1
|
Almohaimeed HM, Almars AI, Al Abdulmonem W, Alghsham RS, Aljohani ASM, Alharbi YM, Badahdah FA, Alkhudhairy BSM, Soliman MH. Molecular dynamics exploration of Lupenone: therapeutic implications for glioblastoma multiforme and alzheimer's amyloid beta pathogenesis. Metab Brain Dis 2024; 39:77-88. [PMID: 38129732 DOI: 10.1007/s11011-023-01319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
Neuro-oncological and neurodegenerative disorders, represented paradigmatically by glioblastoma and Alzheimer's disease, respectively, persist as formidable challenges in the biomedical realm. The interconnected molecular underpinnings of these conditions necessitate rigorous and novel therapeutic examinations. This comprehensive research was anchored on the premise of unveiling the therapeutic potential and specificity of Lupenone, a potent phytoconstituent, in targeting the molecular pathways underpinning both glioblastoma and Alzheimer's amyloid beta pathology. This was gauged through its interactions with key protein structures, 5H08 and 2ZHV. An integrative approach was adopted, marrying advanced proteomics and modern computer-aided drug design techniques. Molecular docking of Lupenone with 5H08 and 2ZHV was meticulously executed, with subsequent molecular dynamics simulations providing insights into the stability, viability, and intricacies of these interactions. Lupenone demonstrated profound binding affinities, evidenced by robust docking scores of -9.54 kcal/mol for 5H08 and -10.59 kcal/mol for 2ZHV. These interactions underscored Lupenone's eminent therapeutic potential in mitigating glioblastoma and modulating the amyloid beta pathology inherent to Alzheimer's. The introduction of Proteolysis Targeting Chimeras (PROTACs) further magnified the therapeutic prospects, accentuating Lupenone's efficacy. The findings of this study not only underscore the therapeutic acumen of Lupenone in addressing the challenges posed by glioblastoma and Alzheimer's but also lay a strong foundation for its consideration as a leading candidate in future neuro-oncological and neurodegenerative research endeavors. Given the compelling in-silico data, a clarion call is made for its empirical validation in holistic in-vivo settings, potentially pioneering a new therapeutic epoch in both glioblastoma and Alzheimer's interventions.
Collapse
Affiliation(s)
- Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amany I Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Fatima Ahmed Badahdah
- Surgical Department, Prince Sultan Military Medical City, PSMMC, Riyadh, Saudi Arabia
| | | | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Fegade BS, Jadhav SB, Chaudhari SY, T Tandale D, Shantaram Uttekar P, Tabrez S, Khan MS, Zaidi SK, Mukerjee N, Ghosh A. Synthesis and computational insights of flavone derivatives as potential estrogen receptor alpha (ER-α) antagonist. J Biomol Struct Dyn 2023:1-10. [PMID: 38006310 DOI: 10.1080/07391102.2023.2278746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/01/2023] [Indexed: 11/27/2023]
Abstract
Hormone-related breast cancer is mostly caused by interactions with estrogen receptor alpha (ER-α), which functions as a transcription factor to control the transcription of numerous genes. Flavones are considered a good substrate for the estrogen receptor. Substitution of the N-heterocyclic ring on the flavon structure may potentiate its anticancer effect. A series of flavon derivatives with an N-heteroaryl ring at the 4' position of the B ring of flavon were designed, prepared and evaluated for in vitro breast cancer activity. Binding interactions of the PzFL, PzF, PiFL, PiF and IFL compounds with ER-α were studied by molecular docking. Molecular dynamics simulation studies were carried out in order to determine the stability and convergence of protein-ligand complexes. The compounds were produced by cyclizing chalcones and chalcones were produced by Claisen-Schmidt condensation of substituted aldehydes and 2-hydroxy acetophenone. Breast cancer activity was evaluated by the MTT assay on MCF-7 cell lines. Also, compounds were studied for their estrogen receptor binding potential on the same cell lines. Molecular docking of compounds showed a good docking score. The molecular dynamics of these compounds expressed stable root mean square deviation, stable radius of gyration and low binding energy, suggesting that ligand bound to protein is quite stable in the complex. MTT assay on MCF-7 cell lines reported PzF and IFL were the most active compounds with lower IC50 values. ER-α binding assay of these compounds revealed the presence of binding interactions with receptors. This study offers a viable reference point for the design of flavon-incorporated N-heterocyclic ring derivatives as breast cancer compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharti S Fegade
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
- Department of Pharmaceutical Chemistry, Gahlot Institute of Pharmacy, Koparkhairane, Navi Mumbai, Maharashtra, India
| | - Shailaja B Jadhav
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Nigdi, Pune, Maharashtra, India
| | - Deepak T Tandale
- Department of Pharmaceutics, Gahlot Institute of Pharmacy, Koparkhairane, Navi Mumbai, Maharashtra, India
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute Of Medical and Technical Sciences, India
- Department of Microbiology, West Bengal State University, Kolkata, Barasat, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Assam, India
| |
Collapse
|
3
|
Suhail M, Tarique M, Tabrez S, Zughaibi TA, Rehan M. Synergistic inhibition of glioblastoma multiforme through an in-silico analysis of luteolin and ferulic acid derived from Angelica sinensis and Cannabis sativa: Advancements in computational therapeutics. PLoS One 2023; 18:e0293666. [PMID: 37943817 PMCID: PMC10635529 DOI: 10.1371/journal.pone.0293666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
The primary objective of this study is to uncover novel therapeutic agents for the treatment of Glioblastoma Multiforme (GBM), a highly aggressive form of brain cancer, and Alzheimer's Disease (AD). Given the complexity and resistance associated with both conditions, the study underscores the imperative need for therapeutic alternatives that can traverse the biological intricacies inherent in both neuro-oncological and neurodegenerative disorders. To achieve this, a meticulous, target-based virtual screening was employed on an ensemble of 50 flavonoids and polyphenol derivatives primarily derived from plant sources. The screening focused predominantly on molecular targets pertinent to GBM but also evaluated the potential overlap with neural pathways involved in AD. The study utilized molecular docking and Molecular Dynamic (MD) simulation techniques to analyze the interaction of these compounds with a key biological target, protein tyrosine phosphatase receptor-type Z (PTPRZ). Out of the 50 compounds examined, 10 met our stringent criteria for binding affinity and specificity. Subsequently, the highest value of binding energy was observed for the synergistic binding of luteolin and ferulic acid with the value of -10.5 kcal/mol. Both compounds exhibited inherent neuroprotective properties and demonstrated significant potential as pathway inhibitors in GBM as well as molecular modulators in AD. Drawing upon advanced in-silico cytotoxicity predictions and sophisticated molecular modeling techniques, this study casts a spotlight on the therapeutic capabilities of polyphenols against GBM. Furthermore, our findings suggest that leveraging these compounds could catalyze a much-needed paradigm shift towards more integrative therapeutic approaches that span the breadth of both neuro-oncology and neurodegenerative diseases. The identification of cross-therapeutic potential in flavonoids and polyphenols could drastically broaden the scope of treatment modalities against both fatal diseases.
Collapse
Affiliation(s)
- Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Tarique
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|