1
|
Keerthana P, Suresh S, Nawaz Khan FR. Facile synthesis of functionalized quinolinones in a green reaction medium and their photophysical properties. Org Biomol Chem 2024; 23:126-137. [PMID: 39508629 DOI: 10.1039/d4ob01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A facile and green chemical approach was successfully developed to construct functionalized quinolinones utilizing substituted alcohols, alkyl acetoacetate, and α-bromo ketones. Various quinolinones bearing either electron-rich or electron-deficient groups at different positions were synthesized in moderate to good yields under mild reaction conditions. The plausible mechanistic pathway for this transformation is supported by experimental evidence and control experiments. This simple approach for synthesizing quinolinones could open new avenues for discovering novel biological and pharmaceutical compounds. The use of affordable nickel catalysts, mild reaction conditions, operational simplicity, and high atom economy are attractive features of this method. Furthermore, the synthetic efficiency has been demonstrated through gram-scale experiments. Our research also provides valuable insights into the photophysical properties of the synthesized derivatives. Notably, compound 6n exhibited the highest Stokes shift (216 nm) in DCM solvent. Furthermore, compounds 5d and 6j showed positive solvatochromism, displaying a stronger emission as the solvent polarity increased. Additionally, compound 6j displayed aggregation-induced emission (AIE) properties in a DMSO : water mixture, making it suitable for use as a security ink, highlighting its potential applications in various fields.
Collapse
Affiliation(s)
- Pari Keerthana
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| | - Sundararajan Suresh
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India.
| |
Collapse
|
2
|
Khanna A, Kumar N, Rana R, Jyoti, Sharma A, Muskan, Kaur H, Bedi PMS. Fluoroquinolones tackling antimicrobial resistance: Rational design, mechanistic insights and comparative analysis of norfloxacin vs ciprofloxacin derivatives. Bioorg Chem 2024; 153:107773. [PMID: 39241583 DOI: 10.1016/j.bioorg.2024.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Antimicrobial resistance poses a global health concern and develops a need to discover novel antimicrobial agents or targets to tackle this problem. Fluoroquinolone (FN), a DNA gyrase and topoisomerase IV inhibitor, has helped to conquer antimicrobial resistance as it provides flexibility to researchers to rationally modify its structure to increase potency and efficacy. This review provides insights into the rational modification of FNs, the causes of resistance to FNs, and the mechanism of action of FNs. Herein, we have explored the latest advancements in antimicrobial activities of FN analogues and the effect of various substitutions with a focus on utilizing the FN nucleus to search for novel potential antimicrobial candidates. Moreover, this review also provides a comparative analysis of two widely prescribed FNs that are ciprofloxacin and norfloxacin, explaining their rationale for their design, structure-activity relationships (SAR), causes of resistance, and mechanistic studies. These insights will prove advantageous for new researchers by aiding them in designing novel and effective FN-based compounds to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Nitish Kumar
- Sri Sai College of Pharmacy, Badhani, Pathankot, Punjab 145001, India.
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Muskan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | | | |
Collapse
|
3
|
Costa LV, Gebara C, Zacaroni ODF, Freitas NE, Silva AND, Prado CS, Nunes IA, Cavicchioli VQ, Duarte FOS, Lage ME, Alencar FRD, Machado BAS, Hodel KVS, Minafra C. Antibiotic Residues in Raw Cow's Milk: A Systematic Review of the Last Decade. Foods 2024; 13:3758. [PMID: 39682830 DOI: 10.3390/foods13233758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The inappropriate use of antimicrobials in dairy animals can lead to residues in raw milk and in dairy products. Foods containing residues of this nature, whether in the short, medium, or long term, cause serious health harm. Absence of these compounds in foods should be a premise for declaring safety. This systematic review aimed to identify the antibiotic residues most frequently found in raw bovine milk and the methodologies used to detect such residues over the ten years from 2013 to 2023. PRISMA guidelines for systematic reviews were followed, by searching the Web of Science, PubMed Central, Scopus, and Springer databases. The search strategy identified 248 articles, and after applying the selection and quality assessment criteria, 16 studies were selected. The number of samples analyzed was 411,530, of which 0.21% tested positive for some type of antibiotic. Eight classes and 38 different types of antibiotics were identified. The most common class was tetracycline, with emphasis on sulfonamides and quinolones, which have shown increasing prevalence among residues in milk in recent years. A total of 56.25% of the studies employed rapid kits to detect residues, 18.75% chromatography, and 25% both techniques. Antibiotic residues in bovine raw milk should be a great concern for animal, environmental, and human health.
Collapse
Affiliation(s)
- Lucyana Vieira Costa
- Universidade Estadual de Goiás, Campus Sul Ipameri, Ipameri 75780-000, Goiás, Brazil
| | - Clarice Gebara
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Ozana de Fátima Zacaroni
- Departamento de Zootecnia, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Natylane Eufransino Freitas
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Adriele Nascimento da Silva
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Cristiano Sales Prado
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Iolanda Aparecida Nunes
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Valéria Quintana Cavicchioli
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Francine Oliveira Souza Duarte
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | - Moacir Evandro Lage
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| | | | - Bruna Aparecida Souza Machado
- SENAI Instituto de Inovação (ISI) Sistemas Avançados em Saúde (CIMATEC ISI SAS), SENAI CIMATEC, Centro Universitário, Salvador 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Instituto de Inovação (ISI) Sistemas Avançados em Saúde (CIMATEC ISI SAS), SENAI CIMATEC, Centro Universitário, Salvador 41650-010, Bahia, Brazil
| | - Cíntia Minafra
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Campus Samambaia da Universidade Federal de Goiás, Goiânia 74690-900, Goiás, Brazil
| |
Collapse
|
4
|
Arutiunov N, Zatsepilina AM, Aksenova AA, Aksenov NA, Aksenov DA, Leontiev AV, Aksenov AV. One-Pot Synthesis of N-Fused Quinolone-4 Tetracyclic Scaffolds from 2,2-Disubstituted Indolin-3-ones. ACS OMEGA 2024; 9:45501-45517. [PMID: 39554462 PMCID: PMC11561625 DOI: 10.1021/acsomega.4c07691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024]
Abstract
A cascade transformation of C2-quaternary indoxyls leading to an efficient assembly of complex (dihydro)indolo[1,2-a]quinolin-5-one ring systems is reported. The method involves the gram-scale preparation of 2-(2-aryl-3-oxoindolin-2-yl)-2-phenylacetonitriles which are then converted with methyl ketones to the corresponding 2-(2-oxo-2-aryl(alkyl)ethyl)-2-phenylindolin-3-ones. The latter can either be isolated with good yields (75-96%) or, in the case of o-nitroacetophenone, used in situ for further base-assisted intramolecular SNAr cyclization resulting in indoxyl-fused quinolone-4 hybrids (up to 95%).
Collapse
Affiliation(s)
- Nikolai
A. Arutiunov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna M. Zatsepilina
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Anna A. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355017, Russia
| |
Collapse
|
5
|
Ntavaroukas P, Michail K, Tsiakalidou R, Stampouloglou E, Tsiggene K, Komiotis D, Georgiou N, Mavromoustakos T, Manta S, Aje D, Michael P, Campbell BJ, Papoutsopoulou S. A Novel Quinoline Inhibitor of the Canonical NF-κB Transcription Factor Pathway. BIOLOGY 2024; 13:910. [PMID: 39596865 PMCID: PMC11591978 DOI: 10.3390/biology13110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The NF-κB family of transcription factors is a master regulator of cellular responses during inflammation, and its dysregulation has been linked to chronic inflammatory diseases, such as inflammatory bowel disease. It is therefore of vital importance to design and test new effective NF-κB inhibitors that have the potential to be utilized in clinical practice. In this study, we used a commercial transgenic HeLa cell line as an NF-κB activation reporter to test a novel quinoline molecule, Q3, as a potential inhibitor of the canonical NF-κB pathway. Q3 inhibited NF-κB-induced luciferase in concentrations as low as 5 μM and did not interfere with cell survival or induced cell death. A real-time PCR analysis revealed that Q3 could inhibit the TNF-induced transcription of the luciferase gene, as well as the TNF gene, a known downstream target gene. Immunocytochemistry studies revealed that Q3 moderately interferes with TNF-induced NF-κB nuclear translocation. Moreover, docking and molecular dynamics analyses confirmed that Q3 could potentially modulate transcriptional activity by inhibiting the interaction of NF-κB and DNA. Therefore, Q3 could be potentially developed for further in vivo studies as an NF-κB inhibitor.
Collapse
Affiliation(s)
- Panagiotis Ntavaroukas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Konstantinos Michail
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (T.M.)
| | - Rafaela Tsiakalidou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Eleni Stampouloglou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Katerina Tsiggene
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Dimitrios Komiotis
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (T.M.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (T.M.)
| | - Stella Manta
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danielle Aje
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK; (D.A.); (P.M.)
| | - Panagiotis Michael
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK; (D.A.); (P.M.)
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK; (D.A.); (P.M.)
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| |
Collapse
|
6
|
Moussa AY, Albelbisy MAK, Singab ANB. The Underrepresented Quinolinone Alkaloids in Genera Penicillium and Aspergillus: Structure, Biology, and Biosynthetic Machinery. Chem Biodivers 2024:e202402218. [PMID: 39422277 DOI: 10.1002/cbdv.202402218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Quinolone alkaloids are N-heterocycles with extensive structural diversity, mainly derived from in fungi from anthranilic acid and amino acids as precursors with a wide range of biological activities as antifungal, antimicrobial, anti-inflammatory, and insecticidal activities. The quinolone basic skeleton comprised of either 2-quinolones or 4-quinolones generated more than one hundred compounds. Several reviews discussed quinolones; particularly, the fluoroquinolones, yet few studies tackled natural quinolones. Many of these quinolones were not assayed for their antimicrobial potential despite their unique stereospecificity, which can supersede synthetic quinolones if their discovery is coupled with OMICS techniques, biochemical and molecular strategies as heterologous expression to maximize their yield. Herein, we conducted a comprehensive review of the quinolone's family in Aspergillus and Penicillium species, the exclusive producers of quinolones whether they are soil, endophytic or marine derived highlighting their isolation, chemical structures, pharmacological effects, structure activity relationships if any, and biosynthetic machinery. We believe that our initiative will pave the way for further development of natural quinolones as future antimicrobial agents.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Muhammad A K Albelbisy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
7
|
Prenzel T, Schwarz N, Hammes J, Krähe F, Pschierer S, Winter J, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Highly Selective Electrosynthesis of 1 H-1-Hydroxyquinol-4-ones-Synthetic Access to Versatile Natural Antibiotics. Org Process Res Dev 2024; 28:3922-3928. [PMID: 39444427 PMCID: PMC11494660 DOI: 10.1021/acs.oprd.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
1H-1-Hydroxyquinolin-4-ones represent a broad class of biologically active heterocycles having an exocyclic N,O motif. Electrosynthesis offers direct, highly selective, and sustainable access to 1-hydroxyquinol-4-ones by nitro reduction. A versatile synthetic route starting from easily accessible 2-nitrobenzoic acids was established. The broad applicability of this protocol was demonstrated on 26 examples with up to 93% yield, highlighted by the naturally occurring antibiotics Aurachin C and HQNO. The practicability and technical relevance were underlined by multigram scale electrolysis.
Collapse
Affiliation(s)
- Tobias Prenzel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Nils Schwarz
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Jasmin Hammes
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Franziska Krähe
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Sarah Pschierer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Johannes Winter
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | | | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Biological and Chemical Systems−Functional Molecular Systems
(IBCS-FMS), Karlsruhe Institute of Technology
(KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Ghahremani M, Danafar H, Afshari P, Fazli MM, Bahrami H. Removal of the nalidixic acid antibiotic from aqueous solutions using bovine serum albumin nanoparticles. Sci Rep 2024; 14:24105. [PMID: 39406798 PMCID: PMC11480412 DOI: 10.1038/s41598-024-74165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The presence of antibiotic pollutants in water and wastewater can cause significant risks to the environment in different aspects. Therefore, antibiotics need to be removed from water. This study investigates the adsorption of nalidixic acid (NA), a common antibiotic, using bovine serum albumin nanoparticles (BSA NPs). These NPs were synthesized via desolvation technique and characterized using SEM, DLS, FT-IR, and UV-Vis spectroscopy. The effects of adsorbent dosage (0.02-0.9 mg), initial NA concentration (30-80 mg L- 1) and contact time (0.5-24 h) on adsorption efficiency were considered. Adsorption isotherms and kinetics were determined experimentally. The Freundlich isotherm best described the adsorption equilibrium, while the pseudo-second-order kinetic model accurately represented the adsorption process. Thermodynamic parameters confirmed the spontaneous and exothermic nature of NA adsorption onto BSA NPs. Under optimal conditions, BSA NPs achieved a removal efficiency of 75% for NA with a maximum adsorption capacity of 240 mg g- 1. These results demonstrate the potential of BSA NPs as an effective adsorbent for removing NA from aqueous solutions.
Collapse
Affiliation(s)
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanootechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Parastoo Afshari
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran
| | - Mehran Mohammadian Fazli
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Bahrami
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran.
| |
Collapse
|
9
|
Jiang F, Fan R, Chen B, Mu T, Liu X, Xu J, Tan X, Wu J. Base-Promoted Ring Expansion Reaction of 4-Quinolones To Access Benzazepinones. Org Lett 2024; 26:8312-8316. [PMID: 39315657 DOI: 10.1021/acs.orglett.4c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
4-Quinolone derivatives undergo an unexpected ring expansion reaction with α-halo esters/phosphonates/sulfones in the presence of a base, such as NaH, to produce novel benzazepinones. Under these mild and transition-metal-free conditions, most substrates gave moderate to excellent yields. The reaction could be applied in gram-scale synthesis of drug-like molecules that greatly accelerated our structure-activity relationship studies. A plausible mechanism was proposed.
Collapse
Affiliation(s)
- Fuhao Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Rong Fan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Bo Chen
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Tong Mu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Xiaofeng Liu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Jiasu Xu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Xuefei Tan
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| | - Jun Wu
- Department of Medicinal Chemistry, China Innovation Center of Roche, Shanghai 201203, People's Republic of China
| |
Collapse
|
10
|
Jung C, Hwang J, Lee K, Viji M, Jang H, Kim H, Song S, Rajasekar S, Jung JK. Reagent-Free Intramolecular Hydroamination of Ynone-Tethered Aryl-sulfonamide: Synthesis of Polysubstituted 4-Quinolones. J Org Chem 2024; 89:13691-13702. [PMID: 39213512 DOI: 10.1021/acs.joc.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An efficient reagent-free method for the synthesis of polysubstituted 4-quinolone from 2-substituted alkynoyl aryl-sulfonamide was developed. This developed method tolerates various functional groups and gives the corresponding 4-quinolones. We have successfully extended this method to the synthesis of dihydro-4-quinolones from 2-alkenoyl aryl sulfonamide derivatives.
Collapse
Affiliation(s)
- Chanhyun Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jinha Hwang
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kwanghee Lee
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Mayavan Viji
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of Kashmir, J&K 191201, India
| | - Hongjun Jang
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Hyoungsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Sukgil Song
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Shanmugam Rajasekar
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy and Medicinal Research Center (MRC), Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
11
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
12
|
La Monica G, Bono A, Alamia F, Lauria A, Martorana A. Bioisosteric heterocyclic analogues of natural bioactive flavonoids by scaffold-hopping approaches: State-of-the-art and perspectives in medicinal chemistry. Bioorg Med Chem 2024; 109:117791. [PMID: 38870715 DOI: 10.1016/j.bmc.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy.
| |
Collapse
|
13
|
Kirana B, Shanmukha M, Usha A. A QSPR analysis and curvilinear regression models for various degree-based topological indices: Quinolone antibiotics. Heliyon 2024; 10:e32397. [PMID: 38975153 PMCID: PMC11226772 DOI: 10.1016/j.heliyon.2024.e32397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Topological indices play an essential role in defining a chemical compound numerically and are widely used in QSPR/QSAR analysis. Using this analysis, physicochemical properties of the compounds and the topological indices are studied. Quinolones are synthetic antibiotics employed for treating the diseases caused by bacteria. Across the years, Quinolones have shifted its position from minor drug to a very significant drug to treat the infections caused by bacteria and in the urinary tract. A study is carried out on various Quinolone antibiotic drugs by computing topological indices through QSPR analysis. Curvilinear regression models such as linear, quadratic and cubic regression models are determined for all topological indices. These regression models are depicted graphically by extending for fourth degree and fifth degree models for significant topological indices with its corresponding physical property showing the variation between each model. Various studies have been carried out using linear regression models while this work is extended for curvilinear regression models using a novel concept of finding minimal R M S E . R M S E is a significant measure to find potential predictive index that fits QSAR/QSPR analysis. The goal of R M S E lies in predicting a certain property of a chemical compound based on the molecular structure.
Collapse
Affiliation(s)
- B. Kirana
- Department of Mathematics, KVG College of Engineering, Sullia, 574327, India
- Visvesvaraya Technological University, Belagavi, 590018, India
| | - M.C. Shanmukha
- Visvesvaraya Technological University, Belagavi, 590018, India
- Department of Mathematics, PES Institute of Technology and Management, Shivamogga, 577204, India
| | - A. Usha
- Department of Mathematics, Alliance School of Applied Mathematics, Alliance University, Bangalore, 562106, India
| |
Collapse
|
14
|
Zhang T, Feng H. Skeletal Editing of Isatins for Heterocycle Molecular Diversity. CHEM REC 2024; 24:e202400024. [PMID: 38847062 DOI: 10.1002/tcr.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/28/2024]
Abstract
Isatins have been widely used in the preparation of a variety of heterocyclic compounds, where the skeletal editing of isatins has shown significant advantages for the construction of diverse heterocycles. This review highlights the progress made in the last decade (2013-2023) in the skeletal editing of the isatin scaffold. A series of ring expansion reactions for the construction of quinoline skeleton, quinolone skeleton, polycyclic quinazoline skeleton, medium-sized ring skeleton, as well as a series of ring opening reactions for the generation of 2-(azoly)aniline skeleton by the cleavage of C-C bond and C-N bond are highlighted. It is hoped that this review will provide some understanding of the chemical transformations of isatins and contribute to the further realization of its molecular diversity.
Collapse
Affiliation(s)
- Tiantian Zhang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
15
|
Arnaouti E, Georgiadou C, Hatizdimitriou AG, Kalogiannis S, Psomas G. Erbium(III) complexes with fluoroquinolones: Structure and biological properties. J Inorg Biochem 2024; 255:112525. [PMID: 38522216 DOI: 10.1016/j.jinorgbio.2024.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Four erbium(III) complexes with the fluoroquinolones enrofloxacin, levofloxacin, flumequine and sparfloxacin as ligands were synthesized and characterized by a wide range of physicochemical and spectroscopic techniques as well as single-crystal X-ray crystallography. The compounds were evaluated for their activity against the bacterial strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Xanthomonas campestris, which was higher than that of the corresponding free quinolones. The interaction mode of the complexes with calf-thymus DNA is via intercalation, as suggested by diverse studies such as UV-vis spectroscopy, DNA-viscosity measurements and competitive studies with ethidium bromide. Fluorescence emission spectroscopy revealed the high affinity of the complexes for bovine and human serum albumin and the determined binding constants suggested a tight and reversible binding of the compounds with both albumins.
Collapse
Affiliation(s)
- Eleni Arnaouti
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina Georgiadou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, GR-57400 Thessaloniki, Greece
| | - Antonios G Hatizdimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, GR-57400 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
16
|
Sharma V, Panjgotra S, Sharma N, Abrol V, Goutam U, Jaglan S. Epigenetic modifiers as inducer of bioactive secondary metabolites in fungi. Biotechnol Lett 2024; 46:297-314. [PMID: 38607602 DOI: 10.1007/s10529-024-03478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Scientists are making efforts to search for new metabolites as they are essential lead molecules for the drug discovery, much required due to the evolution of multi drug resistance and new diseases. Moreover, higher production of known drugs is required because of the ever growing population. Microorganisms offer a vast collection of chemically distinct compounds that exhibit various biological functions. They play a crucial role in safeguarding crops, agriculture, and combating several infectious ailments and cancer. Research on fungi have grabbed a lot of attention after the discovery of penicillin, most of the compounds produced by fungi under normal cultivation conditions are discovered and now rarely new compounds are discovered. Treatment of fungi with the epigenetic modifiers has been becoming very popular since the last few years to boost the discovery of new molecules and enhance the production of already known molecules. Epigenetic literally means above genetics that actually does not alter the genome but alter its expression by altering the state of chromatin from heterochromatin to euchromatin. Chromatin in heterochromatin state usually doesn't express because it is closely packed by histones in this state. Epigenetic modifiers loosen the packing of chromatin by inhibiting DNA methylation and histone deacetylation and thus permit the expression of genes that usually remain dormant. This study delves into the possibility of utilizing epigenetic modifying agents to generate pharmacologically significant secondary metabolites from fungi.
Collapse
Affiliation(s)
- Vishal Sharma
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivali Panjgotra
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Nisha Sharma
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vidushi Abrol
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Umesh Goutam
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
18
|
Chirwa KA, Francisco KR, Dube PS, Park H, Legoabe LJ, Teixeira TR, Caffrey CR, Beteck RM. Tractable Quinolone Hydrazides Exhibiting Sub-Micromolar and Broad Spectrum Antitrypanosomal Activities. ChemMedChem 2024; 19:e202300667. [PMID: 38326914 PMCID: PMC11076157 DOI: 10.1002/cmdc.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 μM), and most were non-toxic to HEK293 cells (CC50 values>5 μM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.
Collapse
Affiliation(s)
- Kgothatso A Chirwa
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Hayoung Park
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Thaiz Rodrigues Teixeira
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
19
|
Seo J, Kim JH, Ko N, Kim J, Moon K, Kim IS, Lee W. Development of novel indole-quinoline hybrid molecules targeting bacterial proton motive force. J Appl Microbiol 2024; 135:lxae104. [PMID: 38678002 DOI: 10.1093/jambio/lxae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
AIMS This study aimed to develop an editable structural scaffold for improving drug development, including pharmacokinetics and pharmacodynamics of antibiotics by using synthetic compounds derived from a (hetero)aryl-quinoline hybrid scaffold. METHODS AND RESULTS In this study, 18 CF3-substituted (hetero)aryl-quinoline hybrid molecules were examined for their potential antibacterial activity against Staphylococcus aureus by determining minimal inhibitory concentrations. These 18 synthetic compounds represent modifications to key regions of the quinoline N-oxide scaffold, enabling us to conduct a structure-activity relationship analysis for antibacterial potency. Among the compounds, 3 m exhibited potency against with both methicillin resistant S. aureus strains, as well as other Gram-positive bacteria, including Enterococcus faecalis and Bacillus subtilis. We demonstrated that 3 m disrupted the bacterial proton motive force (PMF) through monitoring the PMF and conducting the molecular dynamics simulations. Furthermore, we show that this mechanism of action, disrupting PMF, is challenging for S. aureus to overcome. We also validated this PMF inhibition mechanism of 3 m in an Acinetobacter baumannii strain with weaken lipopolysaccharides. Additionally, in Gram-negative bacteria, we demonstrated that 3 m exhibited a synergistic effect with colistin that disrupts the outer membrane of Gram-negative bacteria. CONCLUSIONS Our approach to developing editable synthetic novel antibacterials underscores the utility of CF3-substituted (hetero)aryl-quinoline scaffold for designing compounds targeting the bacterial proton motive force, and for further drug development, including pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Jinbeom Seo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihyeon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Insuasty D, Mutis M, Trilleras J, Illicachi LA, Rodríguez JD, Ramos-Hernández A, San-Juan-Vergara HG, Cadena-Cruz C, Mora JR, Paz JL, Méndez-López M, Pérez EG, Aliaga ME, Valencia J, Márquez E. Synthesis, Photophysical Properties, Theoretical Studies, and Living Cancer Cell Imaging Applications of New 7-(Diethylamino)quinolone Chalcones. ACS OMEGA 2024; 9:18786-18800. [PMID: 38708212 PMCID: PMC11064003 DOI: 10.1021/acsomega.3c07242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 05/07/2024]
Abstract
In this article, three unsymmetrical 7-(diethylamino)quinolone chalcones with D-π-A-D and D-π-A-π-D type push-pull molecular arrangements were synthesized via a Claisen-Schmidt reaction. Using 7-(diethylamino)quinolone and vanillin as electron donor (D) moieties, these were linked together through the α,β-unsaturated carbonyl system acting as a linker and an electron acceptor (A). The photophysical properties were studied, revealing significant Stokes shifts and strong solvatofluorochromism caused by the ICT and TICT behavior produced by the push-pull effect. Moreover, quenching caused by the population of the TICT state in THF-H2O mixtures was observed, and the emission in the solid state evidenced a red shift compared to the emission in solution. These findings were corroborated by density functional theory (DFT) calculations employing the wb97xd/6-311G(d,p) method. The cytotoxic activity of the synthesized compounds was assessed on BHK-21, PC3, and LNCaP cell lines, revealing moderate activity across all compounds. Notably, compound 5b exhibited the highest activity against LNCaP cells, with an LC50 value of 10.89 μM. Furthermore, the compounds were evaluated for their potential as imaging agents in living prostate cells. The results demonstrated their favorable cell permeability and strong emission at 488 nm, positioning them as promising candidates for cancer cell imaging applications.
Collapse
Affiliation(s)
- Daniel Insuasty
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Mario Mutis
- Grupo
de Investigación en Compuestos Heterocíclicos, Facultad
de Ciencias Básicas, Universidad
del Atlántico, Puerto Colombia 081007, Colombia
| | - Jorge Trilleras
- Grupo
de Investigación en Compuestos Heterocíclicos, Facultad
de Ciencias Básicas, Universidad
del Atlántico, Puerto Colombia 081007, Colombia
| | - Luis A. Illicachi
- Grupo
de Investigación en Química y Biotecnología,
Facultad de Ciencias Básicas, Universidad
Santiago de Cali, Calle 5. No. 62-00, Cali 760032, Colombia
| | - Juan D. Rodríguez
- Programa
de medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 7 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Andrea Ramos-Hernández
- Grupo
Química Supramolecular Aplicada, Semillero Electroquímica
Aplicada, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| | - Homero G. San-Juan-Vergara
- Departamento
de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Christian Cadena-Cruz
- Departamento
de Medicina, División Ciencias de la Salud, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - José R. Mora
- Instituto
de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería
Química, Universidad San Francisco
de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Apartado, 15081 Lima, Perú
| | - Maximiliano Méndez-López
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Edwin G. Pérez
- Organic
Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Margarita E. Aliaga
- Physical
Chemistry Department, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Jhesua Valencia
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| | - Edgar Márquez
- Departamento
de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 vía Puerto Colombia, Puerto Colombia 081007, Colombia
| |
Collapse
|
21
|
Abdillah AH, Rangkuti AAM, Pangestu D, Az-Zahra S, Supiono S. Efficacy and safety of quinolones as potential first line therapy in pulmonary tuberculosis: a meta-analysis. Folia Med (Plovdiv) 2024; 66:26-34. [PMID: 38426462 DOI: 10.3897/folmed.66.e115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Tuberculosis is an infectious disease that continues to plague the world today, causing concerns due to its high mortality rate. The therapy regimens used for the treatment of tuberculosis today have demonstrated high efficacy and safety, potentially reducing the disease's burden, but the use of some standardized medications has caused many resistances to emerge. Over the last decade, researchers have been looking for suitable alternatives, with quinolones emerging as the most promising candidate due to their efficacy, safety, and availability. However, their efficacy as a first-line treatment remains debatable.
Collapse
|
22
|
Schmitt HL, Martymianov D, Green O, Delcaillau T, Park Kim YS, Morandi B. Regiodivergent Ring-Expansion of Oxindoles to Quinolinones. J Am Chem Soc 2024; 146:4301-4308. [PMID: 38335924 PMCID: PMC10885155 DOI: 10.1021/jacs.3c12119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The development of divergent methods to expedite structure-activity relationship studies is crucial to streamline discovery processes. We developed a rare example of regiodivergent ring expansion to access two regioisomers from a common starting material. To enable this regiodivergence, we identified two distinct reaction conditions for transforming oxindoles into quinolinone isomers. The presented methods proved to be compatible with a variety of functional groups, which enabled the late-stage diversification of bioactive oxindoles as well as facilitated the synthesis of quinolinone drugs and their derivatives.
Collapse
Affiliation(s)
- Hendrik L Schmitt
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Den Martymianov
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Ori Green
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Young Seo Park Kim
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
23
|
Tummanapalli S, Gulipalli KC, Bodige S, Pommidi AK, Boya R, Choppadandi S, Bakangari MR, Punna SK, Medaboina S, Mamindla DY, Kanuka A, Endoori S, Ganapathi VK, Kottam SD, Kalbhor D, Valluri M. Cu-Catalyzed Tandem C-N and C-C Bond Formation Leading to 4( 1H)-Quinolones: A Scaffold with Diverse Biological Properties from Totally New Raw Materials in a Single Step. J Org Chem 2024; 89:1609-1617. [PMID: 38238153 DOI: 10.1021/acs.joc.3c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A novel Cu-catalyzed tandem C-N and C-C bond-formation reaction has been developed to furnish 2-substituted-4-(1H)-quinolones. 4-(1H)-quinolones play an important role in medicinal chemistry. Many 2-aryl(alkyl)-4(1H)-quinolones are found to exhibit diverse biological properties. While traditional methods have inherent issues [like starting materials with incompatible functional groups (NH2 and keto groups)], many modern methods either require activated starting materials (like Ynones) or employ expensive metals (Pd, Rh, Au, etc.) involving carbonylation using CO or metal complexes. Our protocol presents an environmentally friendly one-step method for the construction of these useful 2-substituted-4-(1H)-quinolones from easily available aryl boronic acid (or pinacolate ester) and nitriles as new raw materials, using a cheap Cu-catalyst and O2 (air) as a green oxidant. We further extended its application to the synthesis of various natural products, including the first formal total synthesis of punarnavine. A plausible mechanism involving an aryl nitrilium ion (formed due to the intermolecular C-N bond-forming coupling between aryl boron species and the nitrile group) followed by tandem intramolecular C-C bond formation has been proposed.
Collapse
Affiliation(s)
- Satyanarayana Tummanapalli
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Kali Charan Gulipalli
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinu Bodige
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Anil Kumar Pommidi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Ravi Boya
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Suresh Choppadandi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Mahendar Reddy Bakangari
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Shiva Kumar Punna
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinivas Medaboina
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Devender Yadav Mamindla
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Ashok Kanuka
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinivas Endoori
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Vijay Kumar Ganapathi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Sainath Dharmavaram Kottam
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Dinesh Kalbhor
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Muralikrishna Valluri
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| |
Collapse
|
24
|
Singh Y, Bhatia N, Biharee A, Kulkarni S, Thareja S, Monga V. Developing our knowledge of the quinolone scaffold and its value to anticancer drug design. Expert Opin Drug Discov 2023; 18:1151-1167. [PMID: 37592843 DOI: 10.1080/17460441.2023.2246366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
INTRODUCTION The quinolone scaffold is a bicyclic benzene-pyridinic ring scaffold with nitrogen at the first position and a carbonyl group at the second or fourth position. It is endowed with a diverse spectrum of pharmacological activities, including antitumor activity, and has progressed into various development phases of clinical trials for their target-specific anticancer activity. AREAS COVERED The present review covers both classes of quinolones, i.e. quinolin-2(H)-one and quinolin-4(H)-one as anticancer agents, along with their possible mode of binding. Furthermore, their structure-activity relationships, molecular mechanisms, and pharmacokinetic properties are also covered to provide insight into their structural requirements for their rational design as anticancer agents. EXPERT OPINION Synthetic feasibility and ease of derivatization at multiple positions, has allowed medicinal chemists to explore quinolones and their chemical diversity to discover newer anticancer agents. The presence of both hydrogen bond donor (-NH) and acceptor (-C=O) functionality in the basic scaffold at two different positions, has broadened the research scope. In particular, substitution at the -NH functionality of the quinolone motif has provided ample space for suitable functionalization and appropriate substitution at the quinolone's third, sixth, and seventh carbons, resulting in selective anticancer agents binding specifically with various drug targets.
Collapse
Affiliation(s)
- Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
25
|
Dube P, Angula KT, Legoabe LJ, Jordaan A, Boitz Zarella JM, Warner DF, Doggett JS, Beteck RM. Quinolone-3-amidoalkanol: A New Class of Potent and Broad-Spectrum Antimicrobial Agent. ACS OMEGA 2023; 8:17086-17102. [PMID: 37214682 PMCID: PMC10193574 DOI: 10.1021/acsomega.3c01406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Herein, we describe 39 novel quinolone compounds bearing a hydrophilic amine chain and varied substituted benzyloxy units. These compounds demonstrate broad-spectrum activities against acid-fast bacterium, Gram-positive and -negative bacteria, fungi, and leishmania parasite. Compound 30 maintained antitubercular activity against moxifloxacin-, isoniazid-, and rifampicin-resistant Mycobacterium tuberculosis, while 37 exhibited low micromolar activities (<1 μg/mL) against World Health Organization (WHO) critical pathogens: Cryptococcus neoformans, Acinetobacter baumannii, and Pseudomonas aeruginosa. Compounds in this study are metabolically robust, demonstrating % remnant of >98% after 30 min in the presence of human, rat, and mouse liver microsomes. Several compounds thus reported here are promising leads for the treatment of diseases caused by infectious agents.
Collapse
Affiliation(s)
- Phelelisiwe
S. Dube
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Klaudia T. Angula
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Lesetja J. Legoabe
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Jan M. Boitz Zarella
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town Observatory, Cape Town 7925, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Wellcome
Centre for Infectious Diseases Research in Africa (CIDRI-Africa),
Faculty of Health Sciences, University of
Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - J. Stone Doggett
- Division
of Infectious Diseases, VA Portland Healthcare
System, Portland, Oregon 97239, United States
| | - Richard M. Beteck
- Centre
of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|