1
|
Liu C, Wang B, Wang X, Liu J, Gao G, Zhou J. Effect of Alkyl Chain Length on the Corrosion Inhibition Performance of Imidazolium-Based Ionic Liquids for Carbon Steel in 1 M HCl Solution: Experimental Evaluation and Theoretical Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8806-8819. [PMID: 38630545 DOI: 10.1021/acs.langmuir.3c03853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In this study, five kinds of 1-alkyl-3-methylimidazolium bromide ([CXami]Br) ionic liquids with different alkyl chain lengths (8, 10, 12, 14, and 16) were selected as inhibitors. Then, their corrosion inhibition performances for Q235 steel in 1.0 mol L-1 HCl solution were investigated via a weight loss test, polarization curve method, and surface analysis techniques. The results show that these five imidazolium-based ionic liquids are all mixed-type inhibitors, and they can be spontaneously adsorbed onto the Q235 steel surface. The adsorption process follows the Langmuir model and involves mixed physical-chemical adsorption. Theoretical calculations confirm that the increase in alkyl chain length is conducive to the imidazolium-based ionic liquids exhibiting stronger chemical bonding abilities and forming denser adsorption films. The inhibition efficiency significantly increases below the critical micelle concentration (CMC) with an increase in alkyl chain length, and the highest inhibition efficiency is 95.17% for the [C16ami]Br inhibitor at the concentration of 0.005 mM. However, above the CMC, the inhibition efficiency is minimally affected by the alkyl chain length since all ionic liquid inhibitors have reached adsorption saturation on the steel surface.
Collapse
Affiliation(s)
- Chunmiao Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Bin Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Xiuzhi Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Guanhui Gao
- Materials Science and NanoEngineering Department, Rice University, Houston, Texas 77005, United States
| | - Jie Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
2
|
Song Z, Chen J, Cheng J, Chen G, Qi Z. Computer-Aided Molecular Design of Ionic Liquids as Advanced Process Media: A Review from Fundamentals to Applications. Chem Rev 2024; 124:248-317. [PMID: 38108629 DOI: 10.1021/acs.chemrev.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The unique physicochemical properties, flexible structural tunability, and giant chemical space of ionic liquids (ILs) provide them a great opportunity to match different target properties to work as advanced process media. The crux of the matter is how to efficiently and reliably tailor suitable ILs toward a specific application. In this regard, the computer-aided molecular design (CAMD) approach has been widely adapted to cover this family of high-profile chemicals, that is, to perform computer-aided IL design (CAILD). This review discusses the past developments that have contributed to the state-of-the-art of CAILD and provides a perspective about how future works could pursue the acceleration of the practical application of ILs. In a broad context of CAILD, key aspects related to the forward structure-property modeling and reverse molecular design of ILs are overviewed. For the former forward task, diverse IL molecular representations, modeling algorithms, as well as representative models on physical properties, thermodynamic properties, among others of ILs are introduced. For the latter reverse task, representative works formulating different molecular design scenarios are summarized. Beyond the substantial progress made, some future perspectives to move CAILD a step forward are finally provided.
Collapse
Affiliation(s)
- Zhen Song
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahui Chen
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Cheng
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guzhong Chen
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhiwen Qi
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Zhuo Y, Cheng HL, Zhao YG, Cui HR. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024; 16:151. [PMID: 38276519 PMCID: PMC10818567 DOI: 10.3390/pharmaceutics16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - He-Li Cheng
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Hai-Rong Cui
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| |
Collapse
|
4
|
Huang R, Liu H, Wei Z, Jiang Y, Pan K, Wang X, Kong J. Insights into the quantitative structure-activity relationship for ionic liquids: a bibliometric mapping analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95054-95076. [PMID: 37581727 DOI: 10.1007/s11356-023-29285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Environmental protection and sustainability is the development goal that countries all over the world are pursuing. Ionic liquids (ILs), as a new type of green material, have a great application prospect. And the quantitative structure-activity relationship (QSAR) is significant for the research of ILs. To better understand the role played by QSAR in the research of ILs, 4139 literatures published in the WOS database from 2002 to 2022 were used for bibliometric analysis, and different types of knowledge maps were mapped to obtain the current status and trends of IL research applied QSAR. The distribution pattern of the literature output chronology, country, institution, author cooperation, and major source journals can be obtained through the research of the distribution of literature. Through core literature, dual-map overlays, and evolutionary path analysis, the research knowledge base was obtained mainly including ionic liquid toxicological properties research, environmental protection and sustainability, ionic liquid design, and mild steel corrosion inhibition; through the co-occurrence and evolution of keywords, the current research hotspots are basic properties of ILs, corrosion inhibition of mild steel, the effect of toxicity on the environment, QSAR modeling methods, solvent application of ILs, and drug design.
Collapse
Affiliation(s)
- Rui Huang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hui Liu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China.
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Ze Wei
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Yi Jiang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Kai Pan
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Xin Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jie Kong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
5
|
Free volume in physical absorption of carbon dioxide in ionic liquids: Molecular dynamics supported modeling. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Deep Eutectic Solvents – ideal solution for clean air or hidden danger? Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Singh A, Ansari K, Ali IH, Lin Y, Murmu M, Banerjee P. Evaluation of corrosion mitigation properties of pyridinium-based ionic liquids on carbon steel in 15% HCl under the hydrodynamic condition: Experimental, surface, and computational approaches. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Thermodynamics and In-Plane Viscoelasticity of Anionic Phospholipid Membranes Modulated by an Ionic Liquid. Pharm Res 2022; 39:2447-2458. [PMID: 35902532 DOI: 10.1007/s11095-022-03348-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
This article presents the effects of an imidazolium-based ionic liquid (IL) on the thermodynamics and in-plane viscoelastic properties of model membranes of anionic phospholipids. The negative Zeta potential of multilamellar vesicles of 14 carbon lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) is observed to reduce due to the presence of few mole % of an IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The effect was found to be stronger on enhancing the chain length of the lipid. The surface pressure-area isotherms of lipid monolayer formed at air-water interface are modified by the IL reducing the effective area per molecule. Further, the equilibrium elasticity of the film is altered depending upon the thermodynamic phase of the lipids. While the presence of the IL in the DMPG lipid makes it ordered in the gel phase by reducing the entropy, the effect is opposite in the fluid phase. The in-plane viscoelastic parameters of the lipid film is quantified by dilation rheology using the oscillatory barriers of a Langmuir trough. Even though the low chain lipid DMPG does not show any effect of IL on its storage and loss moduli, the longer chain lipids exhibit a prominent effect in the liquid extended (LE) phase. Further, the dynamic response of the lipid film is found to be distinctly different in the liquid condensed (LC) phase from that of the LE phase.
Collapse
|
9
|
Navti PD, Pandey A, Nikam AN, Padya BS, Kalthur G, Koteshwara KB, Mutalik S. Ionic Liquids Assisted Topical Drug Delivery for Permeation Enhancement: Formulation Strategies, Biomedical Applications, and Toxicological Perspective. AAPS PharmSciTech 2022; 23:161. [PMID: 35676441 DOI: 10.1208/s12249-022-02313-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 01/31/2023] Open
Abstract
Topical drug delivery provides several benefits over other conventional routes by providing localizing therapeutic effects and also avoids the gastrointestinal tract circumventing the first-pass metabolism and enzymatic drug degradation. Being painless, the topical route also prevents the difficulties linked with the parenteral route. However, there are limitations to the current topical systems which necessitate the need for further research to find functional excipients to overcome these limitations. This review deals in depth with the ionic liquids concerning their physicochemical properties and applicability as well as their role in the arena of topical drug delivery in permeation enhancement, bioavailability enhancement of the drugs by solvation, and drug moiety modification. The review gives a detailed insight into the recent literature on ionic liquid-based topical formulations like ionic liquid-based emulsions, active pharmaceutical ingredient-ionic liquids, ionic liquid-based bacterial cellulose membranes, topical small interfering RNA (siRNA) delivery, and ionogels as a possible solutions for overcoming the challenges associated with the topical route. This review also takes into account the toxicological aspects and biomedical applications of ionic liquids.
Collapse
Affiliation(s)
- Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Kunnatur B Koteshwara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India.
| |
Collapse
|
10
|
User-assisted methodology targeted for building structure interpretable QSPR models for boosting CO2 capture with ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Monsalve-Atencio R, Montaño DF, Contreras-Calderón J. Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods. Crit Rev Food Sci Nutr 2022; 63:6820-6839. [PMID: 35170386 DOI: 10.1080/10408398.2022.2038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is one of the most consumed beverages in the world. Coffee provides to the consumer special sensorial characteristics, can help to prevent diseases, improves physical performance and increases focus. In contrast, coffee consumption supplies a significant source of substances with carcinogenic and genotoxic potential such as furan, hydroxymethylfurfural (HMF), furfural (F), and acrylamide (AA). The present review addresses the issues around the presence of such toxic substances formed in Maillard reaction (MR) during thermal treatments in food processing, from chemical and, toxicological perspectives, occurrences in coffee and other foods processed by heating. In addition, current strategies advantages and disadvantages are presented along with application of molecular imprinting technology (MIT) and poly (ionic liquid) s (PIL) as an alternative to reduce the furan, HMF, F and AA content in coffee and other foods.
Collapse
Affiliation(s)
- Robinson Monsalve-Atencio
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Diego F Montaño
- Department of Chemistry, Faculty of Basic Sciences, University of Pamplona, Pamplona, Norte de Santander, Colombia
| | - José Contreras-Calderón
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
12
|
Rehman AU, Zaini DB, Lal B. Predictive ecotoxicological modeling of ionic liquids using QSAR techniques: A mini review. PROCESS SAFETY PROGRESS 2022. [DOI: 10.1002/prs.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Adeel ur Rehman
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Perak Malaysia
| | - Dzulkarnain B. Zaini
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Perak Malaysia
| | - Bhajan Lal
- Department of Chemical Engineering Universiti Teknologi PETRONAS Bandar Seri Iskandar Perak Malaysia
| |
Collapse
|
13
|
Errazquin D, Mohamadou A, Dupont L, De Gaetano Y, García CB, Lomba L, Giner B. Ecotoxicity interspecies study of ionic liquids based on phosphonium and ammonium cations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65374-65384. [PMID: 34231157 DOI: 10.1007/s11356-021-14851-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
This work studies the effects of different bromide-based ionic liquids, with phosphonium and ammonium cations, towards several environmental biomodels: Daphnia magna, Allivibrio fischeri, Raphidocelis subcapitata. Results indicate that toxicity clearly depends on the biomodel, Allivibrio fischeri being the least sensitive one while Daphnia magna is more severely affected in the presence of the studied ionic liquids. In most of the cases, phosphonium moieties are less toxic than ammonium ionic liquids. Furthermore, a prediction about the oral toxicity and carcinogenicity of the studied ionic liquids has been also carried out, showing that these chemical structures may suggest significant toxicity but not present genotoxic or nongenotoxic carcinogenicity.
Collapse
Affiliation(s)
- Diego Errazquin
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Aminou Mohamadou
- Institut de Chimie Moléculaire de Reims (ICMR) CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles, Bâtiment 18 Europol'Agro, 1039, F-51687 CEDEX 2, Reims, BP, France
| | - Laurent Dupont
- Institut de Chimie Moléculaire de Reims (ICMR) CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles, Bâtiment 18 Europol'Agro, 1039, F-51687 CEDEX 2, Reims, BP, France
| | - Yannick De Gaetano
- Institut de Chimie Moléculaire de Reims (ICMR) CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR des Sciences Exactes et Naturelles, Bâtiment 18 Europol'Agro, 1039, F-51687 CEDEX 2, Reims, BP, France
| | - Cristina B García
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain
| | - Beatriz Giner
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gállego, Zaragoza, Spain.
| |
Collapse
|
14
|
|
15
|
Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures. Molecules 2021; 26:molecules26195779. [PMID: 34641322 PMCID: PMC8510218 DOI: 10.3390/molecules26195779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Deep eutectic solvents (DES) are often regarded as greener sustainable alternative solvents and are currently employed in many industrial applications on a large scale. Bearing in mind the industrial importance of DES—and because the vast majority of DES has yet to be synthesized—the development of cheminformatic models and tools efficiently profiling their density becomes essential. In this work, after rigorous validation, quantitative structure-property relationship (QSPR) models were proposed for use in estimating the density of a wide variety of DES. These models were based on a modelling dataset previously employed for constructing thermodynamic models for the same endpoint. The best QSPR models were robust and sound, performing well on an external validation set (set up with recently reported experimental density data of DES). Furthermore, the results revealed structural features that could play crucial roles in ruling DES density. Then, intelligent consensus prediction was employed to develop a consensus model with improved predictive accuracy. All models were derived using publicly available tools to facilitate easy reproducibility of the proposed methodology. Future work may involve setting up reliable, interpretable cheminformatic models for other thermodynamic properties of DES and guiding the design of these solvents for applications.
Collapse
|
16
|
Magina S, Barros-Timmons A, Ventura SPM, Evtuguin DV. Evaluating the hazardous impact of ionic liquids - Challenges and opportunities. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125215. [PMID: 33951860 DOI: 10.1016/j.jhazmat.2021.125215] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), being related to the design of new environmentally friendly solvents, are widely considered for applications within the "green chemistry" concept. Due to their unique properties and wide diversity, ILs allow tailoring new separation procedures and producing new materials for advanced applications. However, despite the promising technical performance, environmental concerns highlighted in recent studies focused on the toxicity and biodegradability of ILs and their metabolites have revealed that ILs safety labels are not as benign as previously claimed. This review refers to the fundamentals about the properties and applications of ILs also in the context of their potential environmental effect. Toxicological issues and harmful effects related to the use of ILs are discussed, including the evaluation of their biodegradability and ecological impact on diverse organisms and ecosystems, also with respect to bacteria, fungi, and cell cultures. In addition, this review covers the tools used to assess the toxicity of ILs, including the predictive computational models and the results of studies involving cell membrane models and molecular simulations. Summing up the knowledge available so far, there are still no reliable criteria for unequivocal attribution of toxicity and environmental impact credentials for ILs, which is a challenging research task.
Collapse
Affiliation(s)
- Sandra Magina
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Ana Barros-Timmons
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Sónia P M Ventura
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal
| | - Dmitry V Evtuguin
- CICECO-Institute of Materials and Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro P-3810-193, Portugal.
| |
Collapse
|
17
|
Koutsoukos S, Philippi F, Malaret F, Welton T. A review on machine learning algorithms for the ionic liquid chemical space. Chem Sci 2021; 12:6820-6843. [PMID: 34123314 PMCID: PMC8153233 DOI: 10.1039/d1sc01000j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
There are thousands of papers published every year investigating the properties and possible applications of ionic liquids. Industrial use of these exceptional fluids requires adequate understanding of their physical properties, in order to create the ionic liquid that will optimally suit the application. Computational property prediction arose from the urgent need to minimise the time and cost that would be required to experimentally test different combinations of ions. This review discusses the use of machine learning algorithms as property prediction tools for ionic liquids (either as standalone methods or in conjunction with molecular dynamics simulations), presents common problems of training datasets and proposes ways that could lead to more accurate and efficient models.
Collapse
Affiliation(s)
- Spyridon Koutsoukos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Francisco Malaret
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|
18
|
Abstract
Salicylates have a long history of use for pain relief. Salicylic acid and methyl salicylate are among the widely used topical salicylates namely for keratolytic and anti-inflammatory actions, respectively. The current review summarises both passive and active strategies, including emerging technologies employed to enhance skin permeation of these two salicylate compounds. The formulation design of topical salicylic acid targets the drug retention in and on the skin based on the different indications including keratolytic, antibacterial and photoprotective actions, while the investigations of topical delivery strategies for methyl salicylate are limited. The pharmacokinetics and metabolisms of both salicylate compounds are discussed. The current overview and future perspectives of the topical delivery strategies are also highlighted for translational considerations of formulation designs.
Collapse
|
19
|
Paduszyński K. Extensive Databases and Group Contribution QSPRs of Ionic Liquid Properties. 3: Surface Tension. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kamil Paduszyński
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
20
|
Abstract
Since their conception, ionic liquids (ILs) have been investigated for an extensive range of applications including in solvent chemistry, catalysis, and electrochemistry. This is due to their designation as designer solvents, whereby the physiochemical properties of an IL can be tuned for specific applications. This has led to significant research activity both by academia and industry from the 1990s, accelerating research in many fields and leading to the filing of numerous patents. However, while ILs have received great interest in the patent literature, only a limited number of processes are known to have been commercialised. This review aims to provide a perspective on the successful commercialisation of IL-based processes, to date, and the advantages and disadvantages associated with the use of ILs in industry.
Collapse
|
21
|
Flieger J, Flieger M. Ionic Liquids Toxicity-Benefits and Threats. Int J Mol Sci 2020; 21:E6267. [PMID: 32872533 PMCID: PMC7504185 DOI: 10.3390/ijms21176267] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their "green" features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic "greener" ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Michał Flieger
- Medical University of Lublin, Faculty of Medicine, Aleje Racławickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
22
|
Ghorbani M, Simone MI. Developing New Inexpensive Room-Temperature Ionic Liquids with High Thermal Stability and a Greener Synthetic Profile. ACS OMEGA 2020; 5:12637-12648. [PMID: 32548447 PMCID: PMC7288359 DOI: 10.1021/acsomega.9b04091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/14/2020] [Indexed: 05/27/2023]
Abstract
Ionic liquids (ILs) have advantageous physical properties, which resulted in a rapid growth of research in this area in the past 15 years. One of the biggest challenges preventing the widespread use of ILs is the cost of production due to complex synthetic routes and/or expensive starting materials. Keeping in mind these industrial needs for scale-up and the desirable properties for applications in the lubrification area, here, we report the design and synthesis of four novel series of hydrophobic room-temperature ILs (RTILs) achieved from cheap and commercially available starting materials, namely, silicon-based, imidazolium-based, phosphonium-based, and monomer imidazolium-based. These syntheses were developed as expedited chemistry protocols and possess a greener synthetic profile compared to previously reported ILs of similar structures. All the RTILs were characterized by 1D NMR (1H NMR, 13C NMR, 31P NMR, 19F NMR, and 11B NMR) and 2D NMR (COSY, HSQC, and HMBC) analyses, high-resolution mass spectrometry, and chemical tests (primarily the silver nitrate test). Preliminary thermal analysis tests by thermogravimetric analysis show all novel RTILs display remarkably high thermal stabilities (386-474 °C). Differential scanning calorimetry data show low glass transitions ranging from -36 to -72 °C, which suggests good free volume and ion mobility.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Discipline
of Chemistry, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Institute
for Frontier Materials, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Michela I. Simone
- Discipline
of Chemistry, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
23
|
Rybińska-Fryca A, Sosnowska A, Puzyn T. Representation of the Structure-A Key Point of Building QSAR/QSPR Models for Ionic Liquids. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2500. [PMID: 32486309 PMCID: PMC7321456 DOI: 10.3390/ma13112500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022]
Abstract
The process of encoding the structure of chemicals by molecular descriptors is a crucial step in quantitative structure-activity/property relationships (QSAR/QSPR) modeling. Since ionic liquids (ILs) are disconnected structures, various ways of representing their structure are used in the QSAR studies: the models can be based on descriptors either derived for particular ions or for the whole ionic pair. We have examined the influence of the type of IL representation (separate ions vs. ionic pairs) on the model's quality, the process of the automated descriptors selection and reliability of the applicability domain (AD) assessment. The result of the benchmark study showed that a less precise description of ionic liquid, based on the 2D descriptors calculated for ionic pairs, is sufficient to develop a reliable QSAR/QSPR model with the highest accuracy in terms of calibration as well as validation. Moreover, the process of a descriptors' selection is more effective when the possible number of variables can be decreased at the beginning of model development. Additionally, 2D descriptors usually demand less effort in mechanistic interpretation and are more convenient for virtual screening studies.
Collapse
Affiliation(s)
- Anna Rybińska-Fryca
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland;
- QSAR Lab Ltd., al. Grunwaldzka 190/102, 80-266 Gdańsk, Poland;
| | - Anita Sosnowska
- QSAR Lab Ltd., al. Grunwaldzka 190/102, 80-266 Gdańsk, Poland;
| | - Tomasz Puzyn
- Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland;
- QSAR Lab Ltd., al. Grunwaldzka 190/102, 80-266 Gdańsk, Poland;
| |
Collapse
|
24
|
Paduszyński K, Królikowska M. Extensive Evaluation of Performance of the COSMO-RS Approach in Capturing Liquid–Liquid Equilibria of Binary Mixtures of Ionic Liquids with Molecular Compounds. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kamil Paduszyński
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marta Królikowska
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Thermodynamic Research Unit, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, 4041 Durban, South Africa
| |
Collapse
|
25
|
Abramenko N, Kustov L, Metelytsia L, Kovalishyn V, Tetko I, Peijnenburg W. A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121429. [PMID: 31732345 DOI: 10.1016/j.jhazmat.2019.121429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Natalia Abramenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Leninsky prospect 47, 119991, Russia; N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Leonid Kustov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Leninsky prospect 47, 119991, Russia; National University of Science and Technology MISiS, Leninsky prosp. 4, Moscow, Russia
| | - Larysa Metelytsia
- Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine
| | - Vasyl Kovalishyn
- Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Science of Ukraine, 1 Murmanska Street, 02660, Kyiv, Ukraine
| | - Igor Tetko
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Structural Biology, BIGCHEM GmbH, Ingolstädter Landstraße 1, b. 60w, D-85764 Neuherberg, Germany
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for Safety of Substances and Products, PO Box 1, 3720 BA, Bilthoven, the Netherlands.
| |
Collapse
|
26
|
Zheng L, Zhao Z, Yang Y, Li Y, Wang C. Novel skin permeation enhancers based on amino acid ester ionic liquid: Design and permeation mechanism. Int J Pharm 2020; 576:119031. [DOI: 10.1016/j.ijpharm.2020.119031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/15/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
27
|
Agudelo ÁJP, Ferreira GMD, Ferreira GMD, Coelho YL, Hudson EA, Pires ACDS, da Silva LHM. Aggregation of sodium dodecylbenzene sulfonate: Weak molecular interactions modulated by imidazolium cation of short alkyl chain length. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Sivapragasam M, Moniruzzaman M, Goto M. An Overview on the Toxicological Properties of Ionic Liquids toward Microorganisms. Biotechnol J 2020; 15:e1900073. [PMID: 31864234 DOI: 10.1002/biot.201900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/21/2019] [Indexed: 12/27/2022]
Abstract
Ionic liquids (ILs), a class of materials with unique physicochemical properties, have been used extensively in the fields of chemical engineering, biotechnology, material sciences, pharmaceutics, and many others. Because ILs are very polar by nature, they can migrate into the environment with the possibility of inclusion in the food chain and bioaccumulation in living organisms. However, the chemical natures of ILs are not quintessentially biocompatible. Therefore, the practical uses of ILs must be preceded by suitable toxicological assessments. Among different methods, the use of microorganisms to evaluate IL toxicity provides many advantages including short generation time, rapid growth, and environmental and industrial relevance. This article reviews the recent research progress on the toxicological properties of ILs toward microorganisms and highlights the computational prediction of various toxicity models.
Collapse
Affiliation(s)
- Magaret Sivapragasam
- Biotechnology Department, QUEST International University Perak, 30250, Ipoh, Perak, Malaysia
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.,Center of Researches in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
29
|
Mondal D, Ghosh K, Baidya ATK, Gantait AM, Gayen S. Identification of structural fingerprints for in vivo toxicity by using Monte Carlo based QSTR modeling of nitroaromatics. Toxicol Mech Methods 2020; 30:257-265. [DOI: 10.1080/15376516.2019.1709238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dipayan Mondal
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Anurag T. K. Baidya
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | | | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| |
Collapse
|
30
|
Obot I, Solomon MM, Umoren SA, Suleiman R, Elanany M, Alanazi NM, Sorour AA. Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Paduszyński K. Extensive Databases and Group Contribution QSPRs of Ionic Liquids Properties. 2. Viscosity. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamil Paduszyński
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
32
|
A Snapshot of Transdermal and Topical Drug Delivery Research in Canada. Pharmaceutics 2019; 11:pharmaceutics11060256. [PMID: 31159422 PMCID: PMC6631132 DOI: 10.3390/pharmaceutics11060256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
The minimally- or non-invasive delivery of therapeutic agents through the skin has several advantages compared to other delivery routes and plays an important role in medical care routines. The development and refinement of new technologies is leading to a drastic expansion of the arsenal of drugs that can benefit from this delivery strategy and is further intensifying its impact in medicine. Within Canada, as well, a few research groups have worked on the development of state-of-the-art transdermal delivery technologies. Within this short review, we aim to provide a critical overview of the development of these technologies in the Canadian environment.
Collapse
|
33
|
Zanoni BV, Brasil Romão G, Andrade RS, Barretto Cicarelli RM, Trovatti E, Chiari-Andrèo BG, Iglesias M. Cytotoxic effect of protic ionic liquids in HepG2 and HaCat human cells: in vitro and in silico studies. Toxicol Res (Camb) 2019; 8:447-458. [PMID: 31160977 PMCID: PMC6505392 DOI: 10.1039/c8tx00338f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/26/2019] [Indexed: 01/27/2023] Open
Abstract
Protic ionic liquids (PILs) are innovative chemical compounds, which due to their peculiar nature and amazing physico-chemical properties, have been studied as potential sustainable solvents in many areas of modern science, such as in the industrial fields of textile dyeing, pharmaceuticals, biotechnology, energy and many others. Due to their more than probable large-scale use in a short space of time, a wider analysis in terms of ecotoxicity and biological safety to humans has been attracting significant attention, once many ionic liquids were found to be "a little less than green compounds" towards cells and living organisms. The aim of this study is to investigate the cytotoxicity of 13 recently synthesized PILs, as well as to reinforce knowledge in terms of key thermodynamic magnitudes. All the studied compounds were tested for their in vitro toxic activities on two human cell lines (normal keratinocytes HaCaT and hepatocytes HepG2). In addition, due to the enormous number of possible combinations of anions and cations that can form ionic liquids, a group contribution QSAR model has been tested in order to predict their cytotoxicity. The estimated and experimental values were adequately correlated (correlation coefficient R 2 = 0.9260). The experimental obtained results showed their remarkable low toxicity for the studied in vitro systems.
Collapse
Affiliation(s)
- Bruna Varela Zanoni
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
| | - Gabriela Brasil Romão
- Universidade Federal da Bahia , Rua Aristides Novis , 2 , Federação , CEP 40210-630 , Salvador , BA , Brazil
| | - Rebecca S Andrade
- Universidade Federal do Recôncavo da Bahia , Av. Centenário , 697 , Sim , CEP 44042-280 , Feira de Santana , BA , Brazil .
| | - Regina Maria Barretto Cicarelli
- Universidade Estadual Paulista (UNESP) , Faculdade de Ciências Farmacêuticas , Rod.Araraquara - Jaú , Km 1 , CEP 14800-903 , Araraquara , Brazil
| | - Eliane Trovatti
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
| | - Bruna Galdorfini Chiari-Andrèo
- Universidade de Araraquara - UNIARA , R. Carlos Gomes , 1217 , CEP 14801-340 , Araraquara , SP , Brazil
- Universidade Estadual Paulista (UNESP) , Faculdade de Ciências Farmacêuticas , Rod.Araraquara - Jaú , Km 1 , CEP 14800-903 , Araraquara , Brazil
| | - Miguel Iglesias
- Universidade Federal da Bahia , Rua Aristides Novis , 2 , Federação , CEP 40210-630 , Salvador , BA , Brazil
| |
Collapse
|
34
|
Paduszyński K. Extensive Databases and Group Contribution QSPRs of Ionic Liquids Properties. 1. Density. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kamil Paduszyński
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
35
|
Koutinas M, Vasquez MI, Nicolaou E, Pashali P, Kyriakou E, Loizou E, Papadaki A, Koutinas AA, Vyrides I. Biodegradation and toxicity of emerging contaminants: Isolation of an exopolysaccharide-producing Sphingomonas sp. for ionic liquids bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:88-96. [PMID: 30412811 DOI: 10.1016/j.jhazmat.2018.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs) have been characterized as contaminants of emerging concern (CEC) that often resist biodegradation and impose toxicity upon environmental release. Sphingomonas sp. MKIV has been isolated as an extreme microorganism capable for biodegradation of major classes of ILs. Six imidazolium-, pyridinium- and ammonium-based ILs (pyridinium trifluoromethanesulfonate [Py][CF3SO3], 1-(4-pyridyl)pyridinium chloride [1-4PPy][Cl], 1-butyl-3-methylimidazolium bromide [BMIM][Br], 1-butyl-3-methylimidazolium methanesulfonate [BMIM][MeSO4], tetrabutylammonium iodide [n-Bu4N][I] and tetrabutylammonium hexafluorophosphate [n-Bu4N][PF6]) were used for microbial growth. The strain achieved 91% and 87% removal efficiency for cultures supplemented with 100 mg L-1 of [BMIM][MeSO4] and [n-Bu4N][I] respectively. The metabolic activity of MKIV was inhibited following preliminary stages of cultures conducted using [BMIM][MeSO4], [BMIM][Br], [Py][CF3SO3] and [n-Bu4N][PF6], indicating potential accumulation of inhibitory metabolites. Thus, a comprehensive toxicological study of the six ILs on Aliivibrio fischeri, Daphnia magna and Raphidocelis subcapitata was conducted demonstrating that the compounds impose moderate and low toxicity. The end-products from [BMIM][MeSO4] and [n-Bu4N][I] biodegradation were assessed using Aliivibrio fischeri, exhibiting increased environmental impact of the latter following biotreatment. MKIV produced 19.29 g L-1 of biopolymer, comprising mainly glucose and galacturonic acid, from 25 g L-1 of glucose indicating high industrial significance for bioremediation and exopolysaccharide production.
Collapse
Affiliation(s)
- Michalis Koutinas
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus.
| | - Marlen I Vasquez
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Euthimia Nicolaou
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Petros Pashali
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Eleni Kyriakou
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Elena Loizou
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| | - Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Ioannis Vyrides
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036, Limassol, Cyprus
| |
Collapse
|
36
|
Sidat Z, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD, Choonara YE, Pillay V. Ionic Liquids as Potential and Synergistic Permeation Enhancers for Transdermal Drug Delivery. Pharmaceutics 2019; 11:E96. [PMID: 30813375 PMCID: PMC6409523 DOI: 10.3390/pharmaceutics11020096] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
Transdermal drug delivery systems (TDDS) show clear advantages over conventional routes of drug administration. Nonetheless, there are limitations to current TDDS which warrant further research to improve current TDD platforms. Spurred by the synthesis of novel biodegradable ionic liquids (ILs) and favorable cytotoxicity studies, ILs were shown to be a possible solution to overcome these challenges. Their favorable application in overcoming challenges ranging from synthesis, manufacture, and even therapeutic benefits were documented. In this review, said ILs are highlighted and their role in TDDS is reviewed in terms of (a) ILs as permeation enhancers (single agents or combined), (b) ILs in drug modification, and (c) ILs as active pharmaceutical ingredients. Furthermore, future combination of ILs with other chemical permeation enhancers (CPEs) is proposed and discussed.
Collapse
Affiliation(s)
- Zainul Sidat
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
37
|
Abstract
The high performance of chemically-modified silica gel packing materials is based on the utilization of pure silica gels. Earlier silica gels used to be made from inorganic silica; however, nowadays, silica gels are made from organic silanes. The surface smoothness and lack of trace metals of new silica gels permits easy surface modifications (chemical reactions) and improves the reproducibility and stability. Sharpening peak symmetry is based on developing better surface modification methods (silylation). Typical examples can be found in the chromatography of amitriptyline for silanol testing and that of quinizarin for trace metal testing. These test compounds were selected and demonstrated sensitive results in the measurement of trace amounts of either silanol or trace metals. Here, we demonstrate the three-dimensional model chemical structures of bonded-phase silica gels with surface electron density for easy understanding of the molecular interaction sites with analytes. Furthermore, a quantitative explanation of hydrophilic and hydrophobic liquid chromatographies was provided. The synthesis methods of superficially porous silica gels and their modified products were introduced.
Collapse
|
38
|
Barycki M, Sosnowska A, Jagiello K, Puzyn T. Multi-Objective Genetic Algorithm (MOGA) As a Feature Selecting Strategy in the Development of Ionic Liquids’ Quantitative Toxicity–Toxicity Relationship Models. J Chem Inf Model 2018; 58:2467-2476. [DOI: 10.1021/acs.jcim.8b00378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maciej Barycki
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Anita Sosnowska
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Karolina Jagiello
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Tomasz Puzyn
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
39
|
Piir G, Kahn I, García-Sosa AT, Sild S, Ahte P, Maran U. Best Practices for QSAR Model Reporting: Physical and Chemical Properties, Ecotoxicity, Environmental Fate, Human Health, and Toxicokinetics Endpoints. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:126001. [PMID: 30561225 PMCID: PMC6371683 DOI: 10.1289/ehp3264] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 05/31/2023]
Abstract
BACKGROUND Quantitative and qualitative structure–activity relationships (QSARs) have been used to understand chemical behavior for almost a century. The main source of QSAR models is the scientific literature, but the open question is how well these models are documented. OBJECTIVES The main aim of this study was to critically analyze the publication practices of QSARs with regard to transparency, potential reproducibility, and independent verification. The focus was on the level of technical completeness of the published QSARs. METHODS A total of 1,533 QSAR articles reporting 79 individual endpoints, mostly in environmental and health science, were reviewed. The QSAR parameters required for technical completeness were grouped into five categories: chemical structures, experimental endpoint values, descriptor values, mathematical representation of the model, and predicted endpoint values. The data were summarized and discussed using Circos plots. RESULTS Altogether, 42.5% of the reviewed articles were found to be potentially reproducible. The potential reproducibility for different endpoint groups varied; the respective rates were 39% for physical and chemical properties, 52% for ecotoxicity, 56% for environmental fate, 30% for human health, and 32% for toxicokinetics. The reproducibility of QSARs is discussed and placed in the context of the reproducibility of the experimental methods. Included are 65 references to open QSAR datasets as examples of models restored from scientific articles. DISCUSSION Strikingly poor documentation of QSARs was observed, which reduces the transparency, availability, and consequently, the application of research results in scientific, industrial, and regulatory areas. A list of the components needed to ensure the best practices for QSAR reporting is provided, allowing long-term use and preservation of the models. This list also allows an assessment of the reproducibility of models by interested parties such as journal editors, reviewers, regulators, evaluators, and potential users. https://doi.org/10.1289/EHP3264.
Collapse
Affiliation(s)
- Geven Piir
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Iiris Kahn
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Sulev Sild
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Priit Ahte
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
40
|
Tsarpali V, Dailianis S. [omim][BF 4]-mediated toxicity in mussel hemocytes includes its interaction with cellular membrane proteins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:88-94. [PMID: 30099324 DOI: 10.1016/j.aquatox.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/13/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
The current study is based on the increasing demand for the assessment of ionic liquid (IL)-mediated aquatic toxicity. Specifically, although a lot of studies have been performed so far, investigating IL-mediated adverse effects on numerous aquatic organisms, little is known about their mode of action. Given that the use of in vitro models is considered as a reliable tool for determining the mediated biological effects, the modulation of specific biochemical pathways and the onset of various forms of damage with great precision and reproducibility, mixed primary cultures of mussel Mytilus galloprovincialis hemocytes were used for investigating whether 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]) mediated toxicity is related to its interaction with cellular membrane proteins. Specifically, [omim][BF4]-mediated cytotoxic, oxidative and genotoxic effects were investigated in mussel hemocytes before and after pre-treatment of cells with non-toxic concentration of guanidine hydrochloride (1 mM GndHCl). The results showed that [omim][BF4] at concentrations ranging from 0.7 to 1.75 μM can induce cytotoxic (almost <50% reduction of cell viability), oxidative (increased levels of O2•- production and lipid peroxidation by-products) and genotoxic (increased levels of DNA damage) effects, while cells pre-treated with 1 mM GndHCl showed a significant attenuation of IL's toxic potency in all cases. According to the latter, the current study showed that [omim][BF4]-mediated toxicity could be related not only to its well-known interaction with membrane lipid bilayers, but also to its interference with membrane proteins. Using GndHCl, a chaotropic agent that disrupts the hydrogen bonding network and the stability of membrane proteins via its interference with the intramolecular interactions mediated by non-covalent forces on cellular membranes, it was firstly shown that altering the membrane integrity as well as the native state of cellular membrane proteins, by weakening the hydrophobic effect, could attenuate the possible interaction of [omim][BF4] with cellular membranes and the concomitant induction of protein-based intracellular processes, commonly linked with the induction of severe cellular damage.
Collapse
Affiliation(s)
- Vasiliki Tsarpali
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26 500 Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26 500 Patras, Greece.
| |
Collapse
|
41
|
Abstract
Chemoinformatic methods, such as multivariable explorative techniques and quantitative structure-activity relationship (QSAR) modeling, allow for discovering relationships between the activity and the structure of chemical compounds. These techniques can be applied, as preliminary screening methods for designing and/or selecting new compounds with defined activity.Here we describe step by step how to preliminarily screen ionic liquids (a set of 13 ILs) and assess their cytotoxic activity against leukemia cell line IPC-81 as well as ILs' potential to inhibit acetylcholinesterase enzyme using the TRIC method (toxicity ranking index of cations) combined with the QSAR approach.
Collapse
|
42
|
|
43
|
Seeger ZL, Kobayashi R, Izgorodina EI. Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids. J Chem Phys 2018; 148:193832. [DOI: 10.1063/1.5009791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Zoe L. Seeger
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Rika Kobayashi
- Australian National University, Leonard Huxley Building 56, Mills Road, Canberra, ACT 2601, Australia
| | | |
Collapse
|
44
|
De P, Roy K. Greener chemicals for the future: QSAR modelling of the PBT index using ETA descriptors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:319-337. [PMID: 29457543 DOI: 10.1080/1062936x.2018.1436086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Persistent, bioaccumulative and toxic (PBT) chemicals symbolize a group of substances that are not easily degraded; instead, they accumulate in different organisms and exhibit an acute or chronic toxicity. The limited empirical data on PBT chemicals, the high cost of testing together with the regulatory constraints and the international push for reduced animal testing motivate a greater reliance on predictive computational methods like quantitative structure-activity relationship (QSAR) models in PBT assessment. Papa and Gramatica have recently proposed a PBT index that could be computed directly from structural features. In the current study, we have modelled the experimentally derived PBT index data using an extended topological atom (ETA) along with constitutional descriptors to show the usefulness of the ETA indices in modelling the endpoint. The models developed through a double cross-validation (DCV) method gave the best results in terms of both internal and external validation metrics. The developed models were comparable in predictive quality to those previously reported. The current models were further used for consensus predictions of PBT behaviour for a set of pharmaceuticals and a set of synthetic drug-like compounds. The developed models can be used in PBT hazard screening for identification and prioritization of chemicals from the structural information alone.
Collapse
Affiliation(s)
- P De
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700 032 , India
| | - K Roy
- a Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology , Jadavpur University , Kolkata 700 032 , India
| |
Collapse
|
45
|
Yildiz M, Gerengi H, Solomon MM, Kaya E, Umoren SA. Influence of 1-butyl-1-methylpiperidinium tetrafluoroborate on St37 steel dissolution behavior in HCl environment. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1407759] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mesut Yildiz
- Corrosion Research Laboratory, Faculty of Engineering, Department of Mechanical Engineering, Duzce University, Duzce, Turkey
| | - Husnu Gerengi
- Corrosion Research Laboratory, Faculty of Engineering, Department of Mechanical Engineering, Duzce University, Duzce, Turkey
| | - Moses M. Solomon
- Corrosion Research Laboratory, Faculty of Engineering, Department of Mechanical Engineering, Duzce University, Duzce, Turkey
| | - Ertuğrul Kaya
- Corrosion Research Laboratory, Faculty of Engineering, Department of Mechanical Engineering, Duzce University, Duzce, Turkey
| | - Saviour A. Umoren
- Centre of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
46
|
Peng LQ, Yu WY, Xu JJ, Cao J. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria. Food Chem 2018; 239:1075-1084. [PMID: 28873524 DOI: 10.1016/j.foodchem.2017.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 11/26/2022]
Abstract
A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I-, monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I-, MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices.
Collapse
Affiliation(s)
- Li-Qing Peng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Wen-Yan Yu
- The Emergency Department, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310018, China.
| | - Jing-Jing Xu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
47
|
Mendonça CMN, Balogh DT, Barbosa SC, Sintra TE, Ventura SPM, Martins LFG, Morgado P, Filipe EJM, Coutinho JAP, Oliveira ON, Barros-Timmons A. Understanding the interactions of imidazolium-based ionic liquids with cell membrane models. Phys Chem Chem Phys 2018; 20:29764-29777. [DOI: 10.1039/c8cp05035j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IL–phospholipid interactions were studied using Langmuir monolayers and molecular simulations.
Collapse
Affiliation(s)
- Carlos M. N. Mendonça
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | | | | | - Tânia E. Sintra
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | - Sónia P. M. Ventura
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | - Luís F. G. Martins
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Pedro Morgado
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Eduardo J. M. Filipe
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - João A. P. Coutinho
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| | | | - Ana Barros-Timmons
- CICECO-Aveiro Institute of Materials – Department of Chemistry
- University of Aveiro
- Campus de Santiago
- Aveiro
- Portugal
| |
Collapse
|
48
|
Bubalo MC, Radošević K, Redovniković IR, Slivac I, Srček VG. Toxicity mechanisms of ionic liquids. Arh Hig Rada Toksikol 2017; 68:171-179. [DOI: 10.1515/aiht-2017-68-2979] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022] Open
Abstract
Abstract
Over the past three decades a growing awareness of environmental protection prompted the development of so-called green and sustainable technologies. Therefore, academic and wider community intensively explores new chemicals and safer, more energy efficient processes based on a rational compromise between economic, social, and environmental requirements. Due to low volatility and stability, ionic liquids emerged as a potential replacement for traditional volatile and harmful organic solvents. Various studies have been carried out to validate the green character of ionic liquids, whereby data published suggest that these compounds, due to their relatively high toxicity and poor biodegradability, could have an extremely negative impact on the environment. This paper presents the current knowledge on the toxicity of ionic liquids, with a special emphasis on the mechanisms by which this group of compounds causes changes in the morphology and physiology of organisms at different organisational levels of the ecosystem.
Collapse
Affiliation(s)
- Marina Cvjetko Bubalo
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb , Croatia
| | - Kristina Radošević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb , Croatia
| | | | - Igor Slivac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb , Croatia
| | - Višnja Gaurina Srček
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb , Croatia
| |
Collapse
|
49
|
Belavgeni A, Dailianis S. The role of phosphatidylinositol-3-OH-kinase (PI3-kinase) and respiratory burst enzymes in the [omim][BF 4]-mediated toxic mode of action in mussel hemocytes. FISH & SHELLFISH IMMUNOLOGY 2017; 68:144-153. [PMID: 28698124 DOI: 10.1016/j.fsi.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
The present study investigates the role of phosphatidylinositol-3-OH-kinase (PI3-kinase) and respiratory burst enzymes, NADPH oxidase and NO synthase, in the 1-methyl-3-octylimidazolium tetrafluoroborate ([omim][BF4])-mediated toxic mode of action in mussel hemocytes. Specifically, cell viability (using the neutral red uptake assay) was primarily tested in hemocytes treated with different concentrations of [omim][BF4] (0.1-10 mg L-1) and thereafter [omim][BF4]-mediated oxidative (in terms of superoxide anions/O2- and nitric oxide/NO generation, as well as the enhancement of lipid peroxidation by-products, in terms of malondialdehyde/MDA) and genotoxic (in terms of DNA damage) effects were determined in hemocytes treated with 1 mg L-1 [omim][BF4]. Moreover, in order to investigate, even indirectly and non-entirely specific, the role of PI3-kinase, NADPH oxidase and NO synthase, the [omim][BF4]-mediated effects were also investigated in hemocytes pre-incubated with wortmannin (50 nM), diphenyleneiodonium chloride (DPI 10 μM) and NG-nitro-l-arginine methyl ester (l-NAME 10 μM), respectively. The results showed that [omim][BF4] ability to enhance O2-, NO, MDA and DNA damage, via its interaction with cellular membranes, was significantly attenuated in the presence of each inhibitor in almost all cases. The current findings revealed for the first time that certain signaling molecules, such as PI3-kinase, as well as respiratory burst enzymes activation, such as NADPH oxidase and NO synthase, could merely attribute to the [omim][BF4]-mediated mode of action, thus enriching our knowledge for the molecular mechanisms of ILs toxicity.
Collapse
Affiliation(s)
- Alexia Belavgeni
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras GR-26 500, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras GR-26 500, Greece.
| |
Collapse
|
50
|
Lu LY, Zhang YJ, Chen JJ, Tong ZH. Toxicity of Selected Imidazolium-based Ionic Liquids on Caenorhabditis elegans: a Quantitative Structure-Activity Relationship Study. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1703057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|