1
|
Platt I, Bisgin A, Kilavuz S. Ethylmalonic Encephalopathy: a literature review and two new cases of mild phenotype. Neurol Sci 2023; 44:3827-3852. [PMID: 37458841 DOI: 10.1007/s10072-023-06904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a rare intoxication-type metabolic disorder with multisystem involvement. It is caused by mutations in ETHE1, which encodes the ETHE1 enzyme in the mitochondrial matrix that plays a key role in hydrogen sulfide (H2S) detoxification acting as a sulphur dioxygenase. RESULTS This review focuses on the clinical, metabolic, genetic and neuroradiological features of 70 reported cases, including two new cases. The common manifestations of EE are psychomotor regression, hypotonia, developmental delay, petechia, pyramidal signs, chronic diarrhoea, orthostatic acrocyanosis and failure to thrive, respectively. A significant difference was found in EMA and C4 levels (p=0.003, p=0.0236) between classical and mild phenotypes. Urinary EMA, C4 and C5 levels were found to exhibit normal values in milder cases during attack-free periods. The most common ETHE1 gene homozygous state mutations were (p.R163Q) (c.488G>A), exon 4 deletion, (p.R163W)(c.487C>T), (p.Glu44ValfsTer62)(c.131_132delAG) and (p.M1I)(c.3G>T) mutations, respectively. Fifty-two patients underwent cranial MRI. Basal ganglia signal alterations were detected in 42 cases. Of the 70 cases, eight had a mild phenotype and slow neurological progression with low levels of ethylmalonic acid (EMA) and C4 acylcarnitine. The current age of alive patients in the published articles with mild phenotype was significantly higher than the classical phenotype. (p=0.002). Reducing the accumulation and inducing detoxification of sulfide is the main long-term treatment strategy for EE, including metronidazole, N-acetylcysteine (NAC), dietary modification, liver transplantation and continuous renal replacement therapy (CRRT). CONCLUSION Measuring EMA and C4 acylcarnitine during metabolic attacks is critical to diagnosing EE, allowing for early treatment initiation to prevent further encephalopathic crises. Experience with liver transplantation, diet and CRRT, is currently limited. An early multidisciplinary approach with combination therapies is vital to prevent irreversible neurological damage.
Collapse
Affiliation(s)
| | - Atil Bisgin
- Department of Medical Genetics, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Adana, Turkey
| | - Sebile Kilavuz
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Marmara University Faculty of Medicine, İstanbul, Turkey.
| |
Collapse
|
2
|
Hanaford AR, Cho YJ, Nakai H. AAV-vector based gene therapy for mitochondrial disease: progress and future perspectives. Orphanet J Rare Dis 2022; 17:217. [PMID: 35668433 PMCID: PMC9169410 DOI: 10.1186/s13023-022-02324-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/09/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial diseases are a group of rare, heterogeneous diseases caused by gene mutations in both nuclear and mitochondrial genomes that result in defects in mitochondrial function. They are responsible for significant morbidity and mortality as they affect multiple organ systems and particularly those with high energy-utilizing tissues, such as the nervous system, skeletal muscle, and cardiac muscle. Virtually no effective treatments exist for these patients, despite the urgent need. As the majority of these conditions are monogenic and caused by mutations in nuclear genes, gene replacement is a highly attractive therapeutic strategy. Adeno-associated virus (AAV) is a well-characterized gene replacement vector, and its safety profile and ability to transduce quiescent cells nominates it as a potential gene therapy vehicle for several mitochondrial diseases. Indeed, AAV vector-based gene replacement is currently being explored in clinical trials for one mitochondrial disease (Leber hereditary optic neuropathy) and preclinical studies have been published investigating this strategy in other mitochondrial diseases. This review summarizes the preclinical findings of AAV vector-based gene replacement therapy for mitochondrial diseases including Leigh syndrome, Barth syndrome, ethylmalonic encephalopathy, and others.
Collapse
Affiliation(s)
- Allison R Hanaford
- Center for Integrative Brain Research, Seattle Children's Reserach Institute, Seattle, WA, 98101, USA.
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Pediatric Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Molecular Immunology and Microbiology, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| |
Collapse
|
3
|
Cardelo Autero N, Cordón Martínez AM, Ramos-Fernández JM. Ethylmalonic encephalopathy: phenotype-genotype description and review of its management. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:729-731. [PMID: 34274260 DOI: 10.1016/j.nrleng.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/31/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- N Cardelo Autero
- Servicio de Pediatría, Hospital Regional Universitario Materno-Infantil de Málaga, Málaga, Spain
| | - A M Cordón Martínez
- Servicio de Pediatría (lactantes), Hospital Regional Universitario Materno-Infantil de Málaga, Málaga, Spain
| | - J M Ramos-Fernández
- Sección de Neurología Pediátrica, Grupo IBIMA, Servicio de Pediatría, Hospital Regional Universitario Materno-Infantil de Málaga, Málaga, Spain.
| |
Collapse
|
4
|
Hertzog A, Selvanathan A, Tolun AA, Parayil Sankaran B, Bhattacharya K. Purpuric, delayed child: Beyond septicaemia and into inborn errors of metabolism. J Paediatr Child Health 2021; 57:1703-1706. [PMID: 33586825 DOI: 10.1111/jpc.15365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/17/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Ashley Hertzog
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Arthavan Selvanathan
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospitals' Network, Sydney, New South Wales, Australia
| | - Adviye A Tolun
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bindu Parayil Sankaran
- Genetic Metabolic Disorders Service, Sydney Children's Hospitals' Network, Sydney, New South Wales, Australia
| | - Kaustuv Bhattacharya
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Genetic Metabolic Disorders Service, Sydney Children's Hospitals' Network, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Lim J, Shayota BJ, Lay E, Elsea SH, Bekheirnia MR, Tessier MEM, Kralik SF, Rice GM, Soler-Alfonso C, Scaglia F. Acute Strokelike Presentation and Long-term Evolution of Diffusion Restriction Pattern in Ethylmalonic Encephalopathy. J Child Neurol 2021; 36:841-852. [PMID: 33900143 DOI: 10.1177/08830738211006507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ethylmalonic encephalopathy is a rare autosomal recessive mitochondrial disorder caused by pathogenic biallelic variants in the ETHE1 gene. The phenotype of this disease has been attributed to deficiency in the mitochondrial sulfur dioxygenase leading to many downstream effects. Ethylmalonic encephalopathy classically presents with developmental regression, petechiae, acrocyanosis, and chronic diarrhea. The neurologic phenotype includes hypotonia, spastic diplegia, ataxia, and developmental delay. As more patients with this condition are described, the neurologic phenotype continues to expand. Although strokelike episodes or metabolic strokes have been studied in other mitochondrial disorders, they have not been thoroughly reported in this disorder. Herein, we describe 3 patients with ethylmalonic encephalopathy who presented clinically with strokelike episodes and strokelike abnormalities on brain magnetic resonance imaging in the setting of acute illness, and the long-term sequelae with evolution into cystic changes in one of these subjects.
Collapse
Affiliation(s)
- Jaehyung Lim
- Division of Pediatric Neurology and Developmental Neurosciences, 3989Baylor College of Medicine, Houston, TX, USA
| | - Brian J Shayota
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA
| | - Erica Lay
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA
| | - Mir Reza Bekheirnia
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA.,Renal Section, Department of Pediatrics, 3989Baylor College of Medicine, Houston, TX, USA
| | - Mary Elizabeth M Tessier
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition 3989Baylor College of Medicine Houston TX, USA
| | - Stephen F Kralik
- Department of Radiology, 3984Texas Children's Hospital, Houston, TX, USA
| | - Gregory M Rice
- Department of Pediatrics and the Waisman Center, 5232University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, 3989Baylor College of Medicine, Houston, TX, USA.,3984Texas Children's Hospital, Houston, TX, USA.,Joint 3989BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| |
Collapse
|
6
|
Olivieri G, Martinelli D, Longo D, Grimaldi C, Liccardo D, Di Meo I, Pietrobattista A, Sidorina A, Semeraro M, Dionisi-Vici C. Ethylmalonic encephalopathy and liver transplantation: long-term outcome of the first treated patient. Orphanet J Rare Dis 2021; 16:229. [PMID: 34011365 PMCID: PMC8136189 DOI: 10.1186/s13023-021-01867-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a severe intoxication-type metabolic disorder with multisystem clinical features and leading to early death. In 2014, based on the promising results obtained by liver-targeted gene therapy in Ethe1-/- mouse model, we successfully attempted liver transplantation in a 9-month-old EE girl. Here we report her long-term follow-up, lasting over 6 years, with a comprehensive evaluation of clinical, instrumental and biochemical assessments. RESULTS Neurological signs initially reverted, with a clinical stabilization during the entire follow-up course. Accordingly, gross motor functions improved and then stabilized. Psychomotor evaluations documented an increasing communicative intent, the acquisition of new social skills and the capability to carry out simple orders. Neurophysiological assessments, which included EEG, VEP/ERG and BAEPs, remained unchanged. Brain MRI also stabilized, showing no further lesions and cerebral atrophy improvement. Compared to pre-transplant assessments, urinary ethylmalonic acid strikingly reduced, and plasma thiosulphate fully normalized. The child maintained good clinical conditions and never experienced metabolic crises nor epileptic seizures. CONCLUSIONS The long-term follow-up of the first EE transplanted patient demonstrates that liver transplantation stabilizes, or even improves, disease course, therefore representing a potentially elective option especially in early-diagnosed patients, such as those detected by newborn screening, before irreversible neurological damage occurs.
Collapse
Affiliation(s)
- Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Grimaldi
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Daniela Liccardo
- Division of Hepatology and Gastroenterology, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Pietrobattista
- Division of Hepatology and Gastroenterology, Bambino Gesù Children's Research Hospital IRCCS, Rome, Italy
| | - Anna Sidorina
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Michela Semeraro
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
7
|
Cardelo Autero N, Cordón Martínez AM, Ramos-Fernández JM. Ethylmalonic encephalopathy: Phenotype-genotype description and review of its management. Neurologia 2021; 36:S0213-4853(21)00009-8. [PMID: 33722452 DOI: 10.1016/j.nrl.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- N Cardelo Autero
- Servicio de Pediatría, Hospital Regional Universitario Materno-Infantil de Málaga, Málaga, España
| | - A M Cordón Martínez
- Servicio de Pediatría (lactantes), Hospital Regional Universitario Materno-Infantil de Málaga, Málaga, España
| | - J M Ramos-Fernández
- Sección de Neurología Pediátrica, Grupo IBIMA, Servicio de Pediatría, Hospital Regional Universitario Materno-Infantil de Málaga, Málaga, España.
| |
Collapse
|
8
|
Barcelos I, Shadiack E, Ganetzky RD, Falk MJ. Mitochondrial medicine therapies: rationale, evidence, and dosing guidelines. Curr Opin Pediatr 2020; 32:707-718. [PMID: 33105273 PMCID: PMC7774245 DOI: 10.1097/mop.0000000000000954] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease is a highly heterogeneous but collectively common inherited metabolic disorder, affecting at least one in 4300 individuals. Therapeutic management of mitochondrial disease typically involves empiric prescription of enzymatic cofactors, antioxidants, and amino acid and other nutrient supplements, based on biochemical reasoning, historical experience, and consensus expert opinion. As the field continues to rapidly advance, we review here the preclinical and clinical evidence, and specific dosing guidelines, for common mitochondrial medicine therapies to guide practitioners in their prescribing practices. RECENT FINDINGS Since publication of Mitochondrial Medicine Society guidelines for mitochondrial medicine therapies management in 2009, data has emerged to support consideration for using additional therapeutic agents and discontinuation of several previously used agents. Preclinical animal modeling data have indicated a lack of efficacy for vitamin C as an antioxidant for primary mitochondrial disease, but provided strong evidence for vitamin E and N-acetylcysteine. Clinical data have suggested L-carnitine may accelerate atherosclerotic disease. Long-term follow up on L-arginine use as prophylaxis against or acute treatment for metabolic strokes has provided more data supporting its clinical use in individuals with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome and Leigh syndrome. Further, several precision therapies have been developed for specific molecular causes and/or shared clinical phenotypes of primary mitochondrial disease. SUMMARY We provide a comprehensive update on mitochondrial medicine therapies based on current evidence and our single-center clinical experience to support or refute their use, and provide detailed dosing guidelines, for the clinical management of mitochondrial disease. The overarching goal of empiric mitochondrial medicines is to utilize therapies with favorable benefit-to-risk profiles that may stabilize and enhance residual metabolic function to improve cellular resiliency and slow clinical disease progression and/or prevent acute decompensation.
Collapse
Affiliation(s)
- Isabella Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward Shadiack
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca D. Ganetzky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
10
|
Zhou GP, Qu W, Zhu ZJ, Sun LY, Wei L, Zeng ZG, Liu Y. Compromised therapeutic value of pediatric liver transplantation in ethylmalonic encephalopathy: A case report. World J Gastroenterol 2020; 26:6295-6303. [PMID: 33177801 PMCID: PMC7596645 DOI: 10.3748/wjg.v26.i40.6295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ethylmalonic encephalopathy (EE) is a rare autosomal recessive metabolic disorder caused by impaired mitochondrial sulfur dioxygenase. Due to poor therapeutic effect of current conventional treatments, progressive psychomotor regression and neurological impairment usually contribute to early death in the first decade of life. Liver transplantation (LT) is emerging as a novel therapeutic option for EE; however, worldwide experience is still limited.
CASE SUMMARY An 18-mo-old patient with the diagnosis of EE received a living donor liver transplant in our institution, which, to our knowledge, is the first case in Asian-Pacific countries. During 20 mo of follow-up, the longitudinal metabolic evaluations revealed a wild fluctuation in urinary EMA levels, still far beyond the normal range. Urinary 2-methylsuccinic acid levels gradually restored to normal, whereas the concentrations of urinary isobutyrylglycine and plasma C4- and C5-acylcarnitines fluctuated markedly and still remained above the reference limits. Only mild amelioration of petechiae and ecchymosis was observed, and no dramatic reversion of chronic mucoid diarrhea and orthostatic acrocyanosis occurred. Although brain magnetic resonance imaging suggested a certain improvement in basal ganglia lesions, the patient still presented developmental delay and neurologic disability.
CONCLUSION LT may bring about a partial but not complete cure to EE. Given its definite role in defending against the devastating natural progression of EE, LT should still be considered for patients with EE in the absence of other superior therapeutic options. Early establishment of diagnosis and initiation of conventional treatment pre-transplant, timely LT, and continuous administration of metabolism-correcting medications post-transplant may be helpful in minimizing the neurologic impairment and maximizing the therapeutic value of LT in EE.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Ying Sun
- Liver Transplantation Center, Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Liu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
11
|
Grings M, Wajner M, Leipnitz G. Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cell Mol Neurobiol 2020; 42:565-575. [DOI: 10.1007/s10571-020-00976-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
|
12
|
Identification of a novel homozygous nonsense variant in a Chinese patient with ethylmalonic encephalopathy and a genotype-phenotype spectrum review. Clin Chim Acta 2020; 509:8-17. [DOI: 10.1016/j.cca.2020.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
|
13
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
15
|
Grings M, Seminotti B, Karunanidhi A, Ghaloul-Gonzalez L, Mohsen AW, Wipf P, Palmfeldt J, Vockley J, Leipnitz G. ETHE1 and MOCS1 deficiencies: Disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts. Sci Rep 2019; 9:12651. [PMID: 31477743 PMCID: PMC6718683 DOI: 10.1038/s41598-019-49014-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/14/2019] [Indexed: 01/21/2023] Open
Abstract
Ethylmalonic encephalopathy protein 1 (ETHE1) and molybdenum cofactor (MoCo) deficiencies are hereditary disorders that affect the catabolism of sulfur-containing amino acids. ETHE1 deficiency is caused by mutations in the ETHE1 gene, while MoCo deficiency is due to mutations in one of three genes involved in MoCo biosynthesis (MOCS1, MOCS2 and GPHN). Patients with both disorders exhibit abnormalities of the mitochondrial respiratory chain, among other biochemical findings. However, the pathophysiology of the defects has not been elucidated. To characterize cellular derangements, mitochondrial bioenergetics, dynamics, endoplasmic reticulum (ER)-mitochondria communication, superoxide production and apoptosis were evaluated in fibroblasts from four patients with ETHE1 deficiency and one with MOCS1 deficiency. The effect of JP4-039, a promising mitochondrial-targeted antioxidant, was also tested on cells. Our data show that mitochondrial respiration was decreased in all patient cell lines. ATP depletion and increased mitochondrial mass was identified in the same cells, while variable alterations in mitochondrial fusion and fission were seen. High superoxide levels were found in all cells and were decreased by treatment with JP4-039, while the respiratory chain activity was increased by this antioxidant in cells in which it was impaired. The content of VDAC1 and IP3R, proteins involved in ER-mitochondria communication, was decreased, while DDIT3, a marker of ER stress, and apoptosis were increased in all cell lines. These data demonstrate that previously unrecognized broad disturbances of cellular function are involved in the pathophysiology of ETHE1 and MOCS1 deficiencies, and that reduction of mitochondrial superoxide by JP4-039 is a promising strategy for adjuvant therapy of these disorders.
Collapse
Affiliation(s)
- Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil. .,Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15224, USA.
| | - Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.,Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Anuradha Karunanidhi
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15224, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Al-Walid Mohsen
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15224, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Peter Wipf
- Departments of Chemistry, Pharmaceutical Sciences and Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University Hospital, Skejby, Denmark
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15224, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil. .,Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15224, USA. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
16
|
Kitzler TM, Gupta IR, Osterman B, Poulin C, Trakadis Y, Waters PJ, Buhas DC. Acute and Chronic Management in an Atypical Case of Ethylmalonic Encephalopathy. JIMD Rep 2018; 45:57-63. [PMID: 30349987 DOI: 10.1007/8904_2018_136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Ethylmalonic encephalopathy (EE) is caused by mutations in the ETHE1 gene. ETHE1 is vital for the catabolism of hydrogen sulfide (H2S). Patients with pathogenic mutations in ETHE1 have markedly increased thiosulfate, which is a reliable index of H2S levels. Accumulation of H2S is thought to cause the characteristic metabolic derangement found in EE. Recently introduced treatment strategies in EE, such as combined use of metronidazole (MNZ) and N-acetylcysteine (NAC), are aimed at lowering chronic H2S load. Experience with treatment strategies directed against acute episodes of metabolic decompensation (e.g., hemodialysis) is limited. Here we present an unusually mild, molecularly confirmed, case of EE in a 19-year-old male on chronic treatment with MNZ and NAC. During an acute episode of metabolic decompensation, we employed continuous renal replacement therapy (CRRT) to regain metabolic control. On continuous treatment with NAC and MNZ during the months preceding the acute event, plasma thiosulfate levels ranged from 1.6 to 4 μg/mL (reference range up to 2 μg/mL) and had a mean value of 2.5 μg/mL. During the acute decompensation, thiosulfate levels were 6.7 μg/mL, with hyperlactatemia and perturbed organic acid, acylglycine, and acylcarnitine profiles. CRRT decreased thiosulfate within 24 h to 1.4 μg/mL. Following discontinuation of CRRT, mean thiosulfate levels were 3.2 μg/mL (range, 2.4-3.7 μg/mL) accompanied by clinical improvement with metabolic stabilization of blood gas, acylcarnitine, organic acid, and acylglycine profiles. In conclusion, CRRT may help to regain metabolic control in patients with EE who have an acute metabolic decompensation on chronic treatment with NAC and MNZ.
Collapse
Affiliation(s)
- Thomas M Kitzler
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada.
| | - Indra R Gupta
- Department of Pediatrics, Division of Nephrology, McGill University Health Centre, Montreal, QC, Canada
| | - Bradley Osterman
- Department of Pediatric Neurology, Centre Hospitalier de l'Université Laval (CHUL), Quebec City, QC, Canada
| | - Chantal Poulin
- Department of Pediatrics, Division of Neurology, McGill University Health Centre, Montreal, QC, Canada
| | - Yannis Trakadis
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| | - Paula J Waters
- Medical Genetics Service, Department of Pediatrics, University of Sherbrooke Hospital Centre (CHUS), Sherbrooke, QC, Canada
| | - Daniela C Buhas
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
17
|
Satapathy AK, Correa A, Kabra M, Eichler S, Rolfs A, Jana M, Gupta N. Ethylmalonic encephalopathy masquerading as malabsorption syndrome - A case report. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|