1
|
Lourenço CM, Sallum JMF, Pereira AM, Girotto PN, Kok F, Vilela DRF, Barron E, Pessoa A, Oliveira BMD. A needle in a haystack? The impact of a targeted epilepsy gene panel in the identification of a treatable but rapidly progressive metabolic epilepsy: CLN2 disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38763144 PMCID: PMC11102811 DOI: 10.1055/s-0044-1786854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/30/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCL) are a group of autosomal recessive, inherited, lysosomal, and neurodegenerative diseases that causes progressive dementia, seizures, movement disorders, language delay/regression, progressive visual failure, and early death. Neuronal ceroid lipofuscinosis type 2 (CLN2), caused by biallelic pathogenic variants of the TPP1 gene, is the only NCL with an approved targeted therapy. The laboratory diagnosis of CLN2 is established through highly specific tests, leading to diagnostic delays and eventually hampering the provision of specific treatment for patients with CLN2. Epilepsy is a common and clinically-identifiable feature among NCLs, and seizure onset is the main driver for families to seek medical care. OBJECTIVE To evaluate the results of the Latin America Epilepsy and Genetics Program, an epilepsy gene panel, as a comprehensive tool for the investigation of CLN2 among other genetic causes of epilepsy. METHODS A total of 1,284 patients with epilepsy without a specific cause who had at least 1 symptom associated with CLN2 were screened for variants in 160 genes associated with epilepsy or metabolic disorders presenting with epilepsy through an epilepsy gene panel. RESULTS Variants of the TPP1 gene were identified in 25 individuals (1.9%), 21 of them with 2 variants. The 2 most frequently reported variants were p.Arg208* and p.Asp276Val, and 2 novel variants were detected in the present study: p.Leu308Pro and c.89 + 3G > C Intron 2. CONCLUSION The results suggest that these genetic panels can be very useful tools to confirm or exclude CLN2 diagnosis and, if confirmed, provide disease-specific treatment for the patients.
Collapse
Affiliation(s)
| | - Juliana Maria Ferraz Sallum
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Oftalmologia e Ciências Visuais, São Paulo SP, Brazil.
| | | | | | - Fernando Kok
- Mendelics Análise Genômica, São Paulo SP, Brazil.
| | | | - Erika Barron
- BioMarin Brasil Farmacêutica Ltda., São Paulo SP, Brazil.
| | - André Pessoa
- Hospital Albert Sabin, Fortaleza CE, Brazil.
- Universidade Estadual do Ceará, Fortaleza CE, Brazil.
| | | |
Collapse
|
2
|
Mao B, Lin N, Guo D, He D, Xue H, Chen L, He Q, Zhang M, Chen M, Huang H, Xu L. Molecular analysis and prenatal diagnosis of seven Chinese families with genetic epilepsy. Front Neurosci 2023; 17:1165601. [PMID: 37250406 PMCID: PMC10213446 DOI: 10.3389/fnins.2023.1165601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Genetic epilepsy is a large group of clinically and genetically heterogeneous neurological disorders characterized by recurrent seizures, which have a clear association with genetic defects. In this study, we have recruited seven families from China with neurodevelopmental abnormalities in which epilepsy was a predominant manifestation, aiming to elucidate the underlying causes and make a precise diagnosis for the cases. Methods Whole-exome sequencing (WES) combined with Sanger sequencing was used to identify the causative variants associated with the diseases in addition to essential imaging and biomedical examination. Results A gross intragenic deletion detected in MFSD8 was investigated via gap-polymerase chain reaction (PCR), real-time quantitative PCR (qPCR), and mRNA sequence analysis. We identified 11 variants in seven genes (ALDH7A1, CDKL5, PCDH19, QARS1, POLG, GRIN2A, and MFSD8) responsible for genetic epilepsy in the seven families, respectively. A total of six variants (c.1408T>G in ALDH7A1, c.1994_1997del in CDKL5, c.794G>A in QARS1, c.2453C>T in GRIN2A, and c.217dup and c.863+995_998+1480del in MFSD8) have not yet been reported to be associated with diseases and were all evaluated to be pathogenic or likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Methods Based on the molecular findings, we have associated the intragenic deletion in MFSD8 with the mutagenesis mechanism of Alu-mediated genomic rearrangements for the first time and provided genetic counseling, medical suggestions, and prenatal diagnosis for the families. In conclusion, molecular diagnosis is crucial to obtain improved medical outcomes and recurrence risk evaluation for genetic epilepsy.
Collapse
Affiliation(s)
- Bin Mao
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Danhua Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Deqin He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qianqian He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
3
|
Celik H, Ozdemir FMA, Aksoy E, Oztoprak U, Kilic M, Yuksel D. Evaluation of clinical and electroencephalographic findings in patients with early childhood epilepsy and inborn errors of metabolism. Acta Neurol Belg 2022; 122:1575-1581. [DOI: 10.1007/s13760-022-02066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
|
4
|
Ford L, Mitchell M, Wulff J, Evans A, Kennedy A, Elsea S, Wittmann B, Toal D. Clinical metabolomics for inborn errors of metabolism. Adv Clin Chem 2022; 107:79-138. [PMID: 35337606 DOI: 10.1016/bs.acc.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Metabolism is a highly regulated process that provides nutrients to cells and essential building blocks for the synthesis of protein, DNA and other macromolecules. In healthy biological systems, metabolism maintains a steady state in which the concentrations of metabolites are relatively constant yet are subject to metabolic demands and environmental stimuli. Rare genetic disorders, such as inborn errors of metabolism (IEM), cause defects in regulatory enzymes or proteins leading to metabolic pathway disruption and metabolite accumulation or deficiency. Traditionally, the laboratory diagnosis of IEMs has been limited to analytical methods that target specific metabolites such as amino acids and acyl carnitines. This approach is effective as a screening method for the most common IEM disorders but lacks the comprehensive coverage of metabolites that is necessary to identify rare disorders that present with nonspecific clinical symptoms. Fortunately, advancements in technology and data analytics has introduced a new field of study called metabolomics which has allowed scientists to perform comprehensive metabolite profiling of biological systems to provide insight into mechanism of action and gene function. Since metabolomics seeks to measure all small molecule metabolites in a biological specimen, it provides an innovative approach to evaluating disease in patients with rare genetic disorders. In this review we provide insight into the appropriate application of metabolomics in clinical settings. We discuss the advantages and limitations of the method and provide details related to the technology, data analytics and statistical modeling required for metabolomic profiling of patients with IEMs.
Collapse
Affiliation(s)
- Lisa Ford
- Metabolon, Inc., Morrisville, NC, United States
| | | | - Jacob Wulff
- Metabolon, Inc., Morrisville, NC, United States
| | - Annie Evans
- Metabolon, Inc., Morrisville, NC, United States
| | | | - Sarah Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | - Douglas Toal
- Metabolon, Inc., Morrisville, NC, United States.
| |
Collapse
|
5
|
2022 Overview of Metabolic Epilepsies. Genes (Basel) 2022; 13:genes13030508. [PMID: 35328062 PMCID: PMC8952328 DOI: 10.3390/genes13030508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the genetic architecture of metabolic epilepsies is of paramount importance, both to current clinical practice and for the identification of further research directions. The main goals of our study were to identify the scope of metabolic epilepsies and to investigate their clinical presentation, diagnostic approaches and treatments. The International Classification of Inherited Metabolic Disorders and IEMbase were used as a basis for the identification and classification of metabolic epilepsies. Six hundred metabolic epilepsies have been identified, accounting for as much as 37% of all currently described inherited metabolic diseases (IMD). Epilepsy is a particularly common symptom in disorders of energy metabolism, congenital disorders of glycosylation, neurotransmitter disorders, disorders of the synaptic vesicle cycle and some other IMDs. Seizures in metabolic epilepsies may present variably, and most of these disorders are complex and multisystem. Abnormalities in routine laboratory tests and/or metabolic testing may be identified in 70% of all metabolic epilepsies, but in many cases they are non-specific. In total, 111 metabolic epilepsies (18% of all) have specific treatments that may significantly change health outcomes if diagnosed in time. Although metabolic epilepsies comprise an important and significant group of disorders, their real scope and frequency may have been underestimated.
Collapse
|
6
|
Tumienė B, del Toro Riera M, Grikiniene J, Samaitiene-Aleknienė R, Praninskienė R, Monavari AA, Sykut-Cegielska J. Multidisciplinary Care of Patients with Inherited Metabolic Diseases and Epilepsy: Current Perspectives. J Multidiscip Healthc 2022; 15:553-566. [PMID: 35387391 PMCID: PMC8977775 DOI: 10.2147/jmdh.s251863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
More than 650 inherited metabolic diseases may present with epilepsy or seizures. These diseases are often multisystem, life-long and induce complex needs of patients and families. Multidisciplinary care involves all stages of disease management: diagnostics, specific or symptomatic, acute and chronic treatments, and integrated care that takes into account not only medical, but also manifold psychosocial, educational, vocational and other needs of patients and their caregivers. Care coordination is indispensable to ensure smooth transitions of care across life and disease stages, including management of emergencies, transition from pediatric to adult services and palliative care. Care pathways are highly diverse and have to find the right balance between highly specialized and locally provided services. While multidisciplinary teams consist of many professionals, a named supervising physician in a highly specialized healthcare setting and a care coordinator are highly important. As the greatest burden of care always falls onto the shoulders of patients and/or families, patient empowerment should be a part of every care pathway and include provision of required information, involvement into common decision-making, patient’s and family’s education, support for self-management, liaison with peer support groups and emotional/ psychological support. Due to the rarity and complexity of these diseases, sufficient expertise may not be available in a national healthcare system and cross-border services (virtual or physical) in the recently developed European Reference Networks should be ensured through the proper organization of referral systems in each EU and EEA country. Finally, digital technologies are particularly important in the provision of services for patients with rare diseases and can significantly increase the availability of highly specialized services and expertise.
Collapse
Affiliation(s)
- Birutė Tumienė
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
- Correspondence: Birutė Tumienė, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu str. 2, Vilnius, LT-06681, Lithuania, Tel +370 614 45026, Email
| | - Mireia del Toro Riera
- Pediatric Neurology Department, Unit of Hereditary Metabolic Disorders, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Jurgita Grikiniene
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rūta Samaitiene-Aleknienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rūta Praninskienė
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ahmad Ardeshir Monavari
- National Centre for Inherited Metabolic Disorders, Children’s Health Ireland at Temple Street Dublin, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, the Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
7
|
Abstract
Inborn errors of metabolism have been considered as an infrequent cause of epilepsy. Improvement in diagnostics has improved the detection of a metabolic basis of recurrent seizures in neonates and children. The term 'metabolic epilepsy' is used to suggest inherited metabolic disorders with predominant epileptic manifestations as well as those where epilepsy is part of the overall neurological phenotype. Several of these disorders are treatable, and the physician should bear in mind the classical ages of presentation. As there are no specific clinical or electrographic features suggestive of metabolic epilepsies, an early suspicion is based on clinical and laboratory clues. Fortunately, with the advancement of gene sequencing technology, a diagnosis of these rare conditions is more straightforward and may not require invasive procedures such as biopsies, multiple metabolic stress-induced testing for abnormalities, and cerebrospinal fluid analysis. A gene panel may suffice in most cases and can be done from a blood sample. In many countries, many treatable metabolic disorders are now part of the neonatal screen. Early diagnosis and treatment of these disorders can result in the prevention of a full-scale metabolic crisis and improvement of neurological outcomes. Long-term neurological outcomes are variable and additional therapies may be required.
Collapse
|
8
|
Oyarzabal A, Marin-Valencia I. Synaptic energy metabolism and neuronal excitability, in sickness and health. J Inherit Metab Dis 2019; 42:220-236. [PMID: 30734319 DOI: 10.1002/jimd.12071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Most of the energy produced in the brain is dedicated to supporting synaptic transmission. Glucose is the main fuel, providing energy and carbon skeletons to the cells that execute and support synaptic function: neurons and astrocytes, respectively. It is unclear, however, how glucose is provided to and used by these cells under different levels of synaptic activity. It is even more unclear how diseases that impair glucose uptake and oxidation in the brain alter metabolism in neurons and astrocytes, disrupt synaptic activity, and cause neurological dysfunction, of which seizures are one of the most common clinical manifestations. Poor mechanistic understanding of diseases involving synaptic energy metabolism has prevented the expansion of therapeutic options, which, in most cases, are limited to symptomatic treatments. To shed light on the intersections between metabolism, synaptic transmission, and neuronal excitability, we briefly review current knowledge of compartmentalized metabolism in neurons and astrocytes, the biochemical pathways that fuel synaptic transmission at resting and active states, and the mechanisms by which disorders of brain glucose metabolism disrupt neuronal excitability and synaptic function and cause neurological disease in the form of epilepsy.
Collapse
Affiliation(s)
- Alfonso Oyarzabal
- Synaptic Metabolism Laboratory, Department of Neurology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Isaac Marin-Valencia
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York
| |
Collapse
|
9
|
Kumar J, Solaiman A, Mahakkanukrauh P, Mohamed R, Das S. Sleep Related Epilepsy and Pharmacotherapy: An Insight. Front Pharmacol 2018; 9:1088. [PMID: 30319421 PMCID: PMC6171479 DOI: 10.3389/fphar.2018.01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
In the last several decades, sleep-related epilepsy has drawn considerable attention among epileptologists and neuroscientists in the interest of new paradigms of the disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal seizures that manifest solely during the sleep state. Sleep comprises two distinct stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that alternate every 90 min with NREM preceding REM. Current findings indicate that the sleep-related epilepsy manifests predominantly during the synchronized stages of sleep; NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the sleep state. Although some familial types are described, others are seemingly sporadic occurrences. In the present review, we aim to discuss the predominance of sleep-related epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and PS, and highlight the present available pharmacotherapy options.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amro Solaiman
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Centre in Forensic Osteology Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rashidi Mohamed
- Department of Familty Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|