Collapse
|
4
|
Prajjwal P, Marsool MDM, Inban P, Sharma B, Asharaf S, Aleti S, Gadam S, Al Sakini AS, Hadi DD. Vascular dementia subtypes, pathophysiology, genetics, neuroimaging, biomarkers, and treatment updates along with its association with Alzheimer's dementia and diabetes mellitus. Dis Mon 2023; 69:101557. [PMID: 37031059 DOI: 10.1016/j.disamonth.2023.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Dementia is a chronic progressive cognitive decline illness that results in functional impairment. Vascular dementia (VaD), second only to Alzheimer's disease (AD), is one of the most prevalent forms of dementia in the elderly (aged over 65 years), with a varied presentation and unpredictable disease development caused by cerebrovascular or cardiovascular illness. To get a better understanding of the changes occurring in the brain and to drive therapy efforts, new biomarkers for early and precise diagnosis of AD and VaD are required. In this review, Firstly, we describe the subtypes of vascular dementia, their clinical features, pathogenesis, genetics implemented, and their associated neuroimaging and biomarkers, while describing extensively the recent biomarkers discovered in the literature. Secondly, we describe some of the well-documented and other less-defined risk factors and their association and pathophysiology in relation to vascular dementia. Finally, we follow recent updates in the management of vascular dementia along with its association and differentiation from Alzheimer's disease. The aim of this review is to gather the scattered updates and the most recent changes in blood, CSF, and neuroimaging biomarkers related to the multiple subtypes of vascular dementia along with its association with Alzheimer's dementia and diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Pugazhendi Inban
- Internal Medicine, Government Medical College, Omandurar, Chennai, India
| | | | - Shahnaz Asharaf
- Internal Medicine, Travancore Medical College, Kollam, Kerala, India
| | - Soumya Aleti
- PGY-2, Internal Medicine, Berkshire Medical Center, Pittsfield, MA, USA
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | | | - Dalia Dhia Hadi
- University of Baghdad, Al-Kindy College of Medicine, Baghdad, Iraq
| |
Collapse
|
5
|
Li Y, Liu C, Fan H, Du Y, Zhang R, Zhan S, Zhang G, Bu N. Gli2-induced lncRNA Peg13 alleviates cerebral ischemia-reperfusion injury by suppressing Yy1 transcription in a PRC2 complex-dependent manner. Metab Brain Dis 2023; 38:1389-1404. [PMID: 36662414 DOI: 10.1007/s11011-023-01159-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
Endothelial cell dysfunction plays an important role in cerebral ischemia-reperfusion (I/R) injury. LncRNA Peg13 is reported to be down-regulated in brain microvascular endothelial cells (BMVECs) induced by glucose-oxygen deprivation (OGD), but the mechanism of its involvement in I/R progression remains to be further explored. Here, mouse BMVECs (bEnd.3 cells) were treated with OGD / reoxygenation (OGD/R) to simulate I/R injury in vitro. Peg13 and Gli2 expression was decreased in OGD/R-treated bEnd.3 cells. And overexpression of Peg13 or Gli2 prevented OGD/R-induced reduction in cell migration and angiogenesis, as well as upregulation in cell apoptosis and oxidative stress levels. Mechanism exploration showed that Gli2 promoted the transcription of Peg13. And Peg13 repressed Yy1 transcription by binding to Ezh2 (a key subunit of PRC2 complex) and inducing the enrichment of H3K27me3 in Yy1 promoter region, thereby suppressing the transcriptional inhibition effect of Yy1 on Notch3 and promoting the expression of Notch3. Consistently, Notch3 overexpression hindered OGD/R-induced endothelium dysfunction. In addition, a brain I/R injury model was established using middle cerebral artery occlusion surgery. And lentivirus-mediated Gli2 and Peg13 overexpression vectors were injected into mice via the lateral ventricle one week before surgery. The results showed that overexpression of Peg13 or Gli2 alleviated I/R-induced neurological deficit, cerebral infarct and cerebral edema. And simultaneous overexpression of Peg13 and Gli2 showed a better protective effect than overexpression of Gli2 or Peg13 alone. In conclusion, Peg13 regulated by Gli2 inhibits Yy1 transcription in a PCR2 complex-dependent manner, and blocks the transcriptional repression of Notch3 by Yy1, thereby exerting neuroprotective effects on cerebral I/R injury.
Collapse
Affiliation(s)
- Yanling Li
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China.
| | - Chuntian Liu
- Department of Geriatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi province, China
| | - Hong Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Yun Du
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Ru Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Guilian Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| | - Ning Bu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwulu, 710004, Xi'an, Shaanxi province, China
| |
Collapse
|
6
|
Keat Wei L, Griffiths LR, Irene L, Kooi CW. Association of NOTCH3 Gene Polymorphisms with Ischemic Stroke and its Subtypes: A Meta-Analysis. ACTA ACUST UNITED AC 2019; 55:medicina55070351. [PMID: 31288479 PMCID: PMC6681102 DOI: 10.3390/medicina55070351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/03/2022]
Abstract
Background and objectives: NOTCH3 gene variations play a significant role in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, the role of NOTCH3 gene polymorphisms in the risk of ischemic stroke, and its subtypes such as atherothrombotic or lacunar strokes, remains unclear. Aims: Hence, we carried out a meta-analysis to examine whether the NOTCH3 rs1043994, rs1044009 and rs3815188 polymorphisms are associated with ischemic stroke and its major subtypes. Materials and Methods: All relevant studies were systematically screened and meta-analyzed using Review Manager (Revman) version 5.3. The strength of the association between NOTCH3 polymorphisms and ischemic stroke risk and its subtypes were measured as odds ratios and 95% confidence intervals, under different genetic models. Results: A total of ten studies were identified, five of which considered NOTCH3 rs1043994 (2077 cases/2147 controls), five of which considered NOTCH3 rs1044009 (2315 cases/3053 controls), and nine of which considered NOTCH3 rs3815188 (2819 cases/2769 controls). These studies were meta-analyzed for their association with ischemic stroke risk. Four studies (874 cases/2002 controls) of the NOTCH3 rs3815188 polymorphism and three studies of the NOTCH3 rs1043994 (643 cases/1552 controls) polymorphism were meta-analyzed for lacunar stroke risk. Three studies (1013 cases/1972 controls) of the NOTCH3 rs3815188 polymorphism were meta-analyzed for atherothrombotic stroke risk. The meta-analysis results showed a lack of association between all of the studied polymorphisms and the risk of ischemic stroke and its major subtypes (i.e., atherothrombotic and lacunar). Conclusions: NOTCH3 polymorphisms are not significantly associated with the risk of ischemic stroke and its subtypes (p < 0.05).
Collapse
Affiliation(s)
- Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Perak, Malaysia.
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Looi Irene
- Department of Medicine and Clinical Research Centre, Seberang Jaya Hospital, Jalan Tun Hussein Onn, 13700 Seberang Jaya, Pulau Pinang, Malaysia
| | - Cheah Wee Kooi
- Department of Medicine and Clinical Research Centre, Taiping Hospital, Jalan Tamingsari, Taiping 34000, Perak, Malaysia
| |
Collapse
|
7
|
Zhang Q, Zhou J, Lei H, Zhu CY, Li FF, Zheng D, Liu SL. RBPJ polymorphisms associated with cerebral infarction diseases in Chinese Han population: A Clinical Trial/Experimental Study (CONSORT Compliant). Medicine (Baltimore) 2018; 97:e11420. [PMID: 30075508 PMCID: PMC6081149 DOI: 10.1097/md.0000000000011420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
TRIAL DESIGN Cerebral small vessel diseases (CSVDs) are a group of brain pathological processes involving cerebral small arteries, brain venules, and capillaries. The recombination signal-binding protein Jκ (RBPJ) is implicated in the pathogenesis of these diseases but its actual roles need confirmation. The aim of this work was to evaluate variations in RBPJ gene for their possible associations with the disease. METHODS The RBPJ gene was sequenced for 400 patients with cerebral infarction disease and 600 normal controls. The statistical analyses and Hardy-Weinberg equilibrium tests of the patients and control populations were conducted using the SPSS software (version 19.0) and Plink (version 1.9), Haploview software, and online software SNPSpD. RESULTS We characterized variants rs2871198, rs1397731, rs3822223, rs2077777, rs2270226, and rs2788861 within or near the RBPJ gene. The genetic heterozygosity of rs2871198, rs1397731, rs3822223, rs2077777, and rs2270226 was very high. Statistical analysis showed that the variants rs2270226 and rs2077777 in the gene were associated with the risk of cerebral infarction diseases in the Chinese Han population. CONCLUSIONS rs2270226 and rs2077777 in the RBPJ gene were associated with the risk of cerebral infarction diseases in the Chinese Han population.
Collapse
Affiliation(s)
- Qiong Zhang
- College of Wildlife Resources, Northeast Forestry University
- Department of Antibiotics, Heilongjiang Institute for Food and Drug Control
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
| | - Jie Zhou
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
| | - Hong Lei
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
| | - Chun-Yu Zhu
- Department of Neurology, Daqing Oilfield General Hospital, Daqing, China
| | - Fei-Feng Li
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
| | - Dong Zheng
- College of Wildlife Resources, Northeast Forestry University
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Sun MK. Potential Therapeutics for Vascular Cognitive Impairment and Dementia. Curr Neuropharmacol 2018; 16:1036-1044. [PMID: 29046153 PMCID: PMC6120112 DOI: 10.2174/1570159x15666171016164734] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND As the human lifespan increases, the number of people affected by agerelated dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypo-perfusion/vascular risk factors enhance amyloid toxicity and other memory- damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. METHODS Research and online content related to vascular cognitive impairment and dementia is reviewed, specifically focusing on the potential treatment of the disorder. RESULTS Few therapeutic options are currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. CONCLUSION Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) antipathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, 8 Medical Center Drive, Morgantown, West Virginia26505, USA
| |
Collapse
|
9
|
Calabrese V, Giordano J, Signorile A, Laura Ontario M, Castorina S, De Pasquale C, Eckert G, Calabrese EJ. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res 2016; 94:1588-1603. [PMID: 27662637 DOI: 10.1002/jnr.23925] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
Vascular dementia (VaD), considered the second most common cause of cognitive impairment after Alzheimer disease in the elderly, involves the impairment of memory and cognitive function as a consequence of cerebrovascular disease. Chronic cerebral hypoperfusion is a common pathophysiological condition frequently occurring in VaD. It is generally associated with neurovascular degeneration, in which neuronal damage and blood-brain barrier alterations coexist and evoke beta-amyloid-induced oxidative and nitrosative stress, mitochondrial dysfunction, and inflammasome- promoted neuroinflammation, which contribute to and exacerbate the course of disease. Vascular cognitive impairment comprises a heterogeneous group of cognitive disorders of various severity and types that share a presumed vascular etiology. The present study reviews major pathogenic factors involved in VaD, highlighting the relevance of cerebrocellular stress and hormetic responses to neurovascular insult, and addresses these mechanisms as potentially viable and valuable as foci of novel neuroprotective methods to mitigate or prevent VaD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| | - James Giordano
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Concetta De Pasquale
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Italy
| | - Gunter Eckert
- Institute of Nutrition Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts
| |
Collapse
|