1
|
Kumar S, Mitra R, Ayyannan SR. Design, synthesis and evaluation of benzothiazole-derived phenyl thioacetamides as dual inhibitors of monoamine oxidases and cholinesterases. Mol Divers 2024:10.1007/s11030-024-11031-3. [PMID: 39520616 DOI: 10.1007/s11030-024-11031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
A series of rationally designed benzothiazole-derived thioacetamides was synthesized and investigated for monoamine oxidases (MAO-A and MAO-B) and cholinesterases (AChE and BChE) inhibition properties. The tested compounds 18-31 inhibited MAO-A and MAO-B in the micromolar to nanomolar range and AChE in the submicromolar range. Compound 28 was identified as the most potent MAO-A inhibitor with an IC50 = 0.030 ± 0.008 µM, whereas compound 30 showed the highest potency towards MAO-B and AChE with IC50 values of 0.015 ± 0.007 µM and 0.114 ± 0.003 µM, respectively. Further, compound 30 inhibited BChE at an IC50 value of 4.125 ± 0.143 µM. Among all screened molecules, compound 30 emerged as the lead dual MAO-B and AChE inhibitor that blocked these enzymes in a competitive-reversible and mixed-reversible mode, respectively. Selected compounds have displayed iron-chelation and antioxidant properties. Further, computational assessment of ligand binding affinity and pharmacokinetic parameters of all new compounds and molecular dynamic simulation of compound 30 with MAO-B and AChE were carried out to understand ligand efficiency, pharmacokinetic, and virtual molecular interaction profile, respectively. The in silico ADMET prediction studies revealed a few undesired pharmacokinetic attributes of our compounds. The attempted virtual lead-based library synthesis and subsequent biological investigation produced a new benzothiazole-bearing dual MAO-B and AChE inhibitor as a prospective MTDL candidate for treating neurological disorders.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
2
|
Kassab AE, Gedawy EM, Sayed AS. Fused thiophene as a privileged scaffold: A review on anti-Alzheimer's disease potentials via targeting cholinesterases, monoamine oxidases, glycogen synthase kinase-3, and Aβ aggregation. Int J Biol Macromol 2024; 265:131018. [PMID: 38518928 DOI: 10.1016/j.ijbiomac.2024.131018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aβ) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3β (GSK3-β) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aβ aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| | - Alaa S Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
3
|
Eissa KI, Kamel MM, Mohamed LW, Doghish AS, Alnajjar R, Al-Karmalawy AA, Kassab AE. Design, synthesis, and biological evaluation of thienopyrimidine derivatives as multifunctional agents against Alzheimer's disease. Drug Dev Res 2023; 84:937-961. [PMID: 37067008 DOI: 10.1002/ddr.22064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
A series of 12 S-substituted tetrahydrobenzothienopyrimidines were designed and synthesized based on the donepezil scaffold. All the newly synthesized compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity and the most active compounds were tested for their butyrylcholinesterase (BuChE) inhibitory activity. Moreover, all the synthesized compounds were evaluated for their inhibitory effects against Aβ aggregation and antioxidant activity using the oxygen radical absorbance capacity method. Compounds 4b, 6b, and 8b displayed the most prominent AChE inhibitory action comparable to donepezil. Compound 6b showed the greatest AChE inhibitory action (IC50 = 0.07 ± 0.003 µM) and the most potent BuChE inhibitory action (IC50 = 0.059 ± 0.004 µM). Furthermore, the three compounds exhibited significant antioxidant activity. Compounds 6b and 8b exerted more inhibitory action on Aβ aggregation than donepezil. The cytotoxic activity of compounds 4b, 6b, and 8b against the WI-38 cell line in comparison with donepezil was examined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. The results revealed that compounds 6b and 8b were less cytotixic than donepezil, while compound 4b showed nonsignificant cytotoxicity compared to donepezil. For more insights about the binding patterns of the most promising compounds (4b, 6b, and 8b) with the AChE at molecular levels; molecular docking and molecular dynamics simulations were performed. The density functional theory calculations and absorption, distribution, metabolism, excretion and toxicity properties were described as well. The results highlighted compound 6b, which incorporates a phenylpiperazine moiety coupled to a thienopyrimidone scaffold via two-atom spacer, to be a promising multifunctional therapeutic agent for the treatment of Alzheimer's disease. It is a potent dual AChE and BuChE inhibitor. Furthermore, it had stronger Aβ aggregation inhibitory action than donepezil. Additionally, compound 6b exerted significant antioxidant activity.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
- Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Eissa KI, Kamel MM, Mohamed LW, Galal MA, Kassab AE. Design, synthesis, and biological evaluation of thienopyrimidine and thienotriazine derivatives as multitarget anti-Alzheimer agents. Drug Dev Res 2022; 83:1394-1407. [PMID: 35749685 DOI: 10.1002/ddr.21968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 06/12/2022] [Indexed: 01/21/2023]
Abstract
A series of tetrahydrobenzothienopyrimidines and tetrahydrobenzothienotriazines incorporating a pharmacophore from donepezil molecule were designed and synthesized. The 12 newly synthesized compounds were screened for their inhibition activity against acetylcholinesterase enzyme (AChE). Compounds that exerted the most potent AChE inhibitory action were further evaluated for their BChE inhibitory activity. In addition, the inhibitory effects of all newly synthesized compounds on Aβ and reactive oxygen species were assessed. Compounds 4d, 10b, and 10c showed potent inhibitory activity on AChE comparable to donepezil. Compound 10b (IC50 = 0.124 ± 0.006 nM) showed the greatest AChE inhibitory action and the most potent BChE inhibitory action (IC50 = 0.379 ± 0.02 nM). These three compounds showed more inhibitory action on Aβ accumulation than donepezil. Moreover, they showed potent antioxidant activity. The binding pattern of compounds 4d and 10b into AChE active site rationalized their remarkable AChE inhibitory activity. Taken together, these results indicated that these derivatives could be promising multifunctional agents for Alzheimer's disease management.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Galal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|