1
|
Peytam F, Hosseini FS, Fathimolladehi R, Nayeri MJD, Moghadam MS, Bayati B, Norouzbahari M, Foroumadi R, Bonyasi F, Divsalar R, Mojtabavi S, Faramarzi MA, Tehrani MB, Firoozpour L, Foroumadi A. Design, synthesis, and evaluation of novel substituted imidazo[1,2-c]quinazoline derivatives as potential α-glucosidase inhibitors with bioactivity and molecular docking insights. Sci Rep 2024; 14:27507. [PMID: 39528585 PMCID: PMC11555253 DOI: 10.1038/s41598-024-78878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
α-Glucosidase inhibitors are important in the treatment of type 2 diabetes by regulating blood glucose levels and reducing carbohydrate absorption. The present study focuses on identifying new inhibitors bearing imidazo[1,2-c]quinazoline backbone through multi-step synthesis. The inhibitory potencies of the novel derivatives were tested against Saccharomyces cerevisiae α-glucosidase, revealing IC50 values ranging from 50.0 ± 0.12 µM to 268.25 ± 0.09 µM. Among them, 2-(4-(((2,3-diphenylimidazo[1,2-c]quinazolin-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methoxyphenyl)acetamide (19e) and 2-(4-((benzo[4,5]imidazo[1,2-c]quinazolin-6-ylthio)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methoxyphenyl)acetamide (27e) emerged as the most potent inhibitors and were further investigated in various assessments. Finally, molecular docking studies were performed to reveal the crucial binding interactions and to confirm the results obtained from structure-activity relationship (SAR) analysis.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fathimolladehi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdis Sadeghi Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Bayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Norouzbahari
- Faculty of Pharmacy, Final International University, Catalkoy, Kyrenia via Mersin 10 Turkey, Turkish Republic of Northern Cyprus
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ruzbehan Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Chudasama DD, Patel MS, Parekh JN, Patel HC, Ram KR. Diversity-oriented synthesis of 1H-1,2,3-triazole tethered pyrazolo[5,1-b]quinazoline hybrids as antimicrobial agents. Mol Divers 2024; 28:2875-2896. [PMID: 37697023 DOI: 10.1007/s11030-023-10721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
A straightforward and high yielding synthetic approach is employed to synthesize the novel 1H-1,2,3-triazole tethered pyrazolo[5,1-b]quinazoline hybrids 7(a-t) as new antimicrobial agents with two pharmacophore in the effective two step synthesis. The first step is the four component one-pot synthesis of highly functionalized pyrazolo[5,1-b]quinazolines 5(a-j) catalysed by TBAB, with the advantages of an environmentally benign reaction, high yielding, quick reaction time, and operational simplicity. In the subsequent stage, CuSO4/NaAsc system was employed to synthesize the 1H-1,2,3-triazole tethered pyrazolo[1,5-b]quinazoline hybrids as 1H-1,2,3-triazoles are the structures of great diversity and importance in diverse therapeutics containing numerous biological activities. The antimicrobial activity of all the synthesized hybrid compounds have been preliminary tested using the broth dilution technique against two gram-positive and two gram-negative bacterial strains as well as two fungal strains. In comparison to standard drugs, the majority of compounds exhibited good to moderate activity. Among the all the compounds, 7a (MIC 18.54 μM) against Pseudomonas aeruginosa, 7j (MIC 89.76 μM) against Bacillus subtilis as well as Rhizopus oryzae and 7t (MIC 84.88 μM) against Aspergillus parasiticus have remarkable antimicrobial potency as compared to standard drug.
Collapse
Affiliation(s)
- Dipakkumar D Chudasama
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, 388120, India.
| |
Collapse
|
3
|
Peytam F, Hosseini FS, Hekmati M, Bayati B, Moghadam MS, Emamgholipour Z, Firoozpour L, Mojtabavi S, Faramarzi MA, Sadat-Ebrahimi SE, Tehrani MB, Foroumadi A. Imidazo[1,2-c]quinazolines as a novel and potent scaffold of α-glucosidase inhibitors: design, synthesis, biological evaluations, and in silico studies. Sci Rep 2023; 13:15672. [PMID: 37735489 PMCID: PMC10514295 DOI: 10.1038/s41598-023-42549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, 1H and 13C NMR spectroscopy, as well as mass spectrometry and elemental analysis. Subsequently, the inhibitory activities of these compounds were evaluated against Saccharomyces cerevisiae α-glucosidase. In present study, acarbose was utilized as a positive control. These imidazoquinazolines exhibited excellent to great inhibitory potencies with IC50 values ranging from 12.44 ± 0.38 μM to 308.33 ± 0.06 μM, which were several times more potent than standard drug with IC50 value of 750.0 ± 1.5 μM. Representatively, compound 11j showed remarkable anti-α-glucosidase potency with IC50 = 12.44 ± 0.38 μM, which was 60.3 times more potent than positive control acarbose. To explore the potential inhibition mechanism, further evaluations including kinetic analysis, circular dichroism, fluorescence spectroscopy, and thermodynamic profile were carried out for the most potent compound 11j. Moreover, molecular docking studies and in silico ADME prediction for all imidazoquinazolines 6a-c and 11a-o were performed to reveal their important binding interactions, as well as their physicochemical and drug-likeness properties, respectively.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
New arylidene-linked chromane-2,4-dione analogs as potential leads for diabetic management; syntheses, α-amylase inhibitory, and radical scavenging activities. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02648-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Design, synthesis and bio-evaluation of indolin-2-ones as potential antidiabetic agents. Future Med Chem 2023; 15:25-42. [PMID: 36644975 DOI: 10.4155/fmc-2022-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Diabetes mellitus is a serious global health concern, and this is expected to impact more than 300 million people by 2025. The current study focuses on identifying substituted indolin-2-one-based inhibitors for two indispensable drug targets, α-amylase and α-glucosidase. Methods: The structures of synthetic compounds were confirmed by spectroscopic techniques and evaluated for enzyme inhibition activities. Kinetic and in silico studies were also performed. Results: All compounds exhibited good-to-moderate inhibitory potential. Most importantly, compounds 1, 2, 6, 16 and 17 were identified as potent α-glucosidase inhibitors (IC50 = 9.15 ± 0.12-13.74 ± 0.12 μM). Conclusion: This study identified that these synthetic compounds might serve as potential lead molecules for antidiabetic agents.
Collapse
|
6
|
Urease inhibitory activity on 1,2,3-triazoles-linked indomethacin derivatives; In vitro and in silico studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Antidiabetic, antioxidant, and anti-obesity effects of phenylthio-ethyl benzoate derivatives, and molecular docking study regarding α-amylase enzyme. Sci Rep 2022; 12:3108. [PMID: 35210523 PMCID: PMC8873473 DOI: 10.1038/s41598-022-07188-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
In addition to their wide therapeutic application, benzoates and benzoic acid derivatives are the most commonly utilized food preservatives. The purpose of this study was to estimate the antioxidant, anti-diabetic, and anti-obesity activities of four 2-(phenylthio)-ethyl benzoate derivatives utilizing standard biomedical assays. The results revealed that the 2a compound has potent antidiabetic activity through the inhibition of α-amylase and α-glycosidase with IC50 doses of 3.57 ± 1.08 and 10.09 ± 0.70 µg/ml, respectively, compared with the positive control acarbose (IC50 = 6.47 and 44.79 µg/ml), respectively. In addition, by utilizing the β-carotene linoleic acid and DPPH methods, the 2a compound showed the highest antioxidant activity compared with positive controls. Moreover, the 2a compound showed potential anti-lipase activity with an IC50 dose of 107.95 ± 1.88 µg/ml compared to orlistat (IC50 = 25.01 ± 0.78 µg/ml). A molecular docking study was used to understand the interactions between four derivatives of (2-(phenylthio)-ethyl benzoate with α-amylase binding pocket. The present study concludes that the 2a compound could be exploited for further antidiabetic, antioxidant, and anti-obesity preclinical and clinical tests and design suitable pharmaceutical forms to treat these global health problems.
Collapse
|