1
|
Domżalski P, Piotrowska A, Tuckey RC, Zmijewski MA. Anticancer Activity of Vitamin D, Lumisterol and Selected Derivatives against Human Malignant Melanoma Cell Lines. Int J Mol Sci 2024; 25:10914. [PMID: 39456696 PMCID: PMC11506961 DOI: 10.3390/ijms252010914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Despite the recent development of improved methods of treating melanoma such as targeted therapy, immunotherapy or combined treatment, the number of new cases worldwide is increasing. It is well known that active metabolites of vitamin D3 and lumisterol (L3) exert photoprotective and antiproliferative effects on the skin, while UV radiation is a major environmental risk factor for melanoma. Thus, many natural metabolites and synthetic analogs of steroidal and secosteroidal molecules have been tested on various cancer cells and in animal models. In this study, we tested the anti-melanoma properties of several natural derivatives of vitamin D3 and L3 in comparison to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). A significant decrease in melanoma cell proliferation and cell mobility was observed for selected derivatives, with (25R)-27-hydroxyL3 showing the highest potency (lowest IC50) in A375 cells but lower potency in SK-MEL-28 cells, whereas the parent L3 failed to inhibit proliferation. The efficacy (% inhibition) by 1,24,25(OH)3D3 and 1,25(OH)2D3 were similar in both cell types. 1,25(OH)2D3 showed higher potency than 1,24,25(OH)3D3 in SK-MEL-28 cells, but lower potency in A375 cells for the inhibition of proliferation. As for 1,25(OH)2D3, but not the other derivatives tested, treatment of melanoma cells with 1,24,25(OH)3D3 markedly increased the expression of CYP24A1, enhanced translocation of the vitamin D receptor (VDR) from the cytoplasm to the nucleus and also decreased the expression of the proliferation marker Ki67. The effects of the other compounds tested were weaker and occurred only under certain conditions. Our data indicate that 1,24,25(OH)3D3, which has undergone the first step in 1,25(OH)2D3 inactivation by being hydroxylated at C24, still shows anti-melanoma properties, displaying higher potency than 1,25(OH)2D3 in SK-MEL-28 cells. Furthermore, hydroxylation increases the potency of some of the lumisterol hydroxy-derivatives, as in contrast to L3, (25R)-27(OH)L3 effectively inhibits proliferation and migration of the human malignant melanoma cell line A375.
Collapse
Affiliation(s)
- Paweł Domżalski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland; (P.D.); (A.P.)
| | - Anna Piotrowska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland; (P.D.); (A.P.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Michał A. Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland; (P.D.); (A.P.)
| |
Collapse
|
2
|
Altinoz MA, Yilmaz A, Taghizadehghalehjoughi A, Genc S, Yeni Y, Gecili I, Hacimuftuoglu A. Ulipristal-temozolomide-hydroxyurea combination for glioblastoma: in-vitro studies. J Neurosurg Sci 2024; 68:468-481. [PMID: 35766205 DOI: 10.23736/s0390-5616.22.05718-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a brain malignancy with worst survival. Low dose progesterone stimulates GBM growth, while progesterone receptor (PR)-antagonist mifepristone was shown to reduce growth and to enhance temozolomide sensitivity in GBM cells. Mifepristone is not available in all countries due to ethical reasons and may cause adrenal insufficiency and pelvic infections. Ulipristal is also a PR-antagonist used in treatment of uterine leiomyomas with higher biosafety. Ulipristal is demonstrated to suppress growth of breast cancer, yet it is not tested as yet whether it can also block growth and sensitize to temozolomide in glioblastoma as it was previously shown with mifepristone. Our first aim was to detect whether ulipristal exerts antiproliferative and chemotherapy-sensitizing effects in glioblastoma. Hydroxyurea inhibits DNA replication via blocking ribonucleotide reductase (RR) and it was demonstrated to increase temozolomide antineoplasticity in GBM. Progesterone receptor-activation in the uterus enhances RR transcription. Hence, we have hypothesized that PR-inactivation with ulipristal would further enhance hydroxyurea antineoplasticity by shutting down DNA synthesis mechanisms through further suppression of RR. Lastly, there exists no study as yet whether ulipristal, hydroxyurea and temozolomide could exert ternary antineoplastic efficacy, which was our last aim to define. METHODS To reveal interactions between ulipristal, hydroxyurea and temozolomide, we treated human U251 GBM cell line with these agents alone and in combination and measured cell proliferation, total antioxidant capacity (TAC) and total oxidant status (TOS) in conditioned medium and cellular cytokine gene expressions. RESULTS All agents significantly reduced cell proliferation significantly, yet the most significant decrease of GBM cells occurred with the triple drug combination at the 96th hour. All agents significantly decreased TAC and increased TOS in culture media, which was mostly relevant for the triple combination at the 96th hour. All these three agents tend to reduce the expression of immunosuppressive and/or GBM-growth stimulating cytokines TGF-β, IL-10 and IL-17 while increasing the expression of GBM-growth suppressing cytokine IL-23. CONCLUSIONS Reproposal of these agents in treatment of GBM would be a plausible approach if future studies prove their efficacy.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Türkiye -
| | - Aysegul Yilmaz
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | - Ali Taghizadehghalehjoughi
- Department of Veterinary Pharmacology and Toxicology, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Sidika Genc
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | - Yesim Yeni
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | - Ibrahim Gecili
- Department of Medical Pharmacology, Ataturk University, Erzurum, Türkiye
| | | |
Collapse
|
3
|
Dabrock A, Ernesti N, Will F, Rana M, Leinung N, Ehrich P, Tronnier V, Zechel C. RAR-Dependent and RAR-Independent RXR Signaling in Stem-like Glioma Cells. Int J Mol Sci 2023; 24:16466. [PMID: 38003656 PMCID: PMC10671216 DOI: 10.3390/ijms242216466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Retinoic acid (RA) exerts pleiotropic effects during neural development and regulates homeostasis in the adult human brain. The RA signal may be transduced through RXR (retinoid-X receptor)-non-permissive RA receptor/RXR heterodimers or through RXR-permissive RXR heterodimers. The significance of RA signaling in malignant brain tumors such as glioblastoma multiforme (GBM) and gliosarcoma (GS) is poorly understood. In particular, the impact RA has on the proliferation, survival, differentiation, or metabolism of GBM- or GS-derived cells with features of stem cells (SLGCs) remains elusive. In the present manuscript, six GBM- and two GS-derived SLGC lines were analyzed for their responsiveness to RAR- and RXR-selective agonists. Inhibition of proliferation and initiation of differentiation were achieved with a RAR-selective pan-agonist in a subgroup of SLGC lines, whereas RXR-selective pan-agonists (rexinoids) supported proliferation in most SLGC lines. To decipher the RAR-dependent and RAR-independent effects of RXR, the genes encoding the RAR or RXR isotypes were functionally inactivated by CRISPR/Cas9-mediated editing in an IDH1-/p53-positive SLGC line with good responsiveness to RA. Stemness, differentiation capacity, and growth behavior were preserved after editing. Taken together, this manuscript provides evidence about the positive impact of RAR-independent RXR signaling on proliferation, survival, and tumor metabolism in SLGCs.
Collapse
Affiliation(s)
- Amanda Dabrock
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Natalie Ernesti
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Florian Will
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Manaf Rana
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Nadja Leinung
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Phillip Ehrich
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Christina Zechel
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Marie-Curie Strasse 66, D-23562 Lübeck, Germany
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
4
|
Rehbein S, Possmayer AL, Bozkurt S, Lotsch C, Gerstmeier J, Burger M, Momma S, Maletzki C, Classen CF, Freiman TM, Dubinski D, Lamszus K, Stringer BW, Herold-Mende C, Münch C, Kögel D, Linder B. Molecular Determinants of Calcitriol Signaling and Sensitivity in Glioma Stem-like Cells. Cancers (Basel) 2023; 15:5249. [PMID: 37958423 PMCID: PMC10648216 DOI: 10.3390/cancers15215249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma is the most common primary brain cancer in adults and represents one of the worst cancer diagnoses for patients. Suffering from a poor prognosis and limited treatment options, tumor recurrences are virtually inevitable. Additionally, treatment resistance is very common for this disease and worsens the prognosis. These and other factors are hypothesized to be largely due to the fact that glioblastoma cells are known to be able to obtain stem-like traits, thereby driving these phenotypes. Recently, we have shown that the in vitro and ex vivo treatment of glioblastoma stem-like cells with the hormonally active form of vitamin D3, calcitriol (1α,25(OH)2-vitamin D3) can block stemness in a subset of cell lines and reduce tumor growth. Here, we expanded our cell panel to over 40 different cultures and can show that, while half of the tested cell lines are sensitive, a quarter can be classified as high responders. Using genetic and proteomic analysis, we further determined that treatment success can be partially explained by specific polymorphism of the vitamin D3 receptor and that high responders display a proteome suggestive of blockade of stemness, as well as migratory potential.
Collapse
Affiliation(s)
- Sarah Rehbein
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Anna-Lena Possmayer
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Catharina Lotsch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Julia Gerstmeier
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| | - Michael Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60596 Frankfurt am Main, Germany;
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, 60596 Frankfurt am Main, Germany;
| | - Claudia Maletzki
- Department of Medicine, Clinic III-Hematology, Oncology, Alliative Care Rostock, 18057 Rostock, Germany;
| | - Carl Friedrich Classen
- Division of Pediatric Oncology, Hematology and Palliative Medicine Section, Department of Pediatrics and Adolescent Medicine, University Medicine Rostock, 18057 Rostock, Germany;
| | - Thomas M. Freiman
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Daniel Dubinski
- Department of Neurosurgery, University Hospital Rostock, 18057 Rostock, Germany; (T.M.F.); (D.D.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg—Eppendorf, 20251 Hamburg, Germany;
| | - Brett W. Stringer
- College of Medicine and Public Health, Flinders University, Sturt Rd., Bedford Park, SA 5042, Australia;
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany (C.H.-M.)
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (S.B.); (C.M.)
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60596 Frankfurt am Main, Germany; (S.R.); (A.-L.P.); (J.G.); (D.K.)
| |
Collapse
|
5
|
Rezaie H, Alipanah-Moghadam R, Jeddi F, Clark CCT, Aghamohammadi V, Nemati A. Combined dandelion extract and all-trans retinoic acid induces cytotoxicity in human breast cancer cells. Sci Rep 2023; 13:15074. [PMID: 37700002 PMCID: PMC10497591 DOI: 10.1038/s41598-023-42177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Breast cancer is one of the most prevalent and deadly cancers among women worldwide. Recently, natural compounds have been widely used for the treatment of breast cancer. Present study evaluated antiproliferative and anti-metastasis activities of two natural compounds of dandelion and all-trans-retinoic acid (ATRA) in human MCF-7 and MDA-MB231 breast cancer cells. We also evaluated the expression of MMP-2, MMP-9, IL-1β, p53, NM23 and KAI1 genes. Data showed a clear additive cytotoxic effect in concentrations of 40 μM ATRA with 1.5 and 4 mg/ml of dandelion extract in MCF-7 and MDA-MB231 cells, respectively. In both cell lines, compared with the untreated cells, the expression levels of MMP-9 and IL-1β were significantly decreased while p53 and KAI1 expression levels were increased. Besides, MMP-2 and NM23 had different expressions in the two studied cell lines. In conclusion, dandelion/ATRA co-treatment, in addition to having strong cytotoxic effects, has putative effects on the expression of anti-metastatic genes in both breast cancer cells.
Collapse
Affiliation(s)
- Hamed Rezaie
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | | | - Ali Nemati
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Yuan R, Zhang W, You Y, Cui G, Gao Z, Wang X, Chen J. Vitamin D3 suppresses the cholesterol homeostasis pathway in patient-derived glioma cell lines. FEBS Open Bio 2023; 13:1789-1806. [PMID: 37489660 PMCID: PMC10476568 DOI: 10.1002/2211-5463.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors. Vitamin D, primarily its hormonally active form calcitriol, has been reported to have anti-cancer activity. In the present study, we used patient-derived glioma cell lines to examine the effect of vitamin D3 and calcitriol on glioblastoma. Surprisingly, vitamin D3 showed a more significant inhibitory effect than calcitriol on cell viability and proliferation. Vitamin D receptor (VDR) mediates most of the cellular effects of vitamin D, and thus we examined the expression level and function of VDR via gene silencing and gene knockout experiments. We observed that VDR does not affect the sensitivity of patient-derived glioma cell lines to vitamin D3, and the gene encoding VDR is not essential for growth of patient-derived glioma cell lines. RNA sequencing data analysis and sterolomics analysis revealed that vitamin D3 inhibits cholesterol synthesis and cholesterol homeostasis by inhibiting the expression level of 7-dehydrocholesterol reductase, which leads to the accumulation of 7-dehydrocholesterol and other sterol intermediates. In conclusion, our results suggest that vitamin D3, rather than calcitriol, inhibits growth of patient-derived glioma cell lines via inhibition of the cholesterol homeostasis pathway.
Collapse
Affiliation(s)
- Ran Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yong‐Ping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized MedicineNanjing Medical UniversityChina
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of MedicineTongji UniversityShanghaiChina
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of MedicineShanghai UniversityNantongChina
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical SciencesNanjing Medical UniversityChina
| | - Jian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
- Chinese Institute for Brain ResearchBeijingChina
- Research Unit of Medical NeurobiologyChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
7
|
Lo CSC, Kiang KMY, Leung GKK. Anti-tumor effects of vitamin D in glioblastoma: mechanism and therapeutic implications. J Transl Med 2022; 102:118-125. [PMID: 34504307 DOI: 10.1038/s41374-021-00673-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
Glioma is the most prevalent primary brain tumor in adults among which glioblastoma is the most malignant and lethal subtype. Its common resistance to conventional chemotherapeutics calls for the development of alternative or concomitant treatment. Taking advantage of its endocrine function as a neurosteroid, vitamin D has become a target of interest to be used in conjunction with different chemotherapies. In this article, we review the mechanisms through which vitamin D and its analogs induce anti-tumor activity in glioblastoma, and the practical issues relevant to their potential application based on in vitro and in vivo studies. Vitamin D has largely been reported to promote cell cycle arrest and induce cell death to suppress tumor growth in glioblastoma. Glioblastoma cells treated with vitamin D have also shown reduced migratory and invasive phenotypes, and reduced stemness. It is worth noting that vitamin D analogs are able to produce similar inhibitory actions without causing adverse effects such as hypercalcemia in vivo. Upregulation of vitamin D receptors by vitamin D and its analogs may also play a role in enhancing its anti-tumor activity. Based on current findings and taking into consideration its potential cancer-protective effects, the clinical application of vitamin D in glioblastoma treatment and prevention will be discussed. With some study findings subject to controversy, further investigation is warranted to elucidate the mechanism of action of vitamin D and to evaluate relevant issues regarding its treatment efficacy and potential clinical application.
Collapse
Affiliation(s)
- Carmen Sze-Ching Lo
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Karrie Mei-Yee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | - Gilberto Ka-Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong.
| |
Collapse
|
8
|
Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022; 154:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Glioma cells use intermediate levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for growth and invasion, and suppressing these reactive molecules thus may compromise processes that are vital for glioma survival. Increased oxidative stress has been identified in glioma cells, in particular in glioma stem-like cells. Studies have shown that these cells harbor potent antioxidant defenses, although endogenous protection against nitrosative stress remains understudied. The enhancement of oxidative or nitrosative stress offers a potential target for triggering glioma cell death, but whether oxidative and nitrosative stresses can be combined for therapeutic effects requires further research. The optimal approach of harnessing oxidative stress for anti-glioma therapy should include the induction of free radical-induced oxidative damage and the suppression of antioxidant defense mechanisms selectively in glioma cells. However, selective induction of oxidative/nitrosative stress in glioma cells remains a therapeutic challenge, and research into selective drug delivery systems is ongoing. Because of multifactorial mechanisms of glioma growth, progression, and invasion, prospective oncological therapies may include not only therapeutic oxidative/nitrosative stress but also inhibition of oncogenic kinases, antioxidant molecules, and programmed cell death mediators.
Collapse
|
9
|
Fang H, Shi R, Chen D, Qu Y, Wu Q, Yang X, Lu X, Zhang CW, Li L, Lim KL. Intramolecular charge transfer enhancing strategy based MAO-A specific two-photon fluorescent probes for glioma cell/tissue imaging. Chem Commun (Camb) 2021; 57:11260-11263. [PMID: 34636370 DOI: 10.1039/d1cc04744b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
MAO-A promotes the proliferation of human glioma cells. Herein, we report a series of MAO-A specific two-photon small molecular fluorescent probes (A1-5) based on an intramolecular charge transfer enhancing strategy. The activity of endogenous MAO-A can be selectively imaged using A3 as a representative probe in different biological samples including human glioma cells/tissues via two-photon fluorescence microscopy. The study provides new tools for the visual detection of glioma.
Collapse
Affiliation(s)
- Haixiao Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Riri Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Ding Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Yunwei Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Cheng-Wu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, P. R. China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 302238, Singapore.
| |
Collapse
|
10
|
Gerstmeier J, Possmayer AL, Bozkurt S, Hoffmann ME, Dikic I, Herold-Mende C, Burger MC, Münch C, Kögel D, Linder B. Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers (Basel) 2021; 13:cancers13143577. [PMID: 34298790 PMCID: PMC8303292 DOI: 10.3390/cancers13143577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cancer cells with a stem-like phenotype that are thought to be highly tumorigenic are commonly described in glioblastoma, the most common primary adult brain cancer. This phenotype comprises high self-renewal capacity and resistance against chemotherapy and radiation therapy, thereby promoting tumor progression and disease relapse. Here, we show that calcitriol, the hormonally active form of the “sun hormone” vitamin D3, effectively suppresses stemness properties in glioblastoma stem-like cells (GSCs), supporting the hypothesis that calcitriol sensitizes them to additional chemotherapy. Indeed, a physiological organotypic brain slice model was used to monitor tumor growth of GSCs, and the effectiveness of combined treatment with temozolomide, the current standard-of-care, and calcitriol was proven. These findings indicate that further research on applying calcitriol, a well-known and safe drug, as a potential adjuvant therapy for glioblastoma is both justified and necessary. Abstract Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.
Collapse
Affiliation(s)
- Julia Gerstmeier
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Anna-Lena Possmayer
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Marina E. Hoffmann
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Ivan Dikic
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany;
| | - Michael C. Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany;
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Donat Kögel
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- Correspondence: ; Tel.: +49-69-6301-6930
| |
Collapse
|
11
|
Kucukhuseyin O, Cakiris A, Hakan MT, Horozoglu C, Tuzun E, Yaylim I. Impact of calcitriol and an AKT inhibitor, AT7867, on survival of rat C6 glioma cells. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1912641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Ozlem Kucukhuseyin
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Aris Cakiris
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Horozoglu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Cataldi S, Arcuri C, Lazzarini A, Nakashidze I, Ragonese F, Fioretti B, Ferri I, Conte C, Codini M, Beccari T, Curcio F, Albi E. Effect of 1α,25(OH) 2 Vitamin D 3 in Mutant P53 Glioblastoma Cells: Involvement of Neutral Sphingomyelinase1. Cancers (Basel) 2020; 12:E3163. [PMID: 33126474 PMCID: PMC7694157 DOI: 10.3390/cancers12113163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is one the most aggressive primary brain tumors in adults, and, despite the fact that radiation and chemotherapy after surgical approaches have been the treatments increasing the survival rates, the prognosis of patients remains poor. Today, the attention is focused on highlighting complementary treatments that can be helpful in improving the classic therapeutic approaches. It is known that 1α,25(OH)2 vitamin D3, a molecule involved in bone metabolism, has many serendipidy effects in cells. It targets normal and cancer cells via genomic pathway by vitamin D3 receptor or via non-genomic pathways. To interrogate possible functions of 1α,25(OH)2 vitamin D3 in multiforme glioblastoma, we used three cell lines, wild-type p53 GL15 and mutant p53 U251 and LN18 cells. We demonstrated that 1α,25(OH)2 vitamin D3 acts via vitamin D receptor in GL15 cells and via neutral sphingomyelinase1, with an enrichment of ceramide pool, in U251 and LN18 cells. Changes in sphingomyelin/ceramide content were considered to be possibly responsible for the differentiating and antiproliferative effect of 1α,25(OH)2 vitamin D in U251 and LN18 cells, as shown, respectively, in vitro by immunofluorescence and in vivo by experiments of xenotransplantation in eggs. This is the first time 1α,25(OH)2 vitamin D3 is interrogated for the response of multiforme glioblastoma cells in dependence on the p53 mutation, and the results define neutral sphingomyelinase1 as a signaling effector.
Collapse
Affiliation(s)
- Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (S.C.); (I.N.); (C.C.); (M.C.); (T.B.)
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy;
| | | | - Irina Nakashidze
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (S.C.); (I.N.); (C.C.); (M.C.); (T.B.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, Via Elce di Sotto 8, University of Perugia, 06126 Perugia, Italy; (F.R.); (B.F.)
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, Via Elce di Sotto 8, University of Perugia, 06126 Perugia, Italy; (F.R.); (B.F.)
| | - Ivana Ferri
- Division of Pathological Anatomy and Histology, University of Perugia, 06126 Perugia, Italy;
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (S.C.); (I.N.); (C.C.); (M.C.); (T.B.)
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (S.C.); (I.N.); (C.C.); (M.C.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (S.C.); (I.N.); (C.C.); (M.C.); (T.B.)
| | - Francesco Curcio
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy; (S.C.); (I.N.); (C.C.); (M.C.); (T.B.)
| |
Collapse
|
13
|
Paukovcekova S, Valik D, Sterba J, Veselska R. Enhanced Antiproliferative Effect of Combined Treatment with Calcitriol and All- Trans Retinoic Acid in Relation to Vitamin D Receptor and Retinoic Acid Receptor α Expression in Osteosarcoma Cell Lines. Int J Mol Sci 2020; 21:ijms21186591. [PMID: 32916897 PMCID: PMC7554701 DOI: 10.3390/ijms21186591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
The main objective of this study was to analyze changes in the antiproliferative effect of vitamin D3, in the form of calcitriol and calcidiol, via its combined application with all-trans retinoic acid (ATRA) in osteosarcoma cell lines. The response to treatment with calcitriol and calcidiol alone was specific for each cell line. Nevertheless, we observed an enhanced effect of combined treatment with ATRA and calcitriol in the majority of the cell lines. Although the levels of respective nuclear receptors did not correlate with the sensitivity of cells to these drugs, vitamin D receptor (VDR) upregulation induced by ATRA was found in cell lines that were the most sensitive to the combined treatment. In addition, all these cell lines showed high endogenous levels of retinoic acid receptor α (RARα). Our study confirmed that the combination of calcitriol and ATRA can achieve enhanced antiproliferative effects in human osteosarcoma cell lines in vitro. Moreover, we provide the first evidence that ATRA is able to upregulate VDR expression in human osteosarcoma cells. According to our results, the endogenous levels of RARα and VDR could be used as a predictor of possible synergy between ATRA and calcitriol in osteosarcoma cells.
Collapse
Affiliation(s)
- Silvia Paukovcekova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic; (S.P.); (D.V.)
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Dalibor Valik
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic; (S.P.); (D.V.)
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 61300 Brno, Czech Republic;
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 61300 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 61300 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-49-7905
| |
Collapse
|
14
|
In Vitro and In Vivo Antitumor Activity of Vitamin D3 in Malignant Gliomas: A Systematic Review. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.94542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|