1
|
Hou X, Shao M, Zhang L, Yang Y, Xiao Z. Identification of N-phenyl-N-(quinolin-4-yl) amino carboxylic acids as URAT1 inhibitors with hypouricemic effects. Bioorg Med Chem Lett 2024; 117:130053. [PMID: 39638156 DOI: 10.1016/j.bmcl.2024.130053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Urate transporter 1 (URAT1) is a therapeutic target for the treatment of hyperuricemia and gout. However, the application of currently marketed URAT1 inhibitors is hampered by insufficient efficacy and poor safety profiles. A series of N-phenyl-N-(quinolin-4-yl) amino carboxylic acids were designed by adopting strategies of molecular hybridization, scaffold hopping, and functional variation. Most compounds showed apparent inhibitory activity against URAT1, and the most active compound 7 exhibited an IC50 of 0.18 μ M, which was comparable to the clinically available drug benzbromarone (IC50 = 0.39 μ M). When tested in parallel with benzbromarone, compound 7 showed significant uric acid-lowering effect in a hyperuricemia zebrafish model induced by potassium oxonate and xanthine sodium salt. Compound 7 was also more metabolically stable than benzbromarone in mouse liver microsomes. The results suggested potential therapeutic benefits of these compounds in the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Xianxin Hou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengjie Shao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lei Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Yang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhiyan Xiao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Jana S, Banerjee S, Baidya SK, Ghosh B, Jha T, Adhikari N. A combined ligand-based and structure-based in silico molecular modeling approach to pinpoint the key structural attributes of hydroxamate derivatives as promising meprin β inhibitors. J Biomol Struct Dyn 2024:1-17. [PMID: 38165455 DOI: 10.1080/07391102.2023.2298394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/16/2023] [Indexed: 01/03/2024]
Abstract
Human meprin β is a Zn2+-containing multidomain metalloprotease enzyme that belongs to the astacin family of the metzincin endopeptidase superfamily. Meprin β, with its diverse tissue expression pattern and wide substrate specificity, plays a significant role in various biological processes, including regulation of IL-6R pathways, lung fibrosis, collagen deposition, cellular migration, neurotoxic amyloid β levels, and inflammation. Again, meprin β is involved in Alzheimer's disease, hyperkeratosis, glomerulonephritis, diabetic kidney injury, inflammatory bowel disease, and cancer. Despite a crucial role in diverse disease processes, no such promising inhibitors of meprin β are marketed to date. Thus, it is an unmet requirement to find novel promising meprin β inhibitors that hold promise as potential therapeutics. In this study, a series of arylsulfonamide and tertiary amine-based hydroxamate derivatives as meprin β inhibitors has been analyzed through ligand-based and structure-based in silico approaches to pinpoint their structural and physiochemical requirements crucial for exerting higher inhibitory potential. This study identified different crucial structural features such as arylcarboxylic acid, sulfonamide, and arylsulfonamide moieties, as well as hydrogen bond donor and hydrophobicity, inevitable for exerting higher meprin β inhibition, providing valuable insight for their further future development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sandeep Jana
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
3
|
Zhang Q, Mi C, Wang T. Effects and mechanism of small molecule additives on recombinant protein in CHO cells. Appl Microbiol Biotechnol 2023; 107:2771-2781. [PMID: 36971794 DOI: 10.1007/s00253-023-12486-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Chinese hamster ovary (CHO) cells can produce proteins with complex structures and post-translational modifications which are similar to human-derived cells, and they have been the ideal host cells for the production of recombinant therapy proteins (RTPs). Nearly 70% of approved RTPs are produced by CHO cells. In recent years, a series of measures have been developed to increase the expression of RTPs to achieve the lower production cost during the process of large-scale industrial production of recombinant protein in CHO cells. Among of them, the addition of small molecule additives in the culture medium can improve the expression and production efficiency of recombinant proteins, and has become an effective and simple method. In this paper, the characteristics of CHO cells, the effect and mechanism of small molecule additives are reviewed. KEY POINTS: • Small molecular additives on the expression of RTPs in CHO cells are reviewed • Small molecular additives improve the yield of RTPs • Small molecular additives provide methods for the optimization of serum-free medium.
Collapse
Affiliation(s)
- Qiuli Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chunliu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
4
|
Jian-Bo T, Xing Z, Shuai B, Ding L, Tian-Hao W. Topomer CoMFA and HQSAR Study on Benzimidazole Derivative as NS5B Polymerase Inhibitor. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210804125607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In recent years, the number of people infected with the hepatitis C virus
(HCV) is increasing rapidly. This has become a major threat to global health, therefore, new anti-
HCV drugs are urgently needed. HCV NS5B polymerase is an RNA-dependent RNA polymerase
(RdRp), which plays an important role in virus replication, and can effectively prevent the replication
of HCV sub-genomic RNA in daughter cells. It is considered a very promising HCV therapeutic
target for the design of anti-HCV drugs.
Methods:
In order to explore the relationship between the structure of benzimidazole derivative and
its inhibitory activity on NS5B polymerase, holographic quantitative structure-activity relationship
(HQSAR) and Topomer comparative molecular field analysis (CoMFA) were used to establish benzimidazole
QSAR model of derivative inhibitors.
Results:
The results show that for the Topomer CoMFA model, the cross-validation coefficient q2
value is 0.883, and the non-cross-validation coefficient r2 value is 0.975. The model is reasonable,
reliable, and has a good predictive ability. For the HQSAR model, the cross-validated q2 value is
0.922, and the uncross-validated r2 value is 0.971, indicating that the model data fit well and has a
high predictive ability. Through the analysis of the contour map and color code diagram, 40 new
benzimidazole inhibitor molecules were designed, and all of them have higher activity than template
molecules, and the new molecules have significant interaction sites with protein 3SKE.
Conclusion:
The 3D-QSAR model established by Topomer CoMFA and HQSAR has good prediction
results and the statistical verification is valid. The newly designed molecules and docking results
provide theoretical guidance for the synthesis of new NS5B polymerase inhibitors and for the identification
of key residues that the inhibitors bind to NS5B, which helps to better understand their inhibitory
mechanism. These findings are helpful for the development of new anti-HCV drugs.
Collapse
Affiliation(s)
- Tong Jian-Bo
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Zhang Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Bian Shuai
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Luo Ding
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Wang Tian-Hao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| |
Collapse
|
5
|
Zhao ZA, Jiang Y, Chen YY, Wu T, Lan QS, Li YM, Li L, Yang Y, Lin CT, Cao Y, Zhou PZ, Guo JY, Tian YX, Pang JX. CDER167, a dual inhibitor of URAT1 and GLUT9, is a novel and potent uricosuric candidate for the treatment of hyperuricemia. Acta Pharmacol Sin 2022; 43:121-132. [PMID: 33767379 PMCID: PMC8724292 DOI: 10.1038/s41401-021-00640-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) are important targets for the development of uric acid-lowering drugs. We previously showed that the flexible linkers of URAT1 inhibitors could enhance their potency. In this study we designed and synthesized CDER167, a novel RDEA3710 analogue, by introducing a linker (methylene) between the naphthalene and pyridine rings to increase flexibility, and characterized its pharmacological and pharmacokinetics properties in vitro and in vivo. We showed that CDER167 exerted dual-target inhibitory effects on both URAT1 and GLUT9: CDER167 concentration-dependently inhibited the uptake of [14C]-uric acid in URAT1-expressing HEK293 cells with an IC50 value of 2.08 ± 0.31 μM, which was similar to that of RDEA3170 (its IC50 value was 1.47 ± 0.23 μM). Using site-directed mutagenesis, we demonstrated that CDER167 might interact with URAT1 at S35 and F365. In GLUT9-expressing HEK293T cells, CDER167 concentration-dependently inhibited GLUT9 with an IC50 value of 91.55 ± 15.28 μM, whereas RDEA3170 at 100 μM had no effect on GLUT9. In potassium oxonate-induced hyperuricemic mice, oral administration of CDER167 (10 mg·kg-1 · d-1) for 7 days was more effective in lowering uric acid in blood and significantly promoted uric acid excretion in urine as compared with RDEA3170 (20 mg·kg-1 · d-1) administered. The animal experiment proved the safety of CDER167. In addition, CDER167 displayed better bioavailability than RDEA3170, better metabolic stability and no hERG toxicity at 100 μM. These results suggest that CDER167 deserves further investigation as a candidate antihyperuricemic drug targeting URAT1 and GLUT9.
Collapse
Affiliation(s)
- Ze-An Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu Jiang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Yu Chen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qun-Sheng Lan
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Mei Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Cui-Ting Lin
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ping-Zheng Zhou
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Yin Guo
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuan-Xin Tian
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jian-Xin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Chen X, Zhao Z, Luo J, Wu T, Shen Y, Chang S, Wan S, Li Z, Zhang J, Pang J, Tian Y. Novel natural scaffold as hURAT1 inhibitor identified by 3D-shape-based, docking-based virtual screening approach and biological evaluation. Bioorg Chem 2021; 117:105444. [PMID: 34775203 DOI: 10.1016/j.bioorg.2021.105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
As a promising therapeutic target for gout, hURAT1 has attracted increasing attention. In this work, we identified a novel scaffold of hURAT1 inhibitors from a personal natural product database of verified herb-treated gout. First, we constructed more than 800 natural compounds from Chinese medicine that were verified to treat gout. Following the application of both shape-based and docking-based virtual screening (VS) methods, taking into account the shape similarity and flexibility of the target, we identified isopentenyl dihydroflavones that might inhibit hURAT1. Specifically, 9 compounds with commercial availability were tested with biochemical assays for the inhibition of 14C-uric acid uptake in high-expression hURAT1 cells (HEK293-hURAT1), and their structure-activity relationship was evaluated. As a result, 8-isopentenyl dihydroflavone was identified as a novel scaffold of hURAT1 inhibitors since isobavachin (DHF3) inhibited hURAT1 with an IC50 value of 0.39 ± 0.17 μM, which was comparable to verinurad with an IC50 value of 0.32 ± 0.23 μM. Remarkably, isobavachin also displayed an eminent effect in the decline of serum uric acid in vivo experiments. Taken together, isobavachin is a promising candidate for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Xinhua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiajun Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yudong Shen
- College of Food Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information, Engineering, Jiangsu University of Technology, Changzhou 213001, People's Republic of China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.
| |
Collapse
|
7
|
Tong JB, Luo D, Bian S, Zhang X. Structural investigation of tetrahydropteridin analogues as selective PLK1 inhibitors for treating cancer through combined QSAR techniques, molecular docking, and molecular dynamics simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Aki Y, Katsumata Y, Kakihara H, Nonaka K, Fujiwara K. 4-(2,5-Dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide improves monoclonal antibody production in a Chinese hamster ovary cell culture. PLoS One 2021; 16:e0250416. [PMID: 33886677 PMCID: PMC8061942 DOI: 10.1371/journal.pone.0250416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/06/2021] [Indexed: 01/15/2023] Open
Abstract
There is a continuous demand to improve monoclonal antibody production for medication supply and medical cost reduction. For over 20 years, recombinant Chinese hamster ovary cells have been used as a host in monoclonal antibody production due to robustness, high productivity and ability to produce proteins with ideal glycans. Chemical compounds, such as dimethyl sulfoxide, lithium chloride, and butyric acid, have been shown to improve monoclonal antibody production in mammalian cell cultures. In this study, we aimed to discover new chemical compounds that can improve cell-specific antibody production in recombinant Chinese hamster ovary cells. Out of the 23,227 chemicals screened in this study, 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide was found to increase monoclonal antibody production. The compound suppressed cell growth and increased both cell-specific glucose uptake rate and the amount of intracellular adenosine triphosphate during monoclonal antibody production. In addition, the compound also suppressed the galactosylation on a monoclonal antibody, which is a critical quality attribute of therapeutic monoclonal antibodies. Therefore, the compound might also be used to control the level of the galactosylation for the N-linked glycans. Further, the structure-activity relationship study revealed that 2,5-dimethylpyrrole was the most effective partial structure of 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide on monoclonal antibody production. Further structural optimization of 2,5-dimethylpyrrole derivatives could lead to improved production and quality control of monoclonal antibodies.
Collapse
Affiliation(s)
- Yuichi Aki
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Chiyoda-machi, Gunma, Japan
- Department of Life Science, Akita University, Tegata Gakuen-machi, Akita, Japan
- * E-mail:
| | - Yuta Katsumata
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Chiyoda-machi, Gunma, Japan
| | - Hirofumi Kakihara
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Chiyoda-machi, Gunma, Japan
| | - Koichi Nonaka
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Chiyoda-machi, Gunma, Japan
| | - Kenshu Fujiwara
- Department of Life Science, Akita University, Tegata Gakuen-machi, Akita, Japan
| |
Collapse
|
9
|
In silico studies of novel scaffold of thiazolidin-4-one derivatives as anti-Toxoplasma gondii agents by 2D/3D-QSAR, molecular docking, and molecular dynamics simulations. Struct Chem 2020. [DOI: 10.1007/s11224-019-01458-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|