1
|
Li GX, Yan JZ, Sun SR, Hou XJ, Yin YY, Li YF. The role of 5-HTergic neuron activation in the rapid antidepressant-like effects of hypidone hydrochloride (YL-0919) in mice. Front Pharmacol 2024; 15:1428485. [PMID: 39309007 PMCID: PMC11412804 DOI: 10.3389/fphar.2024.1428485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a common and disabling mental health condition; the currently available treatments for MDD are insufficient to meet clinical needs due to their limited efficacy and slow onset of action. Hypidone hydrochloride (YL-0919) is a sigma-1 receptor agonist and a novel fast-acting antidepressant that is currently under clinical development. Methods To further understand the fast-acting antidepressant activity of YL-0919, this study focused on the role of 5-HTergic neurons in the dorsal raphe nucleus (DRN) in mice. Using fiber photometry to assess neural activity in vivo and two behavioral assays (tail suspension test and forced swimming test) to evaluate antidepressant-like activity. Results It was found that 3 or 7 days of YL-0919 treatment significantly activated serotonin (5-HT) neurons in the DRN and had significant antidepressant-like effects on mouse behaviors. Chemogenetic inhibition of 5-HTergic neurons in the DRN significantly blocked the antidepressant-like effect of YL-0919. In addition, YL-0919 treatment significantly increased the 5-HT levels in the prefrontal cortex (PFC). These changes were drastically different from those of the selective serotonin reuptake inhibitor (SSRI) fluoxetine, which suggested that the antidepressant-like effects of the two compounds were mechanistically different. Conclusion Together, these results reveal a novel role of 5-HTergic neurons in the DRN in mediating the fast-acting antidepressant-like effects of YL-0919, revealing that these neurons are potential novel targets for the development of fast-acting antidepressants for the clinical management of MDD.
Collapse
Affiliation(s)
- Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Sun-Rui Sun
- Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Xiao-Juan Hou
- Department of Postgraduate, Hebei North University, Zhangjiakou, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Beijing Institute of Pharmacology and Toxicology, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| |
Collapse
|
2
|
Wang JY, Ren P, Cui LY, Duan JY, Chen HL, Zeng ZR, Li YF. Astrocyte-specific activation of sigma-1 receptors in mPFC mediates the faster onset antidepressant effect by inhibiting NF-κB-induced neuroinflammation. Brain Behav Immun 2024; 120:256-274. [PMID: 38852761 DOI: 10.1016/j.bbi.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.
Collapse
Affiliation(s)
- Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
3
|
Ren P, Wang JY, Chen HL, Wang Y, Cui LY, Duan JY, Guo WZ, Zhao YQ, Li YF. Activation of σ-1 receptor mitigates estrogen withdrawal-induced anxiety/depressive-like behavior in mice via restoration of GABA/glutamate signaling and neuroplasticity in the hippocampus. J Pharmacol Sci 2024; 154:236-245. [PMID: 38485341 DOI: 10.1016/j.jphs.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Postpartum depression (PPD) is a significant contributor to maternal morbidity and mortality. The Sigma-1 (σ-1) receptor has received increasing attention in recent years because of its ability to link different signaling systems and exert its function in the brain through chaperone actions, especially in neuropsychiatric disorders. YL-0919, a novel σ-1 receptor agonist developed by our institute, has shown antidepressive and anxiolytic effects in a variety of animal models, but effects on PPD have not been revealed. In the present study, excitatory/inhibitory signaling in the hippocampus was reflected by GABA and glutamate and their associated excitatory-inhibitory receptor proteins, the HPA axis hormones in the hippocampus were assessed by ELISA. Finally, immunofluorescence for markers of newborn neuron were undertaken in the dentate gyri, along with dendritic spine staining and dendritic arborization tracing. YL-0919 rapidly improves anxiety and depressive-like behavior in PPD-like mice within one week, along with normalizing the excitation/inhibition signaling as well as the HPA axis activity. YL-0919 rescued the decrease in hippocampal dendritic complexity and spine density induced by estrogen withdrawal. The study results suggest that YL-0919 elicits a therapeutic effect on PPD-like mice; therefore, the σ-1 receptor may be a novel promising target for PPD treatment in the future.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yue Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, 7th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
4
|
Yan JZ, Li GX, Sun SR, Cui LY, Yin YY, Li YF. A rate-limiting step in antidepressants onset: Excitation of glutamatergic pyramidal neurons in medial prefrontal cortex of rodents. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110911. [PMID: 38065287 DOI: 10.1016/j.pnpbp.2023.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
Although clinical antidepressants have varied mechanisms of action, it remains unclear whether they may have a common mechanism underlying their antidepressant effects. We investigated the behavioral effects of five different antidepressants (differing in target, chemical structure, and rate of onset) and their effects on the firing activities of glutamatergic pyramidal neurons in the medial prefrontal cortex (mPFC) using the forced swimming test (FST) and electrophysiological techniques (in vivo). We employed fiber photometry recordings to validate the effects of antidepressants on the firing activity of pyramidal neurons. Additionally, multichannel electrophysiological recordings were conducted in mice exhibiting depressive-like behaviors induced by chronic restraint stress (CRS) to investigate whether antidepressants exert similar effects on pyramidal neurons in depressed mice. Behavioral tests were utilized for evaluating the depression model. We found that fluoxetine, duloxetine, vilazodone, YL-0919, and ketamine all increase the firing activities of glutamatergic pyramidal neurons (at least 57%) while exerting their initial onset of antidepressant effects. Fiber photometry revealed an increase in the calcium activity of pyramidal neurons in the mPFC at the onset of antidepressant effects. Furthermore, a significant reduction was observed in the firing activity of pyramidal neurons in the mPFC of CRS-exposed mice, which was reversed by antidepressants. Taken together, our findings suggested that five pharmacologically distinct classes of antidepressants share the common ability to increase the firing activity of pyramidal neurons, just different time, which might be a rate-limiting step in antidepressants onset. The study contributes to the body of knowledge of the mechanisms underlying antidepressant effects and paves the way for developing rapid-acting antidepressants.
Collapse
Affiliation(s)
- Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Si-Rui Sun
- Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Lin-Yu Cui
- College of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
5
|
Gao Z, Xie S, Wang L, Jiang L, Zhou J, Liang M, Li G, Wang Z, Li Y, Li Y, Han G. Hypidone hydrochloride (YL-0919) protects mice from meningitis via Sigma1R-STAT1-NLRP3-GSDMD pathway. Int Immunopharmacol 2024; 128:111524. [PMID: 38232537 DOI: 10.1016/j.intimp.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND A growing number of studies have found that antidepressants have anti-inflammatory effects while protecting nerves. Hypidone hydrochloride (YL-0919) is a novel highly selective 5-HT reuptake blocker. Our previous studies have demonstrated that YL-0919 exerts notable antidepressant- and anxiolytic-like as well as procognitive effects. However, whether YL-0919 can be used to treat inflammatory and infectious diseases remain unknown. In this study, we aimed to verify the anti-inflammatory effect of YL-0919 on bacterial meningitis and further explore the potential molecular mechanisms. METHODS We performed the experiments on pneumococcal meningitis mice in vivo and S. pneumoniae infected macrophages/microglia in vitro, with or without YL-0919 treatment. Cognitive function was evaluated by open-field task, Morris water maze test, and novel object recognition test. Histopathological staining and immunofluorescence staining were used to detect the pathological damage of meningitis and NLRP3 inflammasome activation in microglia/macrophages. The expression of the STAT1/NLRP3/GSDMD signal pathway was measured by western blots. Proinflammatory cytokines associated with pyroptosis were detected by ELISA. RESULTS YL-0919 protected mice from fatal pneumococcal meningitis, characterized by attenuated cytokine storms, decreased bacterial loads, improved neuroethology, and reduced mortality. NLRP3 plays a key role in the regulation of inflammation. When the underlying mechanisms were investigated, we found that YL-0919 inhibited the activation of NLRP3 via STAT1, and thus inhibited macrophages/microglia pyroptosis, resulting in downregulation of proinflammatory cytokines. In addition, Sigma1R was identified as a pivotal receptor that can be engaged by YL-0919 to inhibit NLRP3 activation and pyroptosis pathway in microglia/macrophages. CONCLUSIONS These results provide new insights into the mechanisms of inflammation regulation mediated by the antidepressant YL-0919. Moreover, targeting the STAT1/NLRP3 pyroptosis pathway is a promising strategy for the treatment of infectious diseases like bacterial meningitis.
Collapse
Affiliation(s)
- Zhenfang Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shun Xie
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lanying Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | - Jie Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Meng Liang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhiding Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Yin YY, Yan JZ, Lai SX, Wei QQ, Sun SR, Zhang LM, Li YF. Gamma oscillations in the mPFC: A potential predictive biomarker of depression and antidepressant effects. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110893. [PMID: 37949392 DOI: 10.1016/j.pnpbp.2023.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Gamma oscillations have attracted much attention in the field of mood disorders, but their role in depression remains poorly understood. This study aimed to investigate whether gamma oscillations in the medial prefrontal cortex (mPFC) could serve as a predictive biomarker of depression. Chronic restraint stress (CRS) or lipopolysaccharide (LPS) were used to induce depression-like behaviors in mice; local field potentials (LFPs) in the mPFC were recorded by electrophysiological techniques; We found that both CRS and LPS induced significant depression-like behaviors in mice, including increasing immobility durations in the forced swimming test (FST) and tail suspension test (TST) and increasing the latency to feed in the novelty-suppressed feeding test (NSFT). Electrophysiological results suggested that CRS and LPS significantly reduced low and high gamma oscillations in the mPFC. Furthermore, a single injection of ketamine or scopolamine for 24 h significantly increased gamma oscillations and elicited rapid-acting antidepressant-like effects. In addition, fluoxetine treatment for 21 days significantly increased gamma oscillations and elicited antidepressant-like effects. Taken together, our findings suggest that gamma oscillations are strongly associated with depression, yielding new insights into investigating the predictive biomarkers of depression and the time course of antidepressant effects.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Jiao-Zhao Yan
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shi-Xin Lai
- School of Medicine, Sun Yat-Sen University, Shenzhen campus, Shenzhen, China
| | - Qian-Qian Wei
- School of Medicine, Nantong University, Nantong, China
| | - Si-Rui Sun
- Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Li J, Zhang M, Pei Y, Yang Q, Zheng L, Wang G, Sun Y, Yang W, Liu L. The total alkaloids of Sophora alopecuroides L. improve depression-like behavior in mice via BDNF-mediated AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116723. [PMID: 37271329 DOI: 10.1016/j.jep.2023.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression has become a global public health problem and the development of new highly effective, low-toxicity antidepressants is imminent. Sophora alopecuroides L. is a common medicinal plant, which has therapeutic effect on central nervous system diseases. AIM OF THE STUDY In this study, the antidepressant effect of total alkaloids (ALK) isolated from Sophora alopecuroides L. was explored and the mechanism was further elucidated. MATERIALS AND METHODS A primary neuronal injury model was established in vitro by corticosterone. ICR mice were then selected to construct an in vivo model of chronic unpredictable mild stress (CUMS)-induced depression, and the ameliorative effects of ALK on depression were examined by various behavioral tests. The antidepressant molecular mechanism of ALK was subsequently revealed by ELISA, Western blot, immunohistochemistry and Golgi staining. RESULTS BDNF secretion as well as TrkB and ERK phosphorylated protein levels were found to be improved in primary cortical neurons, along with improved dendritic complexity of neurons. The results of in vivo showed that the depression-like behavior of CUMS-induced mice was reversed after 2 weeks of continuous gavage administration of ALK, and the neurotransmitter levels in the plasma of mice were increased. Moreover, the expression levels of key proteins of BDNF-AKT-mTOR pathway and the complexity of neuronal dendrites were improved in the prefrontal cortex of mice. CONCLUSIONS These findings indicate that ALK of Sophora alopecuroides L. can effectively improve the depressive phenotype of mice, possibly by promoting the expression of BDNF in prefrontal cortex, activating the downstream AKT/mTOR signal pathway, and ultimately enhancing neuronal dendritic complexity.
Collapse
Affiliation(s)
- Jingyi Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yiying Pei
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Qifang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China.
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| |
Collapse
|
8
|
Chang HX, Dai W, Bao JH, Li JF, Zhang JG, Li YF. Essential role of microglia in the fast antidepressant action of ketamine and hypidone hydrochloride (YL-0919). Front Pharmacol 2023; 14:1122541. [PMID: 37305539 PMCID: PMC10250639 DOI: 10.3389/fphar.2023.1122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Intracerebral microglia play a vital role in mediating central immune response, neuronal repair and synaptic pruning, but its precise role and mechanism in fast action of antidepressants have remained unknown. In this study, we identified that the microglia contributed to the rapid action of antidepressants ketamine and YL-0919. Methods: The depletion of microglia was achieved with the diet containing the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 in mice. The tail suspension test (TST), forced swimming test (FST) and novelty suppressed feeding test (NSFT) were employed to evaluate the rapid acting antidepressant behavior of ketamine and YL-0919 in the microglia depletion model. The number of microglia in the prefrontal cortex (PFC) was assayed by the immunofluorescence staining. The expressions of synaptic proteins (synapsin-1, PSD-95, GluA1) and brain-derived neurotrophic factor (BDNF) in the PFC were tested by Western blot. Results: The immobility duration in FST and the latency to feed in NSFT were shortened 24 h after an intraperitoneal (i.p.) injection of ketamine (10 mg/kg). The microglial depletion of PLX3397 blocked the rapid antidepressant-like effect of ketamine in mice. In addition, the immobility time in TST and FST as well as latency to feed in NSFT were reduced 24 h after the intragastric (i.g.) administration of YL-0919 (2.5 mg/kg), and the rapid antidepressant effect of YL-0919 was also blocked by the microglial depletion using PLX5622. About 92% of microglia in the prefrontal cortex was depleted in PLX5622 diet-fed mice, while both ketamine and YL-0919 promoted proliferation on the remaining microglia. YL-0919 significantly increased the protein expressions of synapsin-1, PSD-95, GluA1 and BDNF in the PFC, all of which could be blocked by PLX5622. Conclusion: These results suggested the microglia underlying the rapid antidepressant-like effect of ketamine and YL-0919, and microglia would likely constitute in the rapid enhancing impact of synaptic plasticity in the prefrontal cortex by YL-0919.
Collapse
Affiliation(s)
- Hai-Xia Chang
- College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jin-Hao Bao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ji-Guo Zhang
- College of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
9
|
Li JF, Hu WY, Chang HX, Bao JH, Kong XX, Ma H, Li YF. Astrocytes underlie a faster-onset antidepressant effect of hypidone hydrochloride (YL-0919). Front Pharmacol 2023; 14:1175938. [PMID: 37063256 PMCID: PMC10090319 DOI: 10.3389/fphar.2023.1175938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Major depression disorder (MDD) is a common and potentially life-threatening mental illness; however, data on its pathogenesis and effective therapeutic measures are lacking. Pathological changes in astrocytes play a pivotal role in MDD. While hypidone hydrochloride (YL-0919), an independently developed antidepressant, has shown rapid action with low side effects, its underlying astrocyte-specific mechanisms remain unclear.Methods: In our study, mice were exposed to chronic restraint stress (CRS) for 14 days or concomitantly administered YL-0919/fluoxetine. Behavioral tests were applied to evaluate the depression model; immunofluorescence and immunohistochemistry staining were used to explore morphological changes in astrocytes; astrocyte-specific RNA sequencing (RNA-Seq) analysis was performed to capture transcriptome wide alterations; and ATP and oxygen consumption rate (OCR) levels of primary astrocytes were measured, followed by YL-0919 incubation to appraise the alteration of energy metabolism and mitochondrial oxidative phosphorylation (OXPHOS).Results: YL-0919 alleviated CRS-induced depressive-like behaviors faster than fluoxetine and attenuated the number and morphologic deficits in the astrocytes of depressed mice. The changes of gene expression profile in astrocytes after CRS were partially reversed by YL-0919. Moreover, YL-0919 improved astrocyte energy metabolism and mitochondrial OXPHOS in astrocytes.Conclusion: Our results provide evidence that YL-0919 exerted a faster-onset antidepressant effect on CRS-mice possibly via astrocyte structural remodeling and mitochondria functional restoration.
Collapse
Affiliation(s)
- Jin-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wen-Yu Hu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jin-Hao Bao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiang-Xi Kong
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Xiang-Xi Kong, ; Hui Ma, ; Yun-Feng Li,
| |
Collapse
|
10
|
Ren P, Wang JY, Chen HL, Chang HX, Zeng ZR, Li GX, Ma H, Zhao YQ, Li YF. Sigma-1 receptor agonist properties that mediate the fast-onset antidepressant effect of hypidone hydrochloride (YL-0919). Eur J Pharmacol 2023; 946:175647. [PMID: 36898424 DOI: 10.1016/j.ejphar.2023.175647] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The most intriguing characteristic of the sigma-1 receptor is its ability to regulate multiple functional proteins directly via protein-protein interactions, giving the sigma-1 receptor the powerful ability to regulate several survival and metabolic functions in cells, fine tune neuronal excitability, and regulate the transmission of information within brain circuits. This characteristic makes sigma-1 receptors attractive candidates for the development of new drugs. Hypidone hydrochloride (YL-0919), a novel structured antidepressant candidate developed in our laboratory, possess a selective sigma-1 receptor agonist profile, as evidenced by molecular docking, radioligand receptor binding assays, and receptor functional experiments. In vivo studies have revealed that YL-0919 elicits a fast-onset antidepressant activity (within one week) that can be attenuated with pretreatment of the selective sigma-1 receptor antagonist, BD-1047. Taken together, the findings of the current study suggest that YL-0919 activates the sigma-1 receptor to partially mediate the rapid onset antidepressant effects of YL-0919. Thus, YL-0919 is a promising candidate as a fast-onset antidepressant that targets the sigma-1 receptor.
Collapse
Affiliation(s)
- Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Hong-Lei Chen
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.
| | - Hai-Xia Chang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guang-Xiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong-Qi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| |
Collapse
|
11
|
Antidepressive Effect of Natural Products and Their Derivatives Targeting BDNF-TrkB in Gut-Brain Axis. Int J Mol Sci 2022; 23:ijms232314968. [PMID: 36499295 PMCID: PMC9737781 DOI: 10.3390/ijms232314968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Modern neurological approaches enable detailed studies on the pathophysiology and treatment of depression. An imbalance in the microbiota-gut-brain axis contributes to the pathogenesis of depression. This extensive review aimed to elucidate the antidepressive effects of brain-derived neurotrophic factor (BDNF)-targeting therapeutic natural products and their derivatives on the gut-brain axis. This information could facilitate the development of novel antidepressant drugs. BDNF is crucial for neuronal genesis, growth, differentiation, survival, plasticity, and synaptic transmission. Signaling via BDNF and its receptor tropomyosin receptor kinase B (TrkB) plays a vital role in the etiopathogenesis of depression and the therapeutic mechanism of antidepressants. This comprehensive review provides information to researchers and scientists for the identification of novel therapeutic approaches for neuropsychiatric disorders, especially depression and stress. Future research should aim to determine the possible causative role of BDNF-TrkB in the gut-brain axis in depression, which will require further animal and clinical research as well as the development of analytical approaches.
Collapse
|
12
|
Synthesis and antidepressant activity of novel 1-(1-benzoylpiperidin-4-yl) methanamine derivatives selectively targeting SSRI/5-HT1A. Bioorg Med Chem Lett 2022; 76:129006. [DOI: 10.1016/j.bmcl.2022.129006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
13
|
Zhang YM, Ye LY, Li TY, Guo F, Guo F, Li Y, Li YF. New monoamine antidepressant, hypidone hydrochloride (YL-0919), enhances the excitability of medial prefrontal cortex in mice via a neural disinhibition mechanism. Acta Pharmacol Sin 2022; 43:1699-1709. [PMID: 34811511 PMCID: PMC9253340 DOI: 10.1038/s41401-021-00807-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hypidone hydrochloride (YL-0919) is a novel antidepressant in clinical phase II trial. Previous studies show that YL-0919 is a selective 5-HT (serotonin) reuptake inhibitor, 5-HT1A receptor partial agonist, and 5-HT6 receptor agonist, which exerts antidepressant effects in various animal models, but its effects on neural function remain unclear. Medial prefrontal cortex (mPFC), a highly evolved brain region, controls highest order cognitive functions and emotion regulation. In this study we investigated the effects of YL-0919 on the mPFC function, including the changes in neuronal activities using electrophysiological recordings. Extracellular recording (in vivo) showed that chronic administration of YL-0919 significantly increased the spontaneous discharges of mPFC neurons. In mouse mPFC slices, whole-cell recording revealed that perfusion of YL-0919 significantly increased the frequency of sEPSCs, but decreased the frequency of sIPSCs. Then we conducted whole-cell recording in mPFC slices of GAD67-GFP transgenic mice, and demonstrated that YL-0919 significantly inhibited the excitability of GABAergic neurons. In contrast, it did not alter the excitability of pyramidal neurons in mPFC slices of normal mice. Moreover, the inhibition of GABAergic neurons by YL-0919 was prevented by pre-treatment with 5-HT1A receptor antagonist WAY 100635. Finally, chronic administration of YL-0919 significantly increased the phosphorylation levels of mTOR and GSK-3β in the mPFC as compared with vehicle. Taken together, our results demonstrate that YL-0919 enhances the excitability of mPFC via a disinhibition mechanism to fulfill its rapid antidepressant neural mechanism, which was accomplished by 5-HT1A receptor-mediated inhibition of inhibitory GABAergic interneurons.
Collapse
Affiliation(s)
- Yong-mei Zhang
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lu-yu Ye
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tian-yu Li
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fan Guo
- grid.419093.60000 0004 0619 8396CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Guo
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Li
- CAS Key Laboratory of Receptor Research, Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yun-feng Li
- grid.410740.60000 0004 1803 4911Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850 China
| |
Collapse
|
14
|
Kondaurova EM, Plyusnina AV, Ilchibaeva TV, Eremin DV, Rodnyy AY, Grygoreva YD, Naumenko VS. Effects of a Cc2d1a/Freud-1 Knockdown in the Hippocampus on Behavior, the Serotonin System, and BDNF. Int J Mol Sci 2021; 22:ijms222413319. [PMID: 34948116 PMCID: PMC8707087 DOI: 10.3390/ijms222413319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
The serotonin 5-HT1A receptor is one of the most abundant and widely distributed brain serotonin (5-HT) receptors that play a major role in the modulation of emotions and behavior. The 5-HT1A receptor gene (Htr1a) is under the control of transcription factor Freud-1 (also known as Cc2d1a/Freud-1). Here, using adeno-associated virus (AAV) constructs in vivo, we investigated effects of a Cc2d1a/Freud-1 knockdown in the hippocampus of C57BL/6J mice on behavior, the brain 5-HT system, and brain-derived neurotrophic factor (BDNF). AAV particles carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a short-hairpin RNA targeting mouse Cc2d1a/Freud-1 mRNA had an antidepressant effect in the forced swim test 5 weeks after virus injection. The knockdown impaired spatiotemporal memory as assessed in the Morris water maze. pAAV_H1-2_shRNA-Freud-1_Syn_EGFP decreased Cc2d1a/Freud-1 mRNA and protein levels. Furthermore, the Cc2d1a/Freud-1 knockdown upregulated 5-HT and its metabolite 5-hydroxyindoleacetic acid but not their ratio. The Cc2d1a/Freud-1 knockdown failed to increase mRNA and protein levels of Htr1a but diminished a 5-HT1A receptor functional response. Meanwhile, the Cc2d1a/Freud-1 knockdown reduced Creb mRNA expression and CREB phosphorylation and upregulated cFos mRNA. The knockdown enhanced the expression of a BDNF precursor (proBDNF protein), which is known to play a crucial part in neuroplasticity. Our data indicate that transcription factor Cc2d1a/Freud-1 is implicated in the pathogenesis of depressive disorders not only via the 5-HT1A receptor and transcription factor CREB but also through an influence on BDNF.
Collapse
|
15
|
Wang R, Wu Z, Liu M, Wu Y, Li Q, Ba Y, Zhang H, Cheng X, Zhou G, Huang H. Resveratrol reverses hippocampal synaptic markers injury and SIRT1 inhibition against developmental Pb exposure. Brain Res 2021; 1767:147567. [PMID: 34175265 DOI: 10.1016/j.brainres.2021.147567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Lead (Pb) exposure damages synaptic structural plasticity that results in cognitive impairment. Resveratrol, a natural polyphenolic compound, is one of the most potent agonists of silencing information regulator 1 (SIRT1) discovered to date. However, the effects of SIRT1 on synaptic functional plasticity in early life Pb exposure are not well studied. Herein, the purpose of this study is to investigate the expression of synaptic markers and SIRT1 in rats exposed to Pb and to evaluate the regulatory effect of resveratrol during this process. The Pb exposed male SD pups were treated with resveratrol (50 mg/kg/d) or EDTA (150 mg/kg/d) followed by hippocampal and blood sampling for analysis at postnatal day 21 (PND21). In the Morrris water maze test, resveratrol treatement protected the rats against Pb-induced impairment of learning and memory (P < 0.05). Resveratrol also enhanced the expression of brain-derived neurotrophic factor (BDNF, P < 0.001 vs 0.2% Pb group), and reversed the effects of Pb exposure on SIRT1(P < 0.001 vs 0.2% Pb group). The DG, CA1 and CA3 regions of the hippocampus showed a considerable increase in the expression of pre- and postsynaptic proteins (P < 0.001 vs 0.2% Pb group). In conclusion, our study demonstrated that resveratrol, through the activation of SIRT1, played a protective role against Pb-induced defects in synaptic plasticity, and suggested a new potential adjuvant treatment for Pb poisoning.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zuntao Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
16
|
Yin YY, Wang YH, Liu WG, Yao JQ, Yuan J, Li ZH, Ran YH, Zhang LM, Li YF. The role of the excitation:inhibition functional balance in the mPFC in the onset of antidepressants. Neuropharmacology 2021; 191:108573. [PMID: 33945826 DOI: 10.1016/j.neuropharm.2021.108573] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Hui Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | | | - Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jin Yuan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Ze-Han Li
- Capital Normal University High School, Beijing, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Liu WG, Zhang LM, Yao JQ, Yin YY, Zhang XY, Li YF, Cao JB. Anti-PTSD Effects of Hypidone Hydrochloride (YL-0919): A Novel Combined Selective 5-HT Reuptake Inhibitor/5-HT 1A Receptor Partial Agonist/5-HT 6 Receptor Full Agonist. Front Pharmacol 2021; 12:625547. [PMID: 33643051 PMCID: PMC7902863 DOI: 10.3389/fphar.2021.625547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating trauma and stressor-related disorder that has become a major neuropsychiatric problem, leading to substantial disruptions in individual health and societal costs. Our previous studies have demonstrated that hypidone hydrochloride (YL-0919), a novel combined selective 5-HT reuptake inhibitor/5-HT1A receptor partial agonist/5-HT6 receptor full agonist, exerts notable antidepressant- and anxiolytic-like as well as procognitive effects. However, whether YL-0919 exerts anti-PTSD effects and its underlying mechanisms are still unclear. In the present study, we showed that repeated treatment with YL-0919 caused significant suppression of contextual fear, enhanced anxiety and cognitive dysfunction induced by the time-dependent sensitization (TDS) procedure in rats and by inescapable electric foot-shock in a mouse model of PTSD. Furthermore, we found that repeated treatment with YL-0919 significantly reversed the accompanying decreased expression of the brain-derived neurotrophic factor (BDNF) and the synaptic proteins (synapsin1 and GluA1), and ameliorated the neuroplasticity disruption in the prefrontal cortex (PFC), including the dendritic complexity and spine density of pyramidal neurons. Taken together, the current study indicated that YL-0919 exerts clear anti-PTSD effects, which might be partially mediated by ameliorating the structural neuroplasticity by increasing the expression of BDNF and the formation of synaptic proteins in the PFC.
Collapse
Affiliation(s)
- Wen-Gang Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China.,Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Xiao-Ying Zhang
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.,Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiang-Bei Cao
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Role of BDNF-mTORC1 Signaling Pathway in Female Depression. Neural Plast 2021; 2021:6619515. [PMID: 33628219 PMCID: PMC7886502 DOI: 10.1155/2021/6619515] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Depression is a common psychological and mental disorder, characterized by low mood, slow thinking and low will, and even suicidal tendencies in severe cases. It imposes a huge mental and economic burden on patients and their families, and its prevention and treatment have become an urgent public health problem. It is worth noting that there is a significant gender difference in the incidence of depression. Studies have shown that females are far more likely to suffer from depression than males, confirming a close relationship between estrogen and the onset of depression. Moreover, recent studies suggest that the brain-derived neurotrophic factor- (BDNF-) mammalian target of rapamycin complex-1 (mTORC1) signaling pathway is a crucial target pathway for improving depression and mediates the rapid antidepressant-like effects of various antidepressants. However, it is not clear whether the BDNF-mTORC1 signaling pathway mediates the regulation of female depression and how to regulate female depression. Hence, we focused on the modulation of estrogen-BDNF-mTORC1 signaling in depression and its possible mechanisms in recent years.
Collapse
|
19
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
20
|
Yin YY, Tian CY, Fang XX, Shang C, Zhang LM, Xu Q, Li YF. The Faster-Onset Antidepressant Effects of Hypidone Hydrochloride (YL-0919) in Monkeys Subjected to Chronic Unpredictable Stress. Front Pharmacol 2020; 11:586879. [PMID: 33324217 PMCID: PMC7725870 DOI: 10.3389/fphar.2020.586879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Given the limited monkey models of depression available to date, as well as the procedural complexity and time investments that they involve, the ability to test the efficacy and time course of antidepressants in monkey models is greatly restricted. The present study attempted to build a simple and feasible monkey model of depression with chronic unpredictable stress (CUS) and evaluate the antidepressant effect and onset time of fluoxetine hydrochloride (FLX) and the new drug hypidone hydrochloride (YL-0919), a potent and selective 5-HT reuptake inhibitor, 5-HT1A receptor partial agonist and 5-HT6 receptor full agonist. Female cynomolgus monkeys with low social status in their colonies were selected and subjected to CUS for 8 weeks by means of food and water deprivation, space restriction, loud noise, strobe light, and intimidation with fake snakes. Huddling, self-clasping, locomotion and environmental exploration were monitored to evaluate behavioral changes. In addition, the window-opening test was used to evaluate the exploratory interest of the monkeys. The present results revealed that CUS-exposed monkeys displayed significant depression-like behaviors, including significant decreases in exploratory interest, locomotion, and exploration as well as significant increases in huddling and self-clasping behavior and the level of fecal cortisol after 8 weeks of CUS. Treatment with FLX (2.4 mg/kg, i. g.) or YL-0919 (1.2 mg/kg, i. g.) markedly reversed the depression-like behaviors caused by CUS, producing significant antidepressant effects. YL-0919 (once daily for 9 days) had a faster-onset antidepressant effect, compared with FLX (once daily for 17 days). In summary, the present study first established a CUS model using female cynomolgus monkeys with low social status and then successfully evaluated the onset time of 5-HTergic antidepressants. The results suggested that monkeys exposed to CUS displayed significant depression-like behaviors, and both FLX and YL-0919 produced antidepressant effects in this model. Moreover, YL-0919 appeared to act faster than FLX. The present study provides a promising prospect for the evaluation of fast-onset antidepressant drugs based on a CUS monkey model.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | | | - Xin-Xin Fang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Chao Shang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Qiang Xu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.,Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Li YF. A hypothesis of monoamine (5-HT) – Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Pharmacol Ther 2020; 208:107494. [DOI: 10.1016/j.pharmthera.2020.107494] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
|