1
|
Hu T, Zhang J, Wei Y, Zhang L, Wu Q. Enhanced endoplasmic reticulum stress signaling disrupts porcine sertoli cell function in response to Bisphenol A exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122908. [PMID: 39405871 DOI: 10.1016/j.jenvman.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Bisphenol A (BPA), a pervasive substance in our daily lives and livestock excreta, poses significant threats due to its infiltration into foods and water sources. BPA has adverse impacts on male reproductive function, particularly affecting the critical Sertoli (ST) cells that play a pivotal role in the process of spermatogonia differentiating into spermatozoa. In this study, we examined the prevalence of BPA within the pig industry and delved into the impact of BPA exposure on the motility of boar sperm, the function of pig ST cells, as well as the underlying molecular mechanisms involved. This study revealed spatial disparities in the global distribution of BPA and its analogue contamination, utilizing data compiled from 130 comprehensive studies. The average concentration of BPA found in pig feed ranges from 9.7 to 47.9 μg/kg, while in serum, it averages between 55.1 and 75.6 ng/L. The BPA concentration in feed exhibits a negative correlation with sperm viability and the percentage of progressive motile spermatozoa. Exposure to BPA reduced sperm motility in boar and ST cell activity at both 6 and 24 h. The transcriptome analysis revealed that, compared to untreated control cells, endoplasmic reticulum stress (ERS)-related genes were upregulated in ST cells exposed to BPA at 6 and 24 h. This activation of ERS in ST cells was mediated by receptor protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring protein-1α (IRE1α), and activating transcription factor 6 (ATF6). Additionally, BPA exposure triggered oxidative stress and a proinflammatory response mediated by the transcription factor NF-κB, accompanied by an increase in downstream proinflammatory cytokines. BPA exposure also led to apoptosis in ST cells and upregulated the expression levels of pro-apoptosis proteins. However, inhibiting ERS activity with 4-PBA attenuated the BPA-induced inflammatory response and apoptosis in ST cells. Our findings suggest that BPA induced apoptosis and inflammatory response in porcine ST cells through persistent activation of ERS, thereby compromising the normal function of these cells.
Collapse
Affiliation(s)
- Ting Hu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Jiaxi Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Yuxuan Wei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Lingyu Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102208, China.
| |
Collapse
|
2
|
Akarsu SA, Gür C, Küçükler S, Akaras N, İleritürk M, Kandemir FM. Protective Effects of Syringic Acid Against Oxidative Damage, Apoptosis, Autophagy, Inflammation, Testicular Histopathologic Disorders, and Impaired Sperm Quality in the Testicular Tissue of Rats Induced by Mercuric Chloride. ENVIRONMENTAL TOXICOLOGY 2024; 39:4803-4814. [PMID: 39096083 DOI: 10.1002/tox.24395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Mercury (Hg) is one of the most toxic heavy metals that damage testicular tissue. Mercury chloride (HgCl2) is one of the most toxic forms of mercury that can easily cross biological membranes. Syringic acid (SA) is a natural flavonoid found in many vegetables and fruits. In this study, the effects of SA against HgCl2-induced testicular damage in rats were determined by biochemical, histopathological, and spermatological analyses. For this study, a total of 35 Spraque Dawley rats were used. Rats were divided into five groups as control, HgCl2, SA 50, HgCl2 + SA 25, and HgCl2 + SA 50. HgCl2 was administered intraperitoneal (IP) at a dose of 1.23 mg/kg/bw, while SA was administered by oral gavage at doses of 25 and 50 mg/kg/bw. The rats were then sacrificed, and testicular tissues were removed. HgCl2 caused an increase in MDA level and a decrease in SOD, CAT, and GPx activity and GSH level in the testicular tissue of rats. HgCl2 is involved in the increase of eIF2-α, PERK, ATF-4, ATF-6, CHOP, NF-κB, TNF-α, IL-1β, Apaf-1, Bax, and Caspase-3 mRNA expression. HgCl2 caused a decrease in sperm motility, an increase in the rate of abnormal sperm and sperm DNA fragmentation in rats. However, SA oral administration dose-dependently inhibited endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis and preserved epididymal sperm quality and testicular histoarchitectures. In conclusion, SA had protective effects against HgCl2-induced testicular oxidative damage, inflammation, endoplasmic reticulum stress, and apoptosis.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mustafa İleritürk
- Department of Laboratory and Veterinary Health, Horasan Vocational School, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Bai Y, Gao L, Han T, Liang C, Zhou J, Liu Y, Guo J, Wu J, Hu D. 18β-glycyrrhetinic acid ameliorates bleomycin-induced idiopathic pulmonary fibrosis via inhibiting TGF-β1/JAK2/STAT3 signaling axis. J Steroid Biochem Mol Biol 2024; 243:106560. [PMID: 38917955 DOI: 10.1016/j.jsbmb.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and progressive lung disease with an unknown cause that has few treatment options. 18β-Glycyrrhetinic acid (18β-GA) is the main bioactive component in licorice, exhibiting anti-inflammatory and antioxidant effects, while also holding certain application value in the metabolism and regulation of steroids. In this study, we demonstrated that 18β-GA effectively alleviates bleomycin (BLM)-induced IPF by inhibiting the TGF-β1/JAK2/STAT3 signaling axis. In vivo experiments demonstrate that 18β-GA significantly attenuates pulmonary fibrosis progression by reducing lung inflammation, improving lung function, and decreasing collagen deposition. In vitro experiments reveal that 18β-GA inhibits the activation and migration of TGF-β1-induced fibroblasts. Furthermore, it regulates the expression of vimentin, N-cadherin and E-cadherin proteins, thereby inhibiting TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung alveolar epithelial cells. Mechanistically, 18β-GA ameliorates pulmonary fibrosis by modulating the TGF-β1/JAK2/STAT3 signaling pathway in activated fibroblasts. Taken together, our findings demonstrate the potential and underlying mechanisms of 18β-GA in ameliorating IPF, emphasizing its potential as a novel therapeutic drug for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
4
|
Dong H, Jia W, Wang C, Teng D, Xu B, Ding X, Yang J, Zhong L, Gong L. Key subdomains of mesencephalic astrocyte-derived neurotrophic factor attenuate myocardial ischemia/reperfusion injury by JAK1/STAT1/NF-κB signaling pathway. Mol Med 2024; 30:139. [PMID: 39242993 PMCID: PMC11380330 DOI: 10.1186/s10020-024-00916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion (I/R) injury is a common pathological process in clinical practice. Developing effective therapeutic strategies to reduce or prevent this injury is crucial. The article aimed to investigate the role and mechanism of mesencephalic astrocyte-derived neurotrophic factor (MANF) and its key subdomains in modulating myocardial I/R-induced cardiomyocyte apoptosis. METHODS MANF stable knockout cell line and MANF mutant overexpression plasmids were constructed. The effects of MANF and mutants on apoptosis and endoplasmic reticulum (ER) stress related proteins were evaluated in hypoxia/reoxygenation-induced HL-1 cardiomyocytes by western blot, immunofluorescence, Tunel and flow cytometry. Echocardiography, ELISA, TTC and Masson were used to observe the effects of recombinant MANF protein (rMANF) on cardiac function in myocardial I/R mice. RESULTS This study observed increased expression of MANF in both myocardial infarction patients and I/R mice. MANF overexpression in cardiomyocytes decreased ER stress-induced apoptosis, while MANF knockout exacerbated it. rMANF improved cardiac function in I/R mice by reducing injury and inflammation. This study specifically demonstrates that mutations in the α-helix of MANF were more effective in reducing ER stress and cardiomyocyte apoptosis. Mechanistically, MANF and the α-helix mutant attenuated I/R injury by inhibiting the JAK1/STAT1/NF-κB signaling pathway in addition to reducing ER stress-induced apoptosis. CONCLUSION These findings highlight MANF and its subdomains as critical regulators of myocardial I/R injury, offering promising therapeutic targets with significant clinical implications for I/R-related diseases.
Collapse
Affiliation(s)
- Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Bowen Xu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Xiaoning Ding
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China.
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai City, Shandong Province, 264000, China.
| |
Collapse
|
5
|
He L, Mo X, He L, Ma Q, Cai L, Zheng Y, Huang L, Lin X, Wu M, Ding W, Zhou C, Zhang JC, Hashimoto K, Yao W, Chen JX. The role of BDNF transcription in the antidepressant-like effects of 18β-glycyrrhetinic acid in a chronic social defeat stress model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155332. [PMID: 38851983 DOI: 10.1016/j.phymed.2023.155332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 06/10/2024]
Abstract
BACKGROUND Xiaoyaosan (XYS), a traditional Chinese medicine formulation, has been used in the treatment of depression. However, no studies have yet identified the active compounds responsible for its antidepressant effects in the brain. STUDY DESIGN We investigated the antidepressants effects of XYS and identified 18β-glycyrrhetinic acid (18β-GA) as the primary compound present in the brain following XYS injection. Furthermore, we explored the molecular mechanisms underlying the antidepressant-like effects of both XYS and 18β-GA. METHODS To investigate the antidepressant-like effects of XYS and elucidate the associated molecular mechanisms, we employed various methodologies, including cell cultures, the chronic social defeat stress (CSDS) model, behavioral tests, immunoprecipitation, quantitative PCR (qPCR) assays, Western blotting assays, luciferase assays, chromatin immunoprecipitation (ChIP) assays, immunofluorescence staining, and dendritic spine analysis. RESULTS We identified 18β-GA as the primary compound in the brain following XYS injection. In vitro, 18β-GA was found to bind with ERK (extracellular signal-regulated kinase), subsequently activating ERK kinase activity toward both c-Jun and cAMP response element binding protein (CREB). Moreover, 18β-GA activated brain-derived neurotrophic factor (BDNF) transcription by stimulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2), c-Jun, and CREB, while also inhibiting methyl CpG binding protein 2 (MeCP2) both in vitro and in vivo. Chronic intraperitoneal (i.p.) administration of 18β-GA exhibited prophylactic antidepressant-like effects in a CSDS model, primarily by activating BDNF transcription in the medial prefrontal cortex (mPFC). Interestingly, a single i.p. injection of 18β-GA produced rapid and sustained antidepressant-like effects in CSDS-susceptible mice by engaging the BDNF-tropomyosin receptor kinase B (TrkB) signaling pathway in the mPFC. CONCLUSION These findings suggest that the activation of BDNF transcription in the mPFC underlies the antidepressant-like effects of 18β-GA, a key component of XYS in the brain.
Collapse
Affiliation(s)
- Lujuan He
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Lili Cai
- Department of Mental Rehabilitation, Mental Hospital of Guangzhou Civil Affairs Bureau, Guangzhou 510632, PR China
| | - Yi Zheng
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Lixuan Huang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Xuanyu Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Mansi Wu
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wanzhao Ding
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Chan Zhou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
6
|
Xu T, Zhang Y, Liu H, Shi X, Liu Y. BPA exposure and Se deficiency caused spleen damage in chickens by nitrification stress-TNF-α. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121994. [PMID: 39083939 DOI: 10.1016/j.jenvman.2024.121994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
With the increasing production and demand of plastic products in life, inescapable bisphenol A (BPA) exposure results in a threat to the health of organisms. Selenium (Se) is an essential trace element for living organisms. The insufficient Se intake can cause multi-tissue organ damage. In the process of production and life, the exposure of BPA is usually accompanied by Se deficiency. In this study, the models of chicken with BPA exposure and/or Se deficiency was duplicated, the status of nitrification stress, apoptosis, necroptosis, and changes in TNF-α/FADD signaling pathways in chicken spleen were examined. At the same time, nitrification stress inhibitor and TNF-α inhibitor were introduced into MSB-1 cell model tests in vitro, indicating that BPA exposure and Se deficiency up-regulated TNF-α/FADD signaling pathway through nitrification stress, inducing necroptosis and apoptosis, and heat shock protein was also involved in this process. This study provides a new control idea for healthy poultry breeding based on Se, and also provides a new reference for toxicity control of environmental pollutants.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
El-Shimi BI, Mohareb RM, Ahmed HH, Abohashem RS, Mahmoud KF, Hanna DH. Mechanistic Insights into Bisphenol A-Mediated Male Infertility: Potential Role of Panax Ginseng Extract. Chem Biodivers 2024; 21:e202400480. [PMID: 38818674 DOI: 10.1002/cbdv.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Male infertility is identified by the inability of a man to successfully impregnate his fertile female partner, even following a year of regular unprotected sexual intercourse. About half of all infertility cases are attributed to what is known as "male factor" infertility. The escalating prevalence of male infertility in the contemporary era across the globe can be largely attributed to environmental pollution, which is the common etiological factor due to the ubiquitous presence of the environmental contaminants. Bisphenol A is recognized as an endocrine-disrupting chemical that has adverse effects on both male and female reproductive systems. On the other hand, numerous studies have demonstrated that Panax ginseng possessed the potential to improve male infertility parameters; promote spermatogenesis, recover the quality and motility of sperm and enhance testicular functions as it acted as a natural androgen supplement. The objective of this review is to offer a summary of the findings obtained from the current research data on the insult of bisphenol A (BPA) on male infertility and its supposed mode of action, as well as shed light on the potent ameliorative role of Panax ginseng extract, with a special focus on the mechanism behind its action. This review delivers a clear understanding of BPA mechanism of action on male infertility and the presumed risks deriving from its exposure. Also, this review provides evidence for the functional role of Panax ginseng extract in restoring male fertility.
Collapse
Affiliation(s)
- Basma I El-Shimi
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Centre, Dokki, Giza, Egypt
| | - Khaled F Mahmoud
- Food Technology Department, National Research Centre, Dokki, Giza, Egypt
| | - Demiana H Hanna
- Chemistry Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Akaras N, Kucukler S, Gur C, Ileriturk M, Kandemir FM. Sinapic acid protects against lead acetate-induced lung toxicity by reducing oxidative stress, apoptosis, inflammation, and endoplasmic reticulum stress damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:3820-3832. [PMID: 38530053 DOI: 10.1002/tox.24255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/01/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Lead acetate (PbAc) is a compound that produces toxicity in many tissues after exposure. Sinapic acid (SNP) possesses many biological and pharmacological properties. This study aimed to investigate the efficacy of SNP on the toxicity of PbAc in lung tissue. PbAc was administered orally at 30 mg/kg and SNP at 5 or 10 mg/kg for 7 days. Biochemical, genetic, and histological methods were used to investigate inflammatory, apoptotic, endoplasmic reticulum stress, and oxidative stress damage levels in lung tissue. SNP administration induced PbAc-reduced antioxidant (GSH, SOD, CAT, and GPx) and expression of HO-1 in lung tissue. It also reduced MDA, induced by PbAc, and thus alleviated oxidative stress. SNP decreased the inflammatory markers NF-κB, TNF-α and IL-1β levels induced by PbAc in lung tissue and exhibited anti-inflammatory effect. PbAc increased apoptotic Bax, Apaf-1, and Caspase-3 mRNA transcription levels and decreased anti-apoptotic Bcl-2 in lung tissues. SNP decreased apoptotic damage by reversing this situation. On the other hand, SNP regulated these markers and brought them closer to the levels of the control group. PbAc caused prolonged ER stress by increasing the levels of ATF6, PERK, IRE1α, GRP78 and this activity was stopped and tended to retreat with SNP. After evaluating all the data, While PbAc caused toxic damage in lung tissue, SNP showed a protective effect by reducing this damage.
Collapse
Affiliation(s)
- Nurhan Akaras
- Faculty of Medicine, Department of Histology and Embryology, Aksaray University, Aksaray, Turkey
| | - Sefa Kucukler
- Faculty of Veterinary Medicine, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Faculty of Medicine, Department of Medical Biochemistry, Aksaray University, Aksaray, Turkey
| |
Collapse
|
9
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
10
|
Yu C, Xiang Y, Zhang M, Wen J, Duan X, Wang L, Deng G, Fang P. Glycyrrhizic Acid Alleviates Semen Strychni-Induced Neurotoxicity Through the Inhibition of HMGB1 Phosphorylation and Inflammatory Responses. J Neuroimmune Pharmacol 2024; 19:21. [PMID: 38771510 PMCID: PMC11108907 DOI: 10.1007/s11481-024-10128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The neurotoxicity of Semen Strychni has been reported recently in several clinical cases. Therefore, this study was conducted to investigate the role of HMGB1 in a model of neurotoxicity induced by Semen Strychni and to assess the potential alleviating effects of glycyrrhizic acid (GA), which is associated with the regulation of HMGB1 release. Forty-eight SD rats were intraperitoneally injected with Semen Strychni extract (175 mg/kg), followed by oral administration of GA (50 mg/kg) for four days. After treatment of SS and GA, neuronal degeneration, apoptosis, and necrosis were observed via histopathological examination. Inflammatory cytokines (TNF-α and IL-1β), neurotransmitter associated enzymes (MAO and AChE), serum HMGB1, nuclear and cytoplasmic HMGB1/ph-HMGB1, and the interaction between PP2A, PKC, and HMGB1 were evaluated. The influence of the MAPK pathway was also examined. As a result, this neurotoxicity was characterized by neuronal degeneration and apoptosis, the induction of pro-inflammatory cytokines, and a reduction in neurotransmitter-metabolizing enzymes. In contrast, GA treatment significantly ameliorated the abovementioned effects and alleviated nerve injury. Furthermore, Semen Strychni promoted HMGB1 phosphorylation and its translocation between the nucleus and cytoplasm, thereby activating the NF-κB and MAPK pathways, initiating various inflammatory responses. Our experiments demonstrated that GA could partially reverse these effects. In summary, GA acid alleviated Semen Strychni-induced neurotoxicity, possibly by inhibiting HMGB1 phosphorylation and preventing its release from the cell.
Collapse
Affiliation(s)
- Changwei Yu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Yalan Xiang
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Min Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Jing Wen
- Department of Pharmacy, the Third Hospital of Changsha, Changsha, 410015, China
| | - Xiaoyu Duan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Lu Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Gongying Deng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, China.
| |
Collapse
|
11
|
Bayav I, Darendelioğlu E, Caglayan C. 18β-Glycyrrhetinic acid exerts cardioprotective effects against BPA-induced cardiotoxicity through antiapoptotic and antioxidant mechanisms. J Biochem Mol Toxicol 2024; 38:e23655. [PMID: 38348715 DOI: 10.1002/jbt.23655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Bisphenol A (BPA) is a synthetic environmental pollutant widely used in industry, as well as is an endocrine disrupting chemicals and has a toxic effects on heart tissue. The aim of this study is to reveal the cardioprotective effects of 18β-glycyrretinic acid (GA) against BPA-induced cardiotoxicity in rats. In this study, 40 male rats were used and five different groups (each group includes eight rats) were formed. The rats were applied BPA (250 mg/kg b.w.) alone or with GA (50 and 100 mg/kg b.w.) for 14 days. Rats were killed on Day 15 and heart tissues were taken for analysis. GA treatment decreased serum lactate dehydrogenase and creatine kinase MB levels, reducing BPA-induced heart damage. GA treatment showed ameliorative effects against lipid peroxidation and oxidative stress caused by BPA by increasing the antioxidant enzyme activities (glutathione peroxidase, superoxide dismutase, and catalase) and GSH level of the heart tissue and decreasing the MDA level. In addition, GA showed antiapoptotic effect by increasing Bcl-2, procaspase-3, and -9 protein expression levels and decreasing Bax, cytochrome c, and P53 protein levels in heart tissue. As a result, it was found that GA has cardioprotective effects on heart tissue by exhibiting antioxidant and antiapoptotic effects against heart damage caused by BPA, an environmental pollutant. Thus, it was supported that GA could be a potential cardioprotective agent.
Collapse
Affiliation(s)
- Ibrahim Bayav
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, Bingol, Turkey
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey
| |
Collapse
|
12
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
13
|
Kandeel S, Abd-Elsalam MM, Abd-Elsalam S, Elkaliny HH. The Possible Protective Effect of Taurine on Bisphenol Induced Structural Changes on the Cerebral Cortex of Rats: Histological and Immunohistochemical Study. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1263-1274. [PMID: 38299273 DOI: 10.2174/0118715273280701231227100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Bisphenol A (BPA) is a chemical compound that has been used in many industries, such as paints and dental sealants. Taurine is a semi-essential amino acid with antioxidant, anti-inflammatory, and anti-apoptotic actions. AIM This study aimed to evaluate the possible protective effect of taurine on BPA-induced structural changes in the cerebral cortex of rats using histological and immunohistochemical methods. METHODS 35 Wistar rats (180-200 gm) were divided into control: 10 rats; Group I: 5 rats received corn oil (0.5 mL/day); Group II (Bisphenol low dose; BPAL): 5 rats received a low dose of BPA (25 mg/kg/three times/week); Group III (Bisphenol high dose; BPAH): 5 rats received a high dose of BPA (100 mg/kg/three times/week; Group IV: (BPAL + taurine): 5 rats received taurine 100 mg/kg/day and BPAL (25 mg/kg/three times/week); Group V: (BPAH + taurine): 5 rats received taurine 100 mg/kg/day and BPH (100 mg/kg/ three times/week). RESULTS BPAL& BPAH groups showed significant dose-dependent histological changes of the neuropil, pyramidal, and neuroglial cells at H&E stained sections, significantly increased GFAP, caspase- 3 immunohistochemical reaction with cells positive for Ki67 with many mitotic figures. BPAL + taurine and BPAH + taurine groups showed amelioration of the previously mentioned results. CONCLUSION Taurine ameliorated the structural changes induced by BPA in the cerebral cortex of rats.
Collapse
Affiliation(s)
- Samah Kandeel
- Department of Histology & Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa M Abd-Elsalam
- Department of Histology & Cell Biology, Faculty of Medicine, Kafr Elsheikh University, Kafr El Sheikh, Egypt
| | - Sherief Abd-Elsalam
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Hassan Elkaliny
- Department of Histology & Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Wang Y, Hu H, Wu Y, Zhao Y, Xie F, Sun Z, Wang X, Qian L. Norepinephrine promotes neuronal apoptosis of hippocampal HT22 cells by up-regulating the expression of long non-coding RNA MALAT1. Stress 2023; 26:2252905. [PMID: 37632346 DOI: 10.1080/10253890.2023.2252905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
Stress is ever present in our modern, performance-oriented and demanding society, which causes adverse stress reactions of the body and affects health seriously. Chronic stress has been recognized as a significant risk factor leading to cognitive impairment, but the underlying mechanism is far from fully understood. Norepinephrine (NE), a pivotal stress-induced hormone, has been found to induce cell apoptosis. However, the function and the key downstream mediator of NE on the regulation of hippocampal neurons still need further exploration. In this study, we explored the role of NE in neuronal apoptosis and its association with MALAT1. Flow cytometry assay and automated western bot assay were carried out to evaluate the cell apoptosis. The data showed that the rate of apoptosis rate and the levels of apoptotic proteins (cleaved-Caspase3 and cleaved-PARP) were significantly increased in HT22 cells after a high dose of NE treatment, suggesting a facilitative role of NE on hippocampal neuronal apoptosis. Besides, a high level of NE up-regulated the expression of MALAT1 in HT22 cells. Then, a lentivirus expressing MALAT1 shRNA was constructed to investigate the role of MALAT1 in cell apoptosis and the results revealed that MALAT1 depletion decreased the cell apoptosis. Moreover, the knockdown of MALAT1 abolished the discrepancy in apoptosis between NE-treated cells and control cells. In conclusion, a high level of the stress-induced hormone NE promoted apoptosis of hippocampal neurons by elevating the expression of MALAT1. Our findings provide new experimental data supporting the epigenetic mechanisms in the regulation of stress response and may provide a potential therapeutic target for stress-related cognition dysfunction.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Hui Hu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Yuhan Wu
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Yun Zhao
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Fang Xie
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Zhaowei Sun
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Xue Wang
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Lingjia Qian
- Beijing Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, P.R. China
| |
Collapse
|
15
|
Gad SR, El-Gogary RI, George MY, Hathout RM. Nose-to-brain delivery of 18β-Glycyrrhetinic acid using optimized lipid nanocapsules: A novel alternative treatment for Alzheimer's disease. Int J Pharm 2023; 645:123387. [PMID: 37678474 DOI: 10.1016/j.ijpharm.2023.123387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most relevant form of dementia affecting people worldwide. AD was reported to be associated with increased oxidative stress ending up with neuronal damage. 18β-Glycyrrhetinic acid (GA), triterpenoid aglycone of glycyrrhizin, was reported for its powerful antioxidant activities. However, its high molecular weight and lipophilicity are two major obstacles that limit its use and cause very low brain bioavailability. The aim of the present study was to formulate the GA in lipid nanocapsules (LNCs) for enhanced nose-to-brain delivery, as well as to elucidate its potential neuroprotective effect in AD. The optimized GA-loaded LNCs exhibited nanometric size range, good stability over 6 months, sustained drug release over 24 h and high steady state flux and permeability coefficient across nasal mucosa over 8 h. In-vivo studies were conducted on five groups; control, scopolamine (SCOP)-treated, SCOP + GA-LNCs, SCOP + oral GA suspension, and SCOP + intranasal GA suspension groups. Intranasal administration of GA-LNCs, at a reduced dose of 1 mg/kg, improved scopolamine-induced memory impairment in rats evidenced by behavioral testing, histological examination, and oxidative stress markers; catalase and superoxide dismutase. Collectively, GA-loaded LNCs (with 50 times lower dose) may provide a promising remedy for AD patients worldwide.
Collapse
Affiliation(s)
- Sara R Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
16
|
Chen J, Ikeda SI, Kang L, Negishi K, Tsubota K, Kurihara T. Bisphenol A exposure triggers endoplasmic reticulum stress pathway leading to ocular axial elongation in mice. Front Med (Lausanne) 2023; 10:1255121. [PMID: 37746069 PMCID: PMC10517050 DOI: 10.3389/fmed.2023.1255121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Background Ocular axial elongation is one of the features of myopia progression. Endoplasmic reticulum (ER) stress-associated scleral remodeling plays an important role in ocular axial elongation. Bisphenol A (BPA) is one of the most common environmental pollutants and is known to affect various human organs through ER stress. However, whether BPA exerts an effect on scleral remodeling remains unknown. The purpose of this study was to determine the effect of BPA on the development of myopia and scleral ER stress. Methods BPA was administered by intraperitoneal injection. 4-PBA was administered as an endoplasmic reticulum stress inhibitor by eye drops. Refraction and axial length were measured by refractometer and SD-OCT system. Western blot was performed to detect the expression level of ER stress-related proteins. Results BPA-administered mice exhibit axial elongation and myopic refractive shift with endoplasmic reticulum stress in the sclera. BPA administration activated scleral PERK and ATF6 pathways, and 4-PBA eye drops attenuated ER stress response and suppressed myopia progression. Conclusion BPA controlled axial elongation during myopia development in a mouse model by inducing scleral ER stress and activation of the PERK/ATF6 pathway. 4-PBA eye drops as ER stress inhibitor suppressed BPA-induced myopia development.
Collapse
Affiliation(s)
- Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin-ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Longdan Kang
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc., Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Luo H, Zhang C, He L, Lin Z, Zhang JC, Qi Q, Chen JX, Yao W. 18β-glycyrrhetinic acid ameliorates MPTP-induced neurotoxicity in mice through activation of microglial anti-inflammatory phenotype. Psychopharmacology (Berl) 2023; 240:1947-1961. [PMID: 37436491 DOI: 10.1007/s00213-023-06415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
RATIONALE 18β-glycyrrhetinic acid (18β-GA) has been reported to have anti-inflammatory and neuroprotective effects. However, the therapeutic effect of 18β-GA in Parkinson's disease (PD) has not been defined. OBJECTIVE The current study aimed to evaluate the potential therapeutic effects of 18β-GA in treating PD by mitigating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. RESULTS The study showed that 18β-GA has anti-inflammatory effects by upregulating TREM2 expression in BV2 cells, which correlates with the presence of NF-E2-related factor-2 (Nrf2). 18β-GA reduced inflammation in BV2 cells treated with 1-methyl-4- phenylpyridinium (MPP+) by enhancing TREM2 expression, which promotes an anti-inflammatory microglial phenotype. Repeated administration of 18β-GA in MPTP-treated mice led to therapeutic effects by enhancing TREM2 expression, resulting in the activation of anti-inflammatory microglia. Moreover, 18β-GA attenuated the decrease in brain-derived neurotrophic factor (BDNF) levels in both MPP+-induced BV2 cells and MPTP-intoxicated mice, indicating the involvement of BDNF in the beneficial effects of 18β-GA. CONCLUSIONS It is probable that activating microglial anti-inflammatory response through TREM2 expression might serve as a novel therapeutic strategy for PD. Additionally, 18β-GA seems to hold potential as a new therapeutic agent for PD.
Collapse
Affiliation(s)
- Hanyue Luo
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- School of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lujuan He
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zefang Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Department of Pharmacology, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Wei Yao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Wang LL, Li RT, Zang ZH, Song YX, Zhang YZ, Zhang TF, Wang FZ, Hao GP, Cao L. 6-Methoxydihydrosanguinarine exhibits cytotoxicity and sensitizes TRAIL-induced apoptosis of hepatocellular carcinoma cells through ROS-mediated upregulation of DR5. Med Oncol 2023; 40:266. [PMID: 37566135 DOI: 10.1007/s12032-023-02129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
6-methoxydihydrosanguinarine (6-MS), a natural benzophenanthridine alkaloid extracted from Macleaya cordata (Willd.) R. Br, has shown to trigger apoptotic cell death in cancer cells. However, the exact mechanisms involved have not yet been clarified. The current study reveals the underlying mechanisms of 6-MS-induced cytotoxicity in hepatocellular carcinoma (HCC) cells and investigates whether 6-MS sensitizes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis. 6-MS was shown to suppress cell proliferation and trigger cell cycle arrest, DNA damage, and apoptosis in HCC cells. Mechanisms analysis indicated that 6-MS promoted reactive oxygen species (ROS) generation, JNK activation, and inhibits EGFR/Akt signaling pathway. DNA damage and apoptosis induced by 6-MS were reversed following N-acetyl-l-cysteine (NAC) treatment. The enhancement of PARP cleavage caused by 6-MS was abrogated by pretreatment with JNK inhibitor SP600125. Furthermore, 6-MS enhanced TRAIL-mediated HCC cells apoptosis by upregulating the cell surface receptor DR5 expression. Pretreatment with NAC attenuated 6-MS-upregulated DR5 protein expression and alleviated cotreatment-induced viability reduction, cleavage of caspase-8, caspase-9, and PARP. Overall, our results suggest that 6-MS exerts cytotoxicity by modulating ROS generation, EGFR/Akt signaling, and JNK activation in HCC cells. 6-MS potentiates TRAIL-induced apoptosis through upregulation of DR5 via ROS generation. The combination of 6-MS with TRAIL may be a promising strategy and warrants further investigation.
Collapse
Affiliation(s)
- Lin-Lin Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Ruo-Tong Li
- Department of Pathology, Tai' an Central Hospital, Taian, 271000, People's Republic of China
| | - Zi-Heng Zang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yun-Xuan Song
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yu-Zhe Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Teng-Fei Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Feng-Ze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People's Republic of China
| | - Gang-Ping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China.
| | - Lu Cao
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, People's Republic of China.
| |
Collapse
|
19
|
Akaras N, Ileriturk M, Gur C, Kucukler S, Oz M, Kandemir FM. The protective effects of chrysin on cadmium-induced pulmonary toxicity; a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89479-89494. [PMID: 37453011 DOI: 10.1007/s11356-023-28747-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to determine the potential protective effects of chrysin (CHR) on experimental cadmium (Cd)-induced lung toxicity in rats. To this end, rats were divided into five groups; Control, CHR, Cd, Cd + CHR25, Cd + CHR50. In the study, rats were treated with CHR (oral gavage, 25 mg/kg and 50 mg/kg) 30 min after giving Cd (oral gavage, 25 mg/kg) for 7 consecutive days. The effects of Cd and CHR treatments on oxidative stress, inflammatory response, ER stress, apoptosis and tissue damage in rat lung tissues were determined by biochemical and histological methods. Our results revealed that CHR therapy for Cd-administered rats could significantly reduce MDA levels in lung tissue while significantly increasing the activity of antioxidant enzymes (SOD, CAT, GPx) and GSH levels. CHR agent exerted antiinflammatory effect by lowering elevated levels of NF-κB, IL-1β IL-6, TNF-α, RAGE and NRLP3 in Cd-induced lung tissue. Moreover CHR down-regulated Cd-induced ER stress markers (PERK, IRE1, ATF6, CHOP, and GRP78) and apoptosis markers (Caspase-3, Bax) lung tissue. CHR up-regulated the Bcl-2 gene, an anti-apoptotic marker. Besides, CHR attenuated the side effects caused by Cd by modulating histopathological changes such as hemorrhage, inflammatory cell infiltration, thickening of the alveolar wall and collagen increase. Immunohistochemically, NF-κB and Caspase-3 expressions were intense in the Cd group, while these expressions were decreased in the Cd + CHR groups. These results suggest that CHR exhibits protective effects against Cd-induced lung toxicity in rats by ameliorating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress and histological changes.
Collapse
Affiliation(s)
- Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Oz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
20
|
Akintunde J, Olayinka M, Ugbaja V, Akinfenwa C, Akintola T, Akamo A, Bello I. Downregulation of inflammatory erectile dysfunction by Mantisa religiosa egg-cake through NO-cGMP-PKG dependent NF-kB signaling cascade activated by mixture of salt intake. Toxicol Rep 2023; 10:633-646. [PMID: 37250529 PMCID: PMC10220466 DOI: 10.1016/j.toxrep.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
We hypothesized whether 10% praying-mantis-egg-cake (10% PMEC) can be applied against inflammatory-erectile-dysfunction and whether it could be linked to NO-cGMP-dependent PKG signaling cascade. Ninety male albino-rats were randomly distributed into nine (n = 10) groups. Group I was given distilled water. Group II and III were pre-treated with 80 mg/kg NaCl and 75 mg/kg MSG, respectively. Group IV was pre-treated with 80 mg/kg NaCl + 75 mg/kg MSG. Group V was administered with 80 mg/kg NaCl+ 3 mg/kg Amylopidin. Group VI was given 80 mg/kg NaCl + 10% PMEC. Group VII was treated with 75 mg/kg MSG + 10% PMEC. Group VIII was treated with 80 mg/kg NaCl+ 75 mg/kg MSG + 10% PMEC. Group IX was post-treated with 10% PMEC for 14 days. Penile PDE-51, arginase, ATP hydrolytic, cholinergic, dopaminergic (MAO-A) and adenosinergic (ADA) enzymes were hyperactive on intoxication with NaCl and MSG. The erectile dysfunction caused by inflammation was linked to alteration of NO-cGMP-dependent PKG signaling cascade via up-regulation of key cytokines and chemokine (MCP-1). These lesions were prohibited by protein-rich-cake (10% PMEC). Thus, protein-rich-cake (10% PMEC) by a factor of 4 (25%) inhibited penile cytokines/MCP-1 on exposure to mixture of salt-intake through NO-cGMP-PKG dependent-NF-KB signaling cascade in rats.
Collapse
Affiliation(s)
- J.K. Akintunde
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M.C. Olayinka
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - V.C. Ugbaja
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - C.A. Akinfenwa
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - T.E. Akintola
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - A.J. Akamo
- Molecular Toxicology and Biomedical, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - I.J. Bello
- School of Applied Sciences, Adeyemi Federal University of Education, Ondo, Nigeria
| |
Collapse
|
21
|
Pan Z, Huang J, Hu T, Zhang Y, Zhang L, Zhang J, Cui D, Li L, Wang J, Wu Q. Protective Effects of Selenium Nanoparticles against Bisphenol A-Induced Toxicity in Porcine Intestinal Epithelial Cells. Int J Mol Sci 2023; 24:ijms24087242. [PMID: 37108405 PMCID: PMC10139072 DOI: 10.3390/ijms24087242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have attracted more and more attention due to their outstanding biological activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western blot methods were used to analyze the mRNA and protein expression of factors related to tight junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and morphological damage were observed after BPA exposure, and these increases were attenuated by SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene binding (NF-κB), such as elevated levels of interleukin-1β(IL-1β), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and 24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress (ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intestinal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis, thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles may represent an effective and reliable tool for preventing BPA toxicity in animals and humans.
Collapse
Affiliation(s)
- Zaozao Pan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ting Hu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Yonghong Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Lingyu Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Jiaxi Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Defeng Cui
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiong Wu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100096, China
| |
Collapse
|
22
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
23
|
Poormolaie N, Mohammadi M, Mir A, Asadi M, Kararoudi AN, Vahedian V, Maroufi NF, Rashidi M. Xanthomicrol: Effective therapy for cancer treatment. Toxicol Rep 2023; 10:436-440. [PMID: 37102154 PMCID: PMC10123071 DOI: 10.1016/j.toxrep.2023.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer treatment is one of the main challenges of global health. For decades, researchers have been trying to find anti-cancer compounds with minimal side effects. In recent years, flavonoids, as a group of polyphenolic compounds, have attracted the attention of researchers due to their beneficial effects on health. Xanthomicrol is one of the flavonoids that has the ability to inhibit growth, proliferation, survival and cell invasion and ultimately tumor progression. Xanthomicrol, as active anti-cancer compounds, can be effective in the prevention and treatment of cancer. Therefore, the use of flavonoids can be suggested as a treatment along with other medicinal agents. It is obvious that additional investigations in cellular levels and animal models are still needed. In this review article, the effects of xanthomicrol on various cancers have been reviewed.
Collapse
|
24
|
Lei Y, Zhang W, Gao M, Lin H. Mechanism of evodiamine blocking Nrf2/MAPK pathway to inhibit apoptosis of grass carp hepatocytes induced by DEHP. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109506. [PMID: 36368504 DOI: 10.1016/j.cbpc.2022.109506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is often used as a plasticizer for plastic products, and its excessive use can cause irreversible damage to aquatic animals and humans. Evodiamine (EVO) is an alkaloid component in the fruit of Evodia rutaecarpa, which has antioxidant and detoxification functions. To investigate the toxic mechanism of DEHP on grass carp (Ctenopharyngodon idellus) hepatocyte cell line (L8824) and the therapeutic effect of evodiamine, an experimental model of L8824 cells exposed to 800 μM DEHP and/or 10 μM EVO for 24 h was established. Flow cytometry, AO/EB fluorescence staining, real-time quantitative PCR, and western blot were used to detect the degree of cell injury, oxidative stress level, MAPK signaling pathway relative genes, and the expression of apoptosis-related molecules. The results showed that DEHP exposure could significantly increase the level of reactive oxygen species (ROS), inhibit the activities of antioxidant enzymes (CAT, SOD, GSH-Px), and cause the accumulation of MDA. DEHP also activated MAPK signaling pathway-related molecules (JNK, ERK, P38 MAPK), and then up-regulated the expression of pro-apoptotic factors Bcl-2-Associated X (Bax) and caspase 3, while inhibiting the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2). In addition, EVO can also promote the dissociation of nuclear factor-E2-related factor 2 (Nrf2) into the nucleus, reduce the level of ROS and the occurrence of oxidative stress in grass carp hepatocytes, down-regulate the MAPK pathway, alleviate DEHP-induced apoptosis, and restore the expression of antioxidant genes. These results indicated that evodiamine could block Nrf2/MAPK pathway to inhibit DEHP-induced apoptosis of grass carp hepatocytes.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
25
|
18β-Glycyrrhetinic Acid Ameliorates Neuroinflammation Linked Depressive Behavior Instigated by Chronic Unpredictable Mild Stress via Triggering BDNF/TrkB Signaling Pathway in Rats. Neurochem Res 2023; 48:551-569. [PMID: 36307572 PMCID: PMC9616426 DOI: 10.1007/s11064-022-03779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Evidence shows that inflammatory responses may encompass the onset of severe depressive illness. Traditionally used licorice contains 18β-glycyrrhetinic acid (18βGA), which has been demonstrated to reduce inflammation and oxidative stress. This study investigates the antidepressant effects of 18βGA and the underlying mechanism in rats exposed to chronic unpredictable mild stress (CUMS). Wistar rats were exposed to CUMS for 36 consecutive days to establish depression. 18βGA (10, 20, and 50 mg/kg) or fluoxetine was given once daily (from day 30 to day 36). Thereafter, behavior parameters (sucrose preference test, forced-swimming test, open-field test, body weight), pro-inflammatory cytokines, neurotransmitters, adrenocorticotropic hormone (ACTH), corticosterone (CORT), and liver biomarkers were studied. Immunohistochemistry and western blot analyses were conducted to investigate the protein's expression. 18βGA (20 and 50 mg/kg) treatment increased sucrose intake, locomotion in the open-field test, decreased immobility time in the forced swim test, and improved body weight in CUMS-exposed rats. The therapy of 18βGA dramatically declined cytokines, ACTH and CORT and improved 5HT and norepinephrine in CUMS rats. Furthermore, BDNF and TrkB proteins were down-regulated in CUMS group, which was increased to varying degrees by 18βGA at doses of 20 and 50 mg/kg. Therefore, 18βGA ameliorates depressive-like behavior persuaded by chronic unpredictable mild stress, decreases neuroinflammation, liver biomarkers, stress hormones, and improves body weight, brain neurotransmitter concentration via activating on BDNF/TrkB signaling pathway in both PFC and hippocampus in rats.
Collapse
|